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Abstract: The advancement of computer vision technology has allowed for the easy detection of
weeds and other stressors in turfgrasses and agriculture. This study aimed to evaluate the feasibility
of single shot object detectors for weed detection in lawns, which represents a difficult task. In this
study, four different YOLO (You Only Look Once) object detectors version, along with all their
various scales, were trained on a public ‘Weeds’ dataset with 4203 digital images of weeds growing
in lawns with a total of 11,385 annotations and tested for weed detection in turfgrasses. Different
weed species were considered as one class (‘Weeds’). Trained models were tested on the test subset
of the ‘Weeds’ dataset and three additional test datasets. Precision (P), recall (R), and mean average
precision (mAP_0.5 and mAP_0.5:0.95) were used to evaluate the different model scales. YOLOv8l
obtained the overall highest performance in the ‘Weeds’ test subset resulting in a P (0.9476), mAP_0.5
(0.9795), and mAP_0.5:0.95 (0.8123), while best R was obtained from YOLOv5m (0.9663). Despite
YOLOv8l high performances, the outcomes obtained on the additional test datasets have underscored
the necessity for further enhancements to address the challenges impeding accurate weed detection.

Keywords: digital image analysis; manilagrass; bermudagrass; ryegrass; YOLO

1. Introduction

Weed encroachment within turfgrass swards strictly depends on the turfgrass manage-
ment regime and may lead to a loss of functional quality and aesthetic perception. To date,
the best weed control on turfgrasses is achieved by broadcast application of synthetic herbi-
cides [1]. Synthetic herbicides in the European Union have been subjected to strict bans due
to herbicide exposure’s health and environmental risks [2,3]. According to the European
Commission [4], approximately 100 different synthetic herbicides are allowed for turfgrass
and landscape management. However, there are slight discrepancies between what is
allowed in various European countries. Many endeavors are underway to replace synthetic
herbicides and find appropriate products, tools, or management techniques that effectively
control weeds in turfgrasses and urban environments. Currently, the most effective weed
removal methods in turfgrasses or urban hard surfaces involve localized applications of
nonselective biological products (i.e., acetic acid) [5] or thermal treatments [6], however, ad-
equate efficacy has yet to be achieved. Robotic machines that can autonomously detect and
remove weeds show great promise for more sustainable weed control in turfgrasses [7–9].
Weed detection is fulfilled using various methods such as image processing, machine learn-
ing, and computer vision techniques, and it’s an area of active research and development.
Indeed, various works have been published investigating the feasibility of using machine
vision technology for weed detection in turfgrass and grassland systems using Bayes classi-
fier, morphology operator [10], weed shapes and texture features [11–13], color [12,13] and
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various filters and aggregation techniques [14]. Recently deep learning (DL) has emerged as
an effective application in various scientific domains, including computer vision [15]. Deep
convolutional neural networks (DCNN) have an extraordinary ability to extract features
from digital images, thus classifying images and detecting objects [16]. These promising
results promoted the production and publication of more than 16 open-access datasets for
algorithm training in customized contexts [17]. DL algorithms for object detection can be
classified into two categories: single-shot detectors (SSD) and two-stage detectors. Two-
stage detectors (i.e., R-CNN, Mask R-CNN) first generate regions within the input image
that may contain the objects; then regions are classified into objects by a neural network.
Yu et al. [18] compared different two-stage detectors based on DCNNs to detect annual blue-
grass (Poa annua L.) and various broadleaf weeds (Hydrocotyle spp., Hedyotis cormybosa L.
Lam., Richardia scabra L.) in dormant bermudagrass and actively growing bermudagrass.
The authors obtained excellent performance with F1 scores > 0.95. Similarly, Yu et al. [19]
reported that DetectNet reliably detected Oenothera laciniata Hill) in bahiagrass (Paspalum
notatum Flugge) with an overall accuracy of >0.99 and a recall value of 1.00. Yu et al. [20]
assessed the feasibility of DCNNs two-stage object detectors to detect broadleaves weeds
(Taraxacum officinale Web., Glechoma hederacea L. and Euphorbia maculata L.) in a cool-season
turfgrass system of perennial ryegrass (Lolium perenne L.). The authors compare four dif-
ferent DCNN architectures, and the best performances in weed detection were achieved
