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1 Department of Information and Communication Systems in Traffic, Faculty of Transport and Traffic
Engineering Doboj, University of East Sarajevo, Vojvode Mišića 52, 74000 Doboj, Bosnia and Herzegovina;
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Abstract: Delay in data transmission is one of the key performance indicators (KPIs) of a network.
The planning and design value of delay in network management is of crucial importance for the
optimal allocation of network resources and their performance focuses. To create optimal solutions,
predictive models, which are currently most often based on machine learning (ML), are used. This
paper aims to investigate the training, testing and selection of the best predictive delay model for
a VoIP service in a Long Term Evolution (LTE) network using three ML techniques: Multilayer
Perceptron (MLP), Support Vector Machines (SVM) and k-Nearest Neighbors (k-NN). The space
of model input variables is optimized by dimensionality reduction techniques: RReliefF algorithm,
Backward selection via the recursive feature elimination algorithm and the Pareto 80/20 rule. A
three-segment road in the geo-space between the cities of Banja Luka (BL) and Doboj (Db) in the
Republic of Srpska (RS), Bosnia and Herzegovina (BiH), covered by the cellular network (LTE) of
the M:tel BL operator was chosen for the case study. The results show that the k-NN model has
been selected as the best solution in all three optimization approaches. For the RReliefF optimization
algorithm, the best model has six inputs and the minimum relative error (RE) RE = 0.109. For the
Backward selection via the recursive feature elimination algorithm, the best model has four inputs
and RE = 0.041. Finally, for the Pareto 80/20 rule, the best model has 11 inputs and RE = 0.049. The
comparative analysis of the results concludes that, according to observed criteria for the selection of
the final model, the best solution is an approach to optimizing the number of predictors based on the
Backward selection via the recursive feature elimination algorithm.

Keywords: delay; dimensionality reduction; LTE; VoIP; Multilayer Perceptron; Support Vector
Machines; k-nearest neighbors; Feature Selection; Pareto 80/20 rule

1. Introduction

Sustainable Quality of Service (QoS) for users is one of the main tasks of mobile
operators. This orients them to provide comprehensive support for various applications
and services with numerous QoS requirements in order to meet the expected levels of
user Quality of Experience (QoE) [1,2]. The development of Long Term Evolution (LTE)
technology, which today is based on IP network configuration [3], is an example of such an
orientation. The target reason is optimal performance, i.e., low delay and high data transfer
speed, as well as better optimization of packet transfer. In addition to the mentioned key
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features of LTE network technology, there is Radio Resource Management (RRM), which
can raise network performance almost to the level of the Shannon limit [4]. An important
operational technology of LTE is Packet scheduling for assigning a part of the network’s
resources to each User Equipment (UE) depending on QoS requirements, but also on the
impact of delay, channel quality, number of active UEs, throughput, etc. During network
congestion, users’ QoS requirements increase, and today popular interactive real-time
services, such as Voice over IP (VoIP), i.e., Voice over Long Term Evolution (VoLTE), and
streaming are the most sensitive and susceptible to degradation in that period. Key network
performance indicators during congestion are end-to-end (E2E) delay and jitter, which
represents variations in delay [5]. According to the standard 123 107 v12.0.0 (2014) of the
European Telecommunications Standards Institute (ETSI) [6], the maximum tolerated delay
for VoIP services is defined as 100 ms, and 300 ms for streaming services. End-to-end delay
can be defined as the time required for a data packet to be transmitted through a network
from a source node to a destination node, and in a VoIP network it consists of the sum of
transmission delay, signal propagation delay and packet waiting delay.

Current research in various fields shows that predictive models, which predict events
and situations from the present towards the future based on data from the past, have an
enormously wide range of applications. Predictive models are most often based on machine
learning (ML) techniques, especially in telecommunications. The relevance and application
of predictive models using ML techniques are encouraged by a very rapid increase in
the amount of multidimensional data: Big Data (BD) publicly available on the Internet.
BD increases the complexity of the problem of finding the optimal way to the solution to
functional tasks in the network domain. At the same time, the high dimensionality of data,
i.e., a large number of variables, often makes it difficult to create a model and jeopardizes the
accuracy of prediction results. Among the discovered approaches to solutions for reducing
the problem of complexity, data preprocessing by dimensionality reduction techniques is
used. Complexity represents a key indicator of the state configuration in the situational
dynamics of telecommunication traffic. Data dimensionality reduction implies optimization
of the space of input/independent variables and the number of predictors, but with the
obligation to preserve relevance and other qualitative attributes of information [7]. Feature
Selection is one of the most common and important dimensionality reduction techniques,
and, in research papers, it is also known as variable selection, attribute selection or variable
subset selection. In this paper, the research focus is on three dimensionality reduction
approaches: RReliefF algorithm, Backward selection via the recursive feature elimination
algorithm and the Pareto 80/20 rule. The first two approaches belong to Feature selection
techniques. The selection of input variables is a process that includes the detection of
variables that have a significant impact on the prediction of output, and the removal of
redundant variables. As the main benefits achieved by this technique, the following can be
highlighted: increasing the speed of data mining algorithms, increasing the accuracy of
prediction, reducing the complexity of the model [7,8].

The assumption is that better planning and design of networks and allocation of
network resources can be achieved in the future if the value of end-to-end delay is known.
Thus, this paper examines the performance of three predictive delay models for a VoIP
service in an LTE network based on Multilayer Perceptron (MLP), Support Vector Machines
(SVM) and k-Nearest Neighbors (k-NN), whose input set of variables is optimized [9]. As a
case study, the geographic area in the Republic of Srpska (RS), Bosnia and Herzegovina
(BiH), in the vicinity of a three-segment road between the cities of Banja Luka (BL) and
Doboj (Db), which is covered by the cellular network of the M:tel BL operator, is chosen.
The main goal is to select an ML model with an optimal number of input variables, which
provides the most accurate prediction results.

The most important aims and objectives of this research are the following:

• Reducing the dimensionality of the space of model input variables by optimization
with Feature Selection techniques (RReliefF and Backward selection via the recursive
feature elimination algorithms) and the Pareto 80/20 rule;
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• Training and testing of ML models (MLP, SVM and k-NN) including the selection
of the best delay prediction model in the LTE network using accuracy and complex-
ity/interpretability criteria;

• Presentation of the aforementioned approaches to optimizing the number of predictors
for LTE KPI predictive modeling, which is, according to the authors’ knowledge and
the review of former research papers, a particularly innovative solution;

• Implementation of a unique methodology of indirect assessment and calculation of
delay values based on the average number of active users in the network;

• Creation of universally applicable predictive modeling of delays in the LTE network
based on real research. For the case study, a data space related to one of the most
important roads in the geo-road network of RS, BiH, was chosen.

The structure of the paper consists of five sections. Section 1 provides an introduction.
Section 2 presents a review of relevant published research papers, and Section 3 contains
the materials and methods used in the paper. The main research focus is in Section 4, where
the results and discussion are provided, after which the conclusions are drawn in Section 5.
The references used are listed in the last section of the paper, after the conclusion.

2. Review of Relevant Published Research

In a previous study [10], the authors created models for end-to-end delay prediction
in Cellular Vehicle-to-Everything (C-V2X) communication using different ML techniques.
Model training was performed on KPI-related variables, and data was collected from
real LTE networks. In this paper, prediction is viewed as a delay classification problem
depending on a given threshold. Similar research is conducted in [11] with a focus on
delay prediction for V2X applications in Mobile Cloud/Edge Computing systems. The
proposed prediction framework in this case consists of a component based on machine
learning techniques and a statistical component. Paper [12] presents an algorithm for
resource allocation prediction in LTE uplink (UL) connection for machine to machine
(M2M) applications. Mathematical models for prediction probability, successful prediction
probability, failed prediction probability, resource utilization/underutilization probability
and a mean uplink delay model were developed. All these models are validated using
a simulation model implemented on the OPNET platform. An original approach based
on machine learning for delay prediction in 4G networks is presented in [13]. To create
the model, the authors used real data from three different mobile networks. Paper [14]
considers a case study related to the Industrial Internet of Things (IIoT), in which the
potential of digitization of mines is investigated. For this purpose, a software tool for
sending sensor data using the LTE network is presented, and predictive delay models
are created in order to evaluate the network performance. Lai and Tang (2013), in their
paper [15], developed a Packet Prediction Mechanism (PPM), based on mathematical
models, for delay prediction when using real-time services. The main research focus was
on a virtual queue concept, which has the function of predicting the behavior of incoming
packets in the future based on the packets currently in the queue. Due to the increasing
user demand for real-time services, the development of wireless access technologies that
provide greater bandwidth is evident every day. Therefore, the same team of authors, in
the published research paper [16], proposed and designed an LTE scheduling mechanism
and PPM. In doing so, the authors assume that the proposed PPM will increase capacity,
reduce resource consumption and thereby increase network efficiency. The assumption is
that the monitoring and prediction of QoS indicators are the basic prerequisites for user
satisfaction in the use of LTE network services. Thus, delay and average user throughput
are considered as key indicators of network performance in [17]. The authors created
models to estimate the values of these dependent variables as linear functions of total
network traffic and an average Channel Quality Indicator (CQI). In [18], the subject of
research is the changes in Round-trip time (RTT) delay and the prediction of the increase in
these values in mobile broadband networks. Four classification models based on machine
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learning were developed, using data from a large number of probes in the network, and
the best classification performance was shown by the binary ensemble model.

The essential characteristics of the previously analyzed papers are shown in Table 1. It
provides information on reference numbers of the papers, the models and techniques used,
the prediction problem being solved (regression/classification), the service/application
being observed, some of the dimensionality reduction methods and techniques, if applied,
and performance.

Table 1. Overview of important criteria in relevant published research papers.

Ref. No. Models and Techniques Regression/
Classification

Service/
Application

Dimensionality
Reduction Methods

and Techniques
Performance

[10]

Neural Network (NN),
Recurrent Neural Network

(RNN) with Long Short-Term
Memory (LSTM) neurons,

Random Forest (RF),
SVM

Classification C-V2X Maximum Dependency
(MD) algorithm

Prediction accuracy (PA):
- For NN: PA = 0.8127;

- For RNN: PA = 0.8176;
- For RF: 0.7967;

- For SVM: PA = 0.8107.

[11]

LSTM;
k-medoids classification,

Epanechnikov Kerne,
Moving average functions

Regression and
Classification

Delay-sensitive V2X
Applications in Mobile

Cloud/Edge
Computing Systems

-

Best performance in both
relative mean error and

relative standard deviation.
This methodology can reduce
the mean error by 45% (which

achieves around half of
the benchmark)

[12] Mathematical models Regression M2M uplink
communication -

Can reduce the mean uplink
delay significantly below the

minimum possible for a
non-predictive resource

allocation algorithm

[13] Logistic Regression (LR), SVM,
Decision Tree (DT) Classification Operational 4G

Networks Services Random Forest

The nested cross-validation
performance of the SVM, DT,

and LR models are
0.664 ± 0.100%,

0.743 ± 0.004%, and
0.609 ± 0.076%, respectively

[14]

Artificial Neural Networks,
Decision Tree, Ensemble

modeling: Bagging technique
with a Decision Tree

Regression IIoT Lag features, Window
features

The highest accuracy of the
prediction is estimated at 90%

[15] Mathematical models, PPM,
virtual queues Regression Real time services -

PPM is able to achieve notable
improvement in terms of
invalid packet rates and
goodputs compared to

Maximum Throughput (MT),
Proportional Fair (PF),

Modified Largest Weighted
Delay First (MLWDF), and

Exponential-Proportional Fair
(EXP-PF) and very low delays

[16] Mathematical models, PPM,
virtual queues Regression Real time services -

Possibility of expired packets
can be reduced by the

proposed PPM

[17] Multivariate linear regression
technique Regression LTE services -

Plane function very well
represents the dependence of

average delay on average
reported Channel Quality
Indicator (CQI) and the

total traffic

[18]

Logistic regression, Random
forest, Light gradient-boosting

machine (LightGBM),
Ensemble

Classification 4G and 5G services - Model misclassified 20% of the
tested samples

Compared to previously analyzed published research papers, the following five con-
tributions stand out as the main improvements and novelties presented in this paper:

• Network delay is investigated by observing a real geospatial and LTE network segment
as very important factors affecting KPIs;



Appl. Sci. 2023, 13, 8511 5 of 24

• The number of predictors in LTE delay examination is optimized for the first time by
simultaneously using three approaches for predictive modeling of delays in the LTE
network;

• A complete set of 17 independent/input research variables is used and Dimensionality
Reduction is explained in detail;

• The original indirect method of assessment and calculation of the values of the depen-
dent/output variable is applied;

• The optimization of the set of input variables is modeled with Feature Selection
techniques and the Pareto 80/20 rule, and the obtained results are compared according
to the criteria of prediction accuracy and complexity/interpretability of the model.