by DetectNet (F1 scores > 0.98 and recall values > 0.99. In general, two-stages detectors
result in higher accuracy than single-stage detectors. Jin et al. [21] evaluate DenseNet,
EfficientNetV2, ResNet, RegNet, and VGGNet to detect and discriminate multiple weed
species growing in turfgrass. Results showed an F1 score of 0.950 for VGG-Net detecting
T. officinale and an F1 score of 0.983 when detecting and discriminating Paspalum dilatatum
Poir. and Cyperus rotundus L. and Trifolium repens L. in bermudagrass turf. DenseNet,
EfficientNetV2, and RegNet multi-classifiers achieved F1 scores of 0.984 when recognizing
Paspalum dilatatum Poir. and Cyperus rotundus L. However, the multiple stages involved
in the detection produce a slower inference speed. Conversely, single-stage detectors do
not provide for a region proposal step, and both object localization and classification are
done in a single pipeline, exploiting a faster inference speed [22]. YOLO (You Only Look
Once) is a single stage-deep learning algorithm that uses a convolution neural network
for object detection. The object detection resulting from YOLO is formulated as a single
regression problem by placing the bounding box coordinates into image pixels and then
assigning class probabilities. Among the various DCNN object detection algorithms, YOLO
achieves the detection in a single forward propagation, making it particularly suitable for
real-time application. YOLO architectures achieved top performances in two official object
detection datasets: Pascal VOC (visual object classes) [23] and Microsoft COCO (common
objects in context) [24]. YOLO showed high precision and higher inference speed and
represented state of the art in object detection algorithms. YOLO object detectors have
shown potential for accurately detecting weeds in images and video data [25–27], however,
it’s worth noting that the YOLO performance for weed detection can be affected by lighting,
background noise, and occlusion [28]. Therefore, optimizing the algorithm’s parameters
based on the specific use case and dataset is important to achieve the best results. Nev-
ertheless, to date, only two research have been published on YOLO object detectors in
turfgrasses: Medrano [29] assessed the feasibility of yolo detectors for detecting T. officinale
in bermudagrass turf using YOLOv5. The model achieved 97% precision, 91% recall, and
41.2 frames per second to detect T. officinale with Deepstrem on NVIDIA Jetson Nano 4GB.
Zhuang et al. [28] assessed different object detectors, including YOLOv3, for R. scabra
detection in bahiagrass turfs managed with different drought stress. In this exploration it
was found that neural networks such as AlexNet, GoogLeNet, and VGGNet demonstrated
the highest performance levels. However, the application of YOLO for weed detection in
turfgrass remains relatively uncharted territory, with only a handful of trials conducted
thus far. Given the considerable challenge associated with achieving satisfactory weed
detection in turfgrass using trained digital images, the focus of this study was to assess
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a range of YOLO model scales, specifically YOLOv5, YOLOv6, YOLOv7, and YOLOv8,
for their efficacy in this task. The study aimed not only to evaluate these models’ capacity
for weed detection in turfgrass but also to compare their performance to identify the most
effective approach.

2. Materials and Methods
2.1. YOLO and YOLOv5, YOLOv6, YOLOv7, YOLOv8 Detectors

YOLO is an SSD; its first version was released in 2015 [22]. YOLO performs object
detection by dividing the input image into m × m grids of equal dimensions. Each grid
cell is responsible for detecting an object if the object’s center of the thing falls inside the
cell. Each cell can predict a fixed number of bounding boxes, each with an accompanying
confidence score. Each prediction comprises five values (x, y, w, h, and a confidence score).
Here, x, y, w, and h are the center of the bounding box, width, and height, respectively. After
predicting a bounding box, YOLO uses Intersection Over Union (IOU) to choose the most
representative bounding box of an object in the grid cell, and non-max suppression is used
to remove the excess bounding boxes. After the first YOLO release, YOLOv2 and YOLOv3
were published in 2016 [30] and 2017 [31], respectively. Then, Alexey Bochkovskiy released
YOLOv4 in 2020 [32]. In this experiment, YOLOv5 [33], YOLOv6 [34], YOLOv7 [35], and
YOLOv8 [36] models were used and evaluated for weed detection in multiple turfgrass
contexts. YOLOv5 was introduced by Glenn Jocher shortly after the release of YOLOv4 and
is entirely based on the PyTorch framework. YOLOv6 and YOLOv7 detection models were
released in June and July 2022, respectively. Finally, YOLOv8 was published by Ultralytics
in January 2023.