3. Materials and Methods

The research process in this paper was completed through several successive steps:

1. Analysis of a real geospatial and network research segment in the case study;
2. Data collection and analysis of independent research variables;
3. Calculation of dependent variable values;
4. Structuring data into input/output vectors;
5. Optimization of a set of independent variables by Feature selection techniques: RReli-

efF and Backward selection via the recursive feature elimination algorithms;
6. Optimization of a set of independent variables by the Pareto 80/20 rule;
7. Training and testing of predictive delay models over an optimized set of independent

variables;
8. Comparative analysis of prediction results and selection of the final model.

3.1. Geospatial and Network Research Segment—A Case Study

For the case study in this paper, a three-segment road connected by a geodesic line, in
the geo-space of RS, BiH, between the cities of BL and Db, consisting of the following road
segments, was chosen:

1. A segment of the 9th January Motorway (M9J), 72 km long, between the Jakupovci
toll station, near the city of BL, and the Kladari toll station, near the town of Db;

2. A segment of the M16 Main Road, about 6 km long, on the route Jakupovci (entrance
to the city of BL);

3. A segment of the M17 trunk road, about 10 km long, located between the Kladari toll
station and the town of Db.

In the observed geo-space, the research focus is on the fourth generation (4G) telecommu-
nications network based on LTE network technology, managed by the M:tel BL provider [1,2].
Figure 1 shows a part of the geographical map (Google Earth) of the RS and BiH with marked
areas of road segments, where the area marked in blue is covered by LTE Carrier Aggre-
gation (CA), and the area in green is covered by LTE Frequency Division Duplexing (FDD)
technology.

LTE CA is one of the key technologies used to achieve very high data transfer speeds
in 4G networks. The principle is based on combining more than one signal carrier (in the
same or different bands) in order to increase the bandwidth and channel capacity. In the
case study, out of the total geographical area, 14.75% is covered by LTE CA technology, and
85.25% by LTE FDD technology, which enables duplex communication between eNB and
UE. It is based on paired spectrums with sufficient spacing between frequency domains to
allow simultaneous sending and receiving of data.

3.2. Analysis of Independent Research Variables and Data Collection

In this research, the following 17 independent variables or predictors selected from
the set of research data provided by the M:tel operator are observed: (1) Cell; (2) Down-
link (DL) PRB Usage Rate; (3) Average CQI; (4) DL ReTrans Rate; (5) UL ReTrans Rate;
(6) DL IBLER; (7) UL IBLER; (8) Cell Traffic Volume DL; (9) Cell Traffic Volume UL;
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(10) Cell Downlink Average Throughput; (11) Cell Uplink Average Throughput; (12) Aver-
age DL User Throughput; (13) Average UL User Throughput; (14) UL Average Interference;
(15) DL.QPSK.TB.Retrans; (16) DL.16QAM.TB.Retrans; (17) DL.64QAM.TB.Retrans.
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The M:tel BL mobile operator provided the data for research purposes based on the
official Request. The Request specified the necessary variables related to KPIs, radio channel
properties, utilization of physical resources, number of users, eNodeB parameters, topology
and signal parameters in the observed research geo-space [19]. From the obtained database,
the values of the variables for the period of data collection between 1 January 2021 and
15 January 2021 and with a one-hour sampling frequency were extracted in an Excel file
for the purposes of this research. By inspecting the data, empty cells (missing values),
unusual values equal to zero and unusual values even several thousand times less than
usual were observed and filtered. The final database was formed and consisted of a total of
31,143 measurements for each of the observed independent variables. According to the
supervised learning paradigm, the total data set is divided into two parts: (1) model
training data, consisting of 21,756 measurements (instances or vectors) or 70% of the total
data set, and (2) model testing data, consisting of 9387 measurements or 30% of the total
available data set.

(1) Cell

The access LTE network of the M:tel operator in the area of the observed three-segment
road consists of a large number of eNodeBs that provide the connection of the UE with
the rest of the 4G network. Their locations are represented by red squares in Figure 2.
According to the number of mobile users, it is obvious that the highest density of eNodeB
deployment is in the vicinity of BL city [19]. Also, in Figure 2, based on the colors and the
map legend, areas with different levels of signal attenuation can be identified. Specifically,
it refers to the areas between −126 dB and −90 dB and areas between −90 dB and 0 dB.
Each of the eNodeBs covers one or more cells with a signal, and a total of 87 cells can be
identified in the area observed.
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(2) DL PRB Usage Rate

The smallest unit of radio resources in the LTE network that can be allocated to a user
is called a Physical Resource Block (PRB). It consists of 84 resource elements (7 symbols
of 0.5 ms duration × 12 subs of 15 kHz each). When available but unused PRBs are not
sufficient to serve all active users, it can cause degradation of quality of service (QoS). DL
PRB Usage Rate represents the ratio of the average number of used physical blocks in the
Physical Downlink Shared Channel (PDSCH) and the total number of DL PRB available,
multiplied by 100. PDSCH represents a DL physical shared channel whose priority function
is the transmission of user data, but also the transmission of data essential for control, and
DL system information [19].

(3) Average CQI

The CQI can have a numerical value between 1 and 15, which the UE sends over
the uplink connection to the base station. Based on the received CQI value, the eNodeB
selects the appropriate Modulation and Coding Scheme (MCS), thereby defining the data
transmission rate in the communication channel. This means that each CQI value is
mapped to a specific MCS: Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude
Modulation (QAM, 16QAM, 64QAM) [19,20].

(4) DL ReTrans Rate & (5) UL ReTrans Rate

When the communication between the base station and the UE is not established in the
first or any subsequent attempt, data resending or retransmission is performed. Data are
sent in packets, i.e., in a Transport Block (TB) within one Transmission Time Interval (TTI),
with its duration of 1 ms. The DL/UL retransmission rate can be defined as the ratio of
retransmitted packets (packets sent with retransmission) to all packets sent via the DL/UL
SCH transport [19].

(6) DL IBLER & (7) UL IBLER

Block Error Rate (BLER) shows as a percentage how many blocks with errors were
received compared to the total number of blocks sent. The Initial Block Error Rate (IBLER)
is an indicator used to evaluate network performance; it shows the relationship between
the number of blocks with initial transmission errors and the total number of initially
transmitted TBs in the DL and UL direction [19].

(8) Cell Traffic Volume DL & (9) Cell Traffic Volume UL

Cell Traffic Volume DL/UL represents the total aggregated DL/UL traffic in the cell
in a period of one hour expressed in Gbit. In LTE networks, the total aggregated traffic
represents the sum of traffic in 9 classes, which are identified by the QoS Class Identifier
(QCI) [19]. The classes marked with QCI 1—QCI 4 are characterized by a defined and
guaranteed throughput of Guaranteed Bit Rate (GBR), and examples of services that belong
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to them are QCI 1—Conversational Voice; QCI 2—Conversational Video; QCI 3—Real
Time Gaming; QCI 4—Non-Conversational Video. Non-GBR classes are marked with
QCI 5—QCI 9 and imply a certain risk of packet loss, especially in conditions of network
congestion. Examples of services belonging to them are QCI 5—IMS Signaling; QCI 6—
Video, TCP-based; QCI 7—Voice, Video, Interactive Gaming; QCI 8 and QCI 9—Video,
TCP-based.

(10) Cell Downlink Average Throughput & (11) Cell Uplink Average Throughput

One of the most important indicators of network performance is Throughput, which
can be defined as the ratio of the amount of data transferred and the time for which the
transfer is made. The variable Cell Downlink/Uplink Average Throughput represents the
average value of this indicator for a period of one hour, at the level of one cell in the DL and
UL direction. The average throughput value can be determined not only geographically
(per spatial unit-cell), but also logically (per service) [19].

(12) Average DL User Throughput & (13) Average UL User Throughput

The average value of Throughput at the user level in the LTE network, in the observed
space in the DL and UL direction, is determined by the value of the Average DL/UL User
Throughput variable. This value is calculated for a period of one hour [19].

(14) UL Average Interference

The total power of the noise floor and the interference of neighboring cells, received
by each PRB, is measured during one TTI in the UL direction. The eNodeB divides the
total power of the noise floor and the interference of neighboring cells by the number of
PRBs, and the resulting value is used as the sampling result. At the end of the one-hour
measurement period, the average of these sampling results expressed in dBm is used as the
value of the UL Average Interference variable [21].

(15) DL.QPSK.TB.Retrans, (16) DL.16QAM.TB.Retrans & (17) DL.64QAM.TB.Retrans

The variables DL.QPSK.TB.Retrans, DL.16QAM.TB.Retrans and DL.64QAM.TB.Retrans
are related to the variable DL ReTrans Rate and refer to retransmission rates for certain
modulation schemes. Their meaning is as follows:

(15) DL.QPSK.TB.Retrans—Number of retransmitted TBs in DL SCH at Quadrature
Phase Shift Keying (QPSK) modulation;

(16) DL.16QAM.TB.Retrans—Number of retransmitted TBs in DL SCH at Quadrature
Amplitude Modulation (QAM) with 16 carrier states (16QAM);

(17) DL.64QAM.TB.Retrans—Number of retransmitted TBs in DL SCH at QAM with
64 carrier states (64QAM).

3.3. Calculation of Dependent Variable Values

End-to-end delay (DEtoE) consists of the sum of the delay at the Medium Access Control
(MAC)/Radio Link Control (RLC) layer, which makes up the largest part of DEtoE, then of the
delay due to signal propagation at the physical level and the transmission delay between the
eNodeB and UE [22]. Therefore, the delay in this case implies “the time duration that starts
when a flow is generated by a traffic source, transmitted through the communication system,
until it reaches the application layer of the user’s equipment—UE” [22].

The values of the variable DEtoE were collected by estimation and calculation based
on the results presented in paper [22]. In that paper, Madi et al. (2018) used a simula-
tion method to measure the end-to-end delay for VoIP traffic depending on the number
of active UEs in the cell. It involved mobile users’ movement speeds of 3 km/h and
120 km/h considered for each of the four observed scheduling algorithms: Exponential
Rule (EXP-RULE), EXP-PF, PPM and Delay–based and QoS–Aware Scheduling (DQAS).
Based on graphically presented simulation results in [22] (Figure 7 Average DE2E on RT
VoIP flows in [22]), for an interval from 10 to 100 active UEs in a cell with a step of 10 and
for a speed of 120 km/h, average values of the estimated delays for the four observed
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scheduling algorithms are calculated in this paper. The values calculated in this way are
shown by points in Figure 3, where the regression curve that best describes the functional
dependence of the average delay on the number of UEs is given.
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The curve shown in Figure 3 has a polynomial form of the second degree and can be
represented by a quadratic equation as follows:

Delay = 0.0003·UE2 + 0.1197·UE + 1.8071 (1)

As an indicator of the quality of this model, a very high coefficient of determination
(R2), R2 = 0.9941, appears. Among other data, the database received from the M:tel operator
provided the values of the average number of active UEs in the cells of the observed
geographical area. As such, the DEtoE values were calculated indirectly, using the model
given by Equation (1). The method of calculating the values of the dependent variable
DEtoE is shown graphically in Figure 4.
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Descriptive statistics for the dependent variable are given in Table 2, and the histogram
of the DEtoE variable is shown in Figure 5.
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Table 2. Descriptive statistics for the dependent variable DEtoE.

Mean StDev Var Min Median Max Skewness Kurtosis

4.1503 2.6520 7.0329 1.8081 3.2516 25.8282 2.81 10.17
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From a more detailed analysis of the histogram shown in Figure 5 (in Minitab
14 software), it is concluded that DEtoE values in the range between 2.375 ms and 2.625 ms
have the highest frequency (3477 repetitions). The arithmetic mean of the delay values is
4.1503 ms, and of the median is 3.2516 ms.

3.4. Structuring Data into Input/Output Vectors

Considering that data processing in this research is performed with ML techniques, it is
necessary to structure the values of independent variables and the values of the dependent
variable into input/output vectors [9]. This kind of data structure enables the training of the
ML model according to the supervised learning paradigm, where the independent variables
have the role of inputs to the model, and the dependent variable has a function of an output
from the model. One input-output vector, in this case, represents a one-dimensional array,
where the first 17 numbers represent the values of the independent/input variable (input
vector), and the last number refers to the value of the dependent/output variable DEtoE. In
the IBM SPSS Statistics Data file, a total of 31,143 input-output vectors are structured as
described; of them, in this paper, 70% are used for training and 30% for model testing.

3.5. Optimization of a Set of Independent Variables by Feature Selection Techniques

A large number of inputs or predictors can make the ML model very complex. It can
also complicate its interpretability, requires increased memory space in the system and
increases the chances of overfitting to training data. However, the problem of poor accuracy
of prediction and classification is often solved precisely by including additional parameters
or variables. It means that achieving a compromise (optimum) between simplicity and
accuracy is one of the most important goals when creating an ML model [23,24].

In many cases, more inputs to the model does not mean better model performance.
Feature selection represents one of the techniques for reducing the dimensionality of a
data set (Dimensionality Reduction) by filtering certain predictors that are redundant or
not relevant in the ML model. By excluding such independent variables, the prediction
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accuracy or classification performance of the model can be significantly improved [25]. For
this purpose, three basic variants of the Feature selection technique are available:

• Filter technique—This is based on measuring the importance of variables considering
features such as variance and relevance to the output variable. Predictors are selected
according to the desired level of importance or relevance, after which an ML model is
created using the selected set of inputs [26].