YOLOv5 combines a cross-stage partial network (CSPNet) [37] and Darknet as a
backbone. It uses a path aggregation network (PANet) [38] as a neck and adaptive feature
pooling to enhance object location accuracy. The YOLOv5 head generates three different
sizes of feature maps to achieve multi-scale [31] prediction. YOLOv5 outperforms YOLO’s
previous version in terms of accuracy of detection while maintaining a slightly slower
inference speed [39]. Real-time weed detection requires a high detection speed, accuracy,
and compact model size as YOLOv5 provides higher inference efficiency on resource-poor
edge devices [40]. A YOLOv5 object detection application programming interface (API)
was used. YOLOv5 offers five different model scales: YOLOv5n (nano), YOLOv5s (small),
YOLOv5m (medium), YOLOv5l (large), and YOLOv5x (extra-large), which are compound-
scaled variants of the same architecture. Table 1 shows more detailed information about
the YOLOv5 models.

YOLOv6 (and the newer vesrions YOLOv7 and YOLOv8) perform anchor-free de-
tection to obtain a higher inference speed. YOLOv6 utilizes an EfficientRep backbone
based on RepVGG [41] to increases the parallelism. PAN [42] is boosted with RepBlocks
or CSPStackRep [37]. Task alignment learning approach from TOOD [43] is employed
for label assignment and VariFocal [44] and an SIoU or GIoU [45,46] is used for classifica-
tion and regression loss computation. RepOptimizer [47] quantization and channel-wise
distillation [48] contribute to improve higher detection speed. YOLOv6 achieved an AP
of 52.5% and AP50 of 70% at around 50 FPS on the MS COCO dataset test 2017 and an
mAP of 43.1% on the COCO va1 2017 dataset. YOLOv6 provides different model scales
for various applications: YOLOv6n (nano), YOLOv6s (small), YOLOv6m (medium), and
YOLOv6l (large) [49].

YOLOv7 improves accuracy without affecting the inference speed. It introduces the
extended efficient layer aggregation network (E-ELAN) [50] as an improved version of
ELAN computational block. The E-ELAN enables efficient learning without losing the
gradient path. YOLOv7is a concatenation-based architecture that scales network depth
and width according to concatenating layer ratios, reducing hardware usage while en-
suring efficiency at different scales. YOLOv7 relies on re-parameterized convolutions
(RepConv) [41] and employs coarse label assignment for the auxiliary head and acceptable
label assignment for the lead head. Additional innovations include batch normalization
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in conv-bn-activation, YOLOR inspired implicit knowledge YOLOR [51] and exponential
moving average for the final inference model. To date, the YOLOv7 algorithm resulted
with lower inference speed and higher accuracy than YOLOR, PP-YOLOE, YOLOX, Scaled-
YOLOv4, and YOLOv5 [35]. Furthermore, the YOLOv7 network provides two model sizes:
YOLOv7 and YOLOv7x (extra-large).

YOLOv8 represents the state-of-the-art among YOLO object detectors. Indeed, no
paper about YOLOv8 has been published yet. However, some information is available
online (Table 1). YOLOv8 is an anchor-free detector developed to drop the number of
box predictions and speed up the Non-maximum suppression. YOLOv8 uses mosaic
augmentation to boost the training process and has been disabled for the last ten epochs.
YOLOv8 provides several innovations to support a full range of vision AI tasks, including
detection, segmentation, pose estimation, tracking classification, labeling, training, and
deploying. YOLOv8 provided five scaled versions: YOLOv8n (nano), YOLOv8s (small),
YOLOv8m (medium), YOLOv8l (large) and YOLOv8x (extra-large). YOLOv8x obtained an
AP of 53.9% on MS the MS COCO dataset test-dev 2017, with an image size of 640 pixels
and a speed of 280 FPS on an NVIDIA A100 and TensorRT [49].

Table 1. Specifications of 16 YOLO detectors