• Wrapper technique—Model training is performed using a selected subset or the entire
set of independent variables, and then individual predictors are added or removed
based on a certain criterion that measures the change in model performance. Model
training and testing are repeated until predefined stopping criteria are met [26].

• Embedded technique—Assessing the importance of the predictor is, in this case, an
integral part of a model training process.

3.5.1. RReliefF Algorithm

The RReliefF algorithm belongs to the Filter technique for optimizing a set of variables.
Relief (Kira and Rendell, 1992 [27,28]) and its extension ReliefF (Kononenko, 1994 [29]) are
“context-aware” algorithms that assess the quality of model variables for solving classi-
fication problems where there is strong interdependence among predictors [30]. Unlike
the previous two, the Regression ReliefF (RReliefF) algorithm is not limited to category
dependent variables only. It is used for regression tasks in which it “penalizes” predictors
that give different prediction values for adjacent observations with the same values of the
dependent variable. In this case, the observation represents one row in the input data
matrix, i.e., one input vector. On the other hand, this algorithm “rewards” predictors
that give different prediction values for neighboring observations with different output
values [31]. RReliefF uses intermediate weights to calculate the final predictor weight
coefficients; if the two nearest neighbors are considered, the following notation is used:

• Wj is the weighting coefficient of the predictor Fj;
• Wdy is the weighting coefficient for different values of the dependent variable y;
• Wdj is the weighting coefficient for different predictor values Fj;
• Wdy∧dj is the weighting coefficient for different values of y and different values of the

predictor Fj [31].

The weighting coefficients, Wdy, Wdj, Wdy∧dj and Wj, are equal to zero at the beginning
of the algorithm. The algorithm iteratively selects a random observation xr and a k-nearest
observation for xr. For each nearest neighbor xq, intermediate weights are updated as
follows [31]:

Wi
dy = Wi−1

dy + ∆y(xr, xq) · drq (2)

Wi
dj = Wi−1

dj + ∆j(xr, xq) · drq (3)

Wi
dy∧dj = Wi−1

dy∧dj + ∆y(xr, xq) · ∆j(xr, xq) · drq (4)

In the mathematical expressions (2), (3) and (4), i and i − 1 denote the ordinal numbers
of a total of m specified iterations. The expression ∆y(xr, xq) represents the difference
between the values of the dependent variable for observations xr and xq, and can be
calculated as follows [31]:

∆y(xr, xq) =

∣∣yr − yq
∣∣

max(y)−min(y)
(5)

where yr and yq are the values of the dependent variable for observations xr and xq,
respectively. The difference of the values of the predictor Fj for the observations xr and xq is
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defined by the expression ∆j(xr, xq) [31]. When xr represents the value of the j-th predictor
for the observation xr, and xqj is the value of the j-th predictor for the observation xq, then

∆j(xr, xq) =

∣∣xrj − xqj
∣∣

max(Fj)−min(Fj)
(6)

After updating all intermediate weights, RReliefF calculates the weighting coefficients
of the predictor Wj according to Equation [31]:

Wj =
Wdy∧dj

Wdy
−

Wdj −Wdy∧dj

m−Wdy
(7)

In order to select the optimal set of predictors in the model in addition to the values of
weighting coefficients, it is necessary to define the Relevance Threshold (RT) as the limit of
the significance of independent variables [32]. According to the criterion set in this way, all
predictors with Wj ≥ RT participate in the creation of the model. Generally, that threshold
has a value in the interval between 0 and 1, and more precisely, its value is calculated
according to the following expression based on Chebyshev’s inequality [32]:

0 < RT <
1√
α · t

(8)

where α is the probability of accepting an insignificant feature as significant (type I errors or
first type error) and t is the number of training observations for updating Wj, out of a total
of n observations. Within the stated limits, the selection of RT is arbitrary, where there is a
probability that not all variables with Wj above the defined threshold will necessarily be
significant because some unimportant variables are expected to have a positive weighting
coefficient by chance [32].

3.5.2. Backward Selection via the Recursive Feature Elimination Algorithm

The application of the Wrapper technique for the selection of an optimal set of input
variables in this research is based on the Backward selection via the recursive feature
elimination algorithm, which was presented in [33]. In Figure 6, this algorithm is graphically
represented by a flowchart. In the initial step, all 17 independent variables are used as
inputs to the ML model, after which multiple predictive models are trained and tested. At
the same time, it is necessary to determine the importance or influence of each predictor on
the prediction results. In the next step, the input variable of least importance is eliminated,
and the training and testing procedure is repeated over the subset obtained in this way, as
well as the performance analysis of the solutions created. As long as the current subset of
input variables consists of more than two inputs, it is necessary to eliminate individually
each input variable with the next lowest importance from the ranked list, and so on. The
elimination procedure is shown in a loop in Figure 6. When the input subset is reduced to
two predictors, the performance of the created models is compared for each subset. Finally,
for the optimal solution, the subset of inputs used to create the most accurate predictive
models is selected.

The performance of predictive models is measured with the Relative Error (RE) pre-
diction criterion. RE can be calculated as follows:

RE =

n

∑
i=1

(DEtoEi − DPREDi)
2

n

∑
i=1

(DEtoEi − DAVGi)
2

(9)
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where:

- DEtoEi is a calculated end-to-end delay value for the i-th input/output vector,
- DPREDi is a prediction value of DEtoEi, and
- DAVGi is the arithmetic mean of the variable DEtoEi.
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3.6. Optimization of a Set of Independent Variables by the Pareto 80/20 Rule

Another applied approach to optimization within the dimensionality reduction tech-
nique is the Pareto principle. Since optimality means the best combination of relevant
factors, the Pareto principle is based on the strategic assumption that 80% of problems
or effects in solutions come from 20% of causes. This is why it is often referred to as the
“80/20 rule”. The Pareto principle has proven its applicability in various fields, even though
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it has its roots in economics [34,35]. In this paper, based on the created Pareto diagram, the
optimal number of input variables is chosen so that their cumulative PI value is equal to or
greater than 0.8 or 80%. For all alternative actions in predictive decision-making, available
relevant information is used, and possible solutions for selecting one of the alternatives
can be presented in matrix form. Machine learning is viewed as a multi-objective task.
However, most often only one goal is observed, cost function optimization, or multiple
objectives are aggregated into a scalar cost function. Using the Pareto principle to solve
multi-objective tasks has proven to be one of the most effective approaches. In the Pareto-
based approach to multi-objective optimization, the objective function is not a scalar value,
but a vector. Therefore, several Pareto-optimal solutions are created instead of one, which
can significantly improve the predictive performance of a model [36].

3.7. Creating Predictive Models Using the ML Method of Automatic Modeling

In the IBM SPSS Modeler software environment, optimized sets of predictors are
brought to the input of the Auto Numeric node. Auto Numeric represents a method for
automatic modeling where training and testing of multiple models is performed in just
one step on the basis of different ML techniques [9]. As a result, the software analyzes
the performance, ranks and offers the user the best solutions and sorts the input variables
according to the influence (importance) on the prediction results. Based on the aims and
objectives of this research, three machine learning techniques are in focus: MLP, k-NN and
SVM [9,37]. These models are some of the most popular predictive models in research. In
addition, they are universal, as they can be used for classification and regression tasks and
are of different levels of interpretability/complexity. These are the main reasons why they
were observed in this research.

Hyperparameter optimization was not used in this paper, but these values were
automatically set to default:

• The MLP model automatically determines the required number of hidden layers (one
or two) and the number of neurons in each of them; the maximum training time of
15 min is used as a stopping criterion.

• SVM stopping criterion has a value of 10−3; Regularization parameter (C) = 10; Re-
gression precision (epsilon) = 0.1; Kernel type is Radial Basis Function (RBF); RBF
gamma = 0.1; Gamma value = 1; Bias = 0; Degree = 3.

• For the k-NN model, k is automatically determined between three and five; Distance
Computation is based on the Euclidean metric.

Optimization of model hyperparameters, assessment of its performance and avoidance
of overfitting are most often achieved with the help of cross-validation techniques. The most
common techniques include K-Fold Cross-Validation, Stratified K-Fold Cross-Validation,
Leave-One-Out Cross-Validation (LOOCV), Leave-P-Out Cross-Validation (LPOCV), Time
Series Cross-Validation and Repeated K-Fold Cross-Validation. The main effect achieved
by their application is the stability of the predictive model, which is reflected in relia-
bility, good generalization on new data and preservation of performance over time and
in different circumstances. They are most often used in medical research and medical
statistics. However, these techniques have limitations, especially in cases where the data
evolves, resulting in differences between the training set and the validation set. Based on
the assumption that in this research the set of available data is simple and large enough,
but also due to time and resource requirements, a simple train-test split was used in the
paper. The model’s predictive performance and stability were evaluated on a test dataset
that remained unseen to the ML models during their training.

3.8. Comparative Analysis of Prediction Results and Selection of the Final Model

The comparative analysis of the prediction results and the selection of the final model
represents the last step in the research process. Based on the prediction performance ex-
pressed through the relative error criterion, one of the most accurate models is selected for
each of the three observed approaches to optimizing the set of input variables. The main



Appl. Sci. 2023, 13, 8511 15 of 24

goal of this procedure is to test the statistical significance of the differences in prediction
results for three ML models, i.e., for three approaches to predictor set optimization. Given
that the same data set is used for testing in all three cases, the prediction results are com-
pared using statistical methods, specifically by the ANOVA test with Repeated Measures
and the Friedman test.

In addition to relative error, as one of the key indicators of prediction performance, spe-
cial attention is paid to its complexity and interpretability when selecting an ML model [5].
According to the conducted studies, models with more complex ML algorithms are more
demanding for interpretation. The dimensionality of the space of input variables, and the
complexity of the functions that the models need to learn, in addition to the algorithms, can
affect the complexity of the model [5]. Figure 7 shows the methodological steps, from the
optimization of a set of independent variables in each of the three investigated predictive
models to the comparative analysis and selection of the final ML model.
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According to the results of numerous studies, priority is given to simpler, more
interpretable solutions, although complex predictive models usually provide better per-
formance [38–40]. In paper [39], several definitions of the concept of interpretability are
listed, among which the following stands out: “interpretability in ML is a degree to which
a human can understand the cause of a decision from an ML model”. For this reason, in
recent years, a relatively new field, Interpretable Machine Learning (IML), has appeared.
Within it, methods are investigated to transform ML models, the so-called black boxes, into
white box models [5,39,41]. Figure 8 shows common models ranked according to accuracy
and interpretability in relatively recently published research papers [42–46]. In the figure,
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the accuracy from the lowest to the highest value is given in a down-up orientation, while
the interpretability with a growing trend is oriented in the Top-down direction.
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3 Cell_Traffic_Volume_UL 0.0041 0.0044 0.0045 
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5 Cell_Traffic_Volume_DL 0.0033 0.0035 0.0038 
6 UL_Average_Interference 0.0028 0.0031 0.0033 
7 DL.64QAM.TB.Retrans 0.0027 0.0028 0.0029 
8 Cell 0.0024 0.0025 0.0027 
9 UL_IBLER 0.001 0.001 0.0012 

10 UL_ReTrans_Rate 0.0009 0.001 0.0011 
11 Cell_Uplink_Average_Throughput 0.0006 0.0006 0.0007 
12 Average_UL_User_Throughput 0.0001 0.0001 0.0001 
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4. Results and Discussion
4.1. Predictive ML Models Created over a Set of Predictors Optimized by the RReliefF Algorithm

In order to compare performance, the optimization results of the set of independent
variables by the RReliefF algorithm for different values of k-Nearest Neighbors are shown
in Table 3. The values of this parameter are chosen empirically. For k = 10, k = 15 and
k = 20, the algorithm ranked the independent variables by weighting coefficients in the
same ranking. The most influential predictor for all three cases is DL.16QAM.TB.Retrans,
while Average_DL_User_Throughput is in last place with a negative weighting coefficient
for each k.

Table 3. Optimization results of the set of independent variables by the RReliefF algorithm.

Rank Independent Variable or Predictor
Predictor Weighting Coefficients for Individual Values of k

k = 10 k = 15 k = 20

1 DL.16QAM.TB.Retrans 0.0061 0.0065 0.007
2 DL.QPSK.TB.Retrans 0.006 0.0064 0.0067
3 Cell_Traffic_Volume_UL 0.0041 0.0044 0.0045
4 DL_PRB_Usage_Rate 0.0037 0.004 0.0043
5 Cell_Traffic_Volume_DL 0.0033 0.0035 0.0038
6 UL_Average_Interference 0.0028 0.0031 0.0033
7 DL.64QAM.TB.Retrans 0.0027 0.0028 0.0029
8 Cell 0.0024 0.0025 0.0027
9 UL_IBLER 0.001 0.001 0.0012
10 UL_ReTrans_Rate 0.0009 0.001 0.0011
11 Cell_Uplink_Average_Throughput 0.0006 0.0006 0.0007
12 Average_UL_User_Throughput 0.0001 0.0001 0.0001
13 Average_CQI −0.0008 −0.0008 −0.0009
14 DL_ReTrans_Rate −0.0013 −0.0013 −0.0014
15 DL_IBLER −0.0015 −0.0016 −0.0017
16 Cell_Downlink_Average_Throughput −0.0019 −0.002 −0.0021
17 Average_DL_User_Throughput −0.0027 −0.0029 −0.003

According to expression (8), with the conventional value α = 0.05 and the default value
m = 31,143, the RT value is selected in the interval 0 < RT < 0.025. However, in practice,
instead of a certain value of RT, and in accordance with the limitations, a few of the most
important predictors that affect the prediction of the dependent variable are often chosen.
Considering that the number of variables with weighting coefficients greater than 0 is equal
to 12 in the observed case, the first six ranked predictors, according to Table 3, are selected
as the final number of inputs. The RT threshold value that can be set hypothetically, and
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which can correspond to this selection of the optimal set of variables, is RT = 0.0028. This
threshold applies to all three values of k.

Table 4 shows the ranked RE values and correlations for the three tested models that
were created over the data set optimized by the RReliefF algorithm. Pearson’s correlation
coefficients r are calculated as follows:

r = ∑(DEtoEi − DEtoEAVG)(DPREDi − DPREDAVG)√
∑(DEtoEi − DEtoEAVG)

2∑(DPREDi − DPREDAVG)
2

(10)

where DPREDAVG is the arithmetic mean of the variable DPREDi.

Table 4. Results of testing the models created over the data set optimized by the RReliefF algorithm.

Model RE Correlation

1. k-NN 0.109 0.944
2. MLP 0.159 0.917
3. SVM 0.205 0.893

According to Table 4, the best predictive performance is shown by the model based on
k-NN, which has RE = 0.109 and the correlation coefficient equal to 0.944. That is why this
model is selected as the best solution in the approach to predictor set optimization with the
RReliefF algorithm. The SVM model has the highest relative error, which is RE = 0.205, but
also the lowest correlation value, which is equal to 0.893.

4.2. ML Predictive Models Created over a Set of Predictors Optimized by the Backward Selection
via the Recursive Feature Elimination Algorithm

In accordance with the first step of the algorithm shown in Figure 6, all 17 independent
variables are used as inputs to the ML models. Automatic training and testing of predictive
models based on MLP, SVM and k-NN techniques are performed using the Auto Numeric
method. As one of the results of this step, Figure 9 shows the input variables ranked
by PI value [47]. The first two variables with the highest PI value are related to packet
retransmission, which directly and negatively affects the end-to-end delay.
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By multiple executions of the loop of the algorithm given in Figure 6, the RE values of
the model testing are obtained, as shown in Figure 10. From the figure, it can be concluded
that the best predictive performance is shown by the model based on k-NN, which has
the smallest relative error (RE = 0.04) for the five most influential input variables sorted
according to Figure 10. Nevertheless, due to lower complexity, the k-NN model with four
inputs is selected as the best solution; its relative error is slightly higher and amounts to
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RE = 0.041. In addition, it is evident that the prediction performance decreases drastically
with a further reduction in the number of inputs to three and two variables.
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The performance of the tested predictive models, in addition to the relative error, can
also be expressed by correlation, which is shown in Figure 11. It is concluded that the
values of the Pearson correlation coefficients of the prediction results with the real data
from the test set are “inverse” in relation to the RE values shown in Figure 10. Accordingly,
the model with five inputs has the highest correlation coefficient (0.98), but due to the
reasons mentioned above, the k-NN model with four inputs, whose correlation coefficient
is equal to 0.979, was selected as the best solution. One of the main reasons for the better
performance of the k-NN model when compared to the SVM and MLP models lies in the
fact that the k-NN model is oriented towards simpler data sets, such as the one observed.
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4.3. Predictive ML Models Created over a Set of Predictors Optimized by the Pareto 80/20 Rule

Figure 12 shows a Pareto diagram where the observed input variables are ordered
according to the value of PI, from the highest to the lowest, by the ranking shown in
Figure 9 [48]. The value of the cumulative curve for any input variable is equal to the sum
of the PI values of individual predictors up to the observed variable, moving from the left
to the right side of the diagram. According to the Pareto 80/20 rule, the goal is to find the
first point on the curve with a cumulative value equal to or greater than 80%. This optimal
point is marked in Figure 12, and the cumulative percentage in it is 81.34% for 11 input
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variables. According to the results shown in Figure 10, the k-NN model is selected as the
best solution in this optimization approach, whose relative error at that point is RE = 0.049,
while the correlation is equal to 0.975 (Figure 11).
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4.4. Comparative Analysis of Results Using Statistical Methods and Selection of the Final Model

Comparative analysis compares the delay prediction results of three ML models,
each of which was selected as the best solution in one of the three observed approaches
to optimizing the input set of variables. The main goal is to determine the statistical
significance of the differences between the prediction results, which is the reason for testing
the null hypothesis:

Hypothesis 0 (H0). µ1 = µ2 = µ3, where µ1, µ2 and µ3 are the arithmetic means of delay prediction
values for k-NN models selected as the best solutions in the approach based on the RRelieff algorithm,
Backward selection via the recursive feature elimination algorithm, and the Pareto 80/20 rule,
respectively. In other words, this hypothesis represents the assumption that there are no significant
statistical differences in the arithmetic means of the delay prediction results for the three observed
models.

In contrast, the alternative hypothesis can be stated as follows:

Hypothesis 1 (H1). There are significant statistical differences in the prediction results between at
least two models, i.e., two optimization approaches.

The parametric statistical test that tests the null hypothesis is ANOVA with Repeated
Measures [49]. However, it is first necessary to test one of the basic conditions for the
application of this test, which is the normality of the distribution of the dependent variable
in groups. The results of the Kolmogorov–Smirnov normality test for the observed models
are given in Table 5.

Table 5. Tests of Normality with summarized optimization and prediction results.

An Approach to Optimization of
a Set of Input Variables ML Model Selected Number of Inputs RE

Kolmogorov-Smirnov

Statistic df Sig.

RReliefF algorithm k-NN 6 0.109 0.188 31,143 0.000
Backward selection via the

recursive feature elimination
algorithm

k-NN 4 0.041 0.191 31,143 0.000

Pareto 80/20 rule k-NN 11 0.049 0.189 31,143 0.000
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The obtained significance value of the Sig. test for all three cases has the same value
(Sig. = 0.000). It means that the assumption about the normality of the distribution of the
dependent variable in groups can be rejected. This conclusion can be confirmed graphically
on the basis of the Q-Q plots shown in Figure 13. On the diagrams, it is obvious that there
are significant deviations of the points from the line representing the normal distribution.
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Given the non-fulfillment of the conditions from the aspect of normality of distribution,
it is necessary to test the hypotheses with the Friedman test, which is a non-parametric
alternative to ANOVA with Repeated Measures. Table 6 shows the results of the Friedman
test performed in IBM SPSS Statistics [50]. In addition to the sample size (N), a statistical
test (Chi-Square), degree of freedom (df) and significance level (Asymp. Sig.) are given
in the table. Based on the value of Asymp. Sig., which is less than the α = 0.05 level, it is
concluded that there are statistically significant differences in the prediction results for the
three models, i.e., for three approaches to optimizing the set of input variables.

Table 6. Results of the Friedman test.

N 31,143
Chi-Square 268.019

df 2
Asymp. Sig. 0.000

The results given in Table 6 do not show the information for which pair of combined
optimization techniques there is a significant statistical difference. The answer to this
question is obtained with a Post Hoc statistical test. Table 7 shows the results of the
Wilcoxon signed-rank post hoc test with the value of Z and Asymp. Sig. for each of the
three combinations of approaches.

Table 7. Wilcoxon signed-rank post hoc test results.

Pairs for Comparison

RReliefF—Pareto 80/20 Rule
Backward Selection via the

Recursive Feature
Elimination—RReliefF

Backward Selection via the
Recursive Feature

Elimination—Pareto 80/20 Rule

Z −3.077 −7.848 −18.727
Asymp. Sig. (2-tailed) 0.002 0.000 0.000

In order to interpret the results obtained, it is necessary to calculate the adjusted
Bonferroni level of significance as the ratio of level α = 0.05 and the number of pairs being
compared, which as a result provides a value of 0.017. Given that Asymp. Sig. < 0.017
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applies to all combinations, it is concluded that there are statistically significant differences
among the delay prediction results for all three pairs of approaches to optimizing the input
set of variables.

Based on the presented results, the k-NN model whose number of inputs is optimized
to four by the algorithm Backward selection via the recursive feature elimination is chosen
as the final model. Figure 14 shows the prediction results of the dependent variable DEtoE
using this model based on the data from the test set. The diagram also shows the regression
line equation that explains the linear relationship between the actual and the predicted
DEtoE values.
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State-of-the-art methods and techniques in network delay prediction are based mainly
on machine learning and deep learning. In particular, Graph Neural Networks (GNN)
stand out, which are adapted for processing data structured in the form of graphs. Other
popular state-of-the-art techniques include Autoregressive Integrated Moving Average
(ARIMA), LSTM, Gated Recurrent Unit (GRU), RNN, Convolutional Neural Network
(CNN) models. Some of the most important advantages that distinguish the final selected
k-NN model in this research with the mentioned state-of-the-art technique are the simplicity
of interpretation and application, it maintains good performance with small data sets, it is
adaptable to changes in the data set and it does not require time stationarity data.

5. Conclusions

For a long period of time, not only the amount of data, called BD, but also the number
of users of network services and the range of user requests for higher QoS has been
increasing drastically. Telecommunications operators face increasingly complex technical
and technological problems in a domain of network traffic management, adequate planning
and modern design of all dimensions of network resource quality, including their allocation
and performance—KPI. This is especially important for services such as VoIP and traffic
streaming. Predictive modeling of required solutions currently is most often based on
the techniques of the ML method. Numerous studies of different approaches to certain
solutions for indicated problems are analyzed in this paper and presented in Section 2.
Using the above and other experiences and theoretical findings of more comprehensive
studies, the paper presents original approaches to predictive modeling of end-to-end delay
of data packets through a real 4G LTE network. The network is in the geo-space covered by
the M:tel BL mobile operator with a focus on the area of a three-segment road in the road
network of RS, BiH. In the LTE architecture, a total of 87 cells are located in the observed
area, which provide users with a continuous and permanent network connection.

In the paper, the aims and objectives of the research have been fulfilled. It includes
reducing the dimensionality of the space of input variables in the optimization model with
Feature Selection techniques (RReliefF and Backward selection via the recursive feature
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elimination algorithms) and the Pareto 80/20 rule. It is followed by training and testing
of ML models with MLP, SVM and k-NN techniques including the selection of the best
delay prediction model in the LTE network according to criteria of accuracy and com-
plexity/interpretability. Then, the implementation of a unique methodology of indirect
assessment and calculation of dependent variable values based on the average number of
active users in the network has been performed. At the same time, a universally applicable
predictive model of delay in the LTE network, based on the research in the real space of
Big Data (BD) with input-output vectors, has been created. In the opinion of the team
of authors, the presented approaches to the optimization of the number of predictors by
end-to-end delay ML modeling techniques in LTE networks by reducing the dimensions
of BD and connecting independent variables in pairs with the calculation of KPI are a
particularly important innovative contribution to the research of telecommunications traffic
provided in this paper. It also involves the methodology of presenting and interpreting
textual, algorithmic, graphic, photo-documentation, mathematical and computer-generated
solutions. An optimal explanatory strategy has also been used in creating a system of clari-
fication of the presented methodology and results referring to similarities in the structure of
what is being investigated in this paper with already known facts that, among other things,
were published in the cited papers and other authors’ solutions. Also, familiar systems of
relations that are used as models which can be useful to understand the new experience in
the systematic scientific research of telecommunications traffic are taken into account, and
the similarities created in analogies and in hypotheses have led to the proven quality of the
results presented.

The research results show that the k-NN model has been selected as the best solution
in all three approaches to the optimization of the input set of variables. For the RReliefF
optimization algorithm, the best model has 6 inputs and RE = 0.109; for Backward selection
via the recursive feature elimination algorithm, the best model has 4 inputs and RE = 0.041;
and for the Pareto 80/20 rule, the best model has 11 inputs and RE = 0.049. The comparative
analysis of the results concludes that according to both observed criteria for the selection of
the final model, the best solution is an approach to optimizing the number of predictors
based on the Backward selection via the recursive feature elimination algorithm. In other
words, the k-NN model created within this approach has the lowest RE value and the
lowest number of input variables of all tested ones.

Cross-validation techniques were not applied in this paper, which in the strictest sense
can be considered as a possible limitation of this work. Nevertheless, the results showed
that the model has performance stability with deafult hyperparameters. The test data set
was not made visible, and information was not leaked to the models during training and
was only used to evaluate their generalization abilities.
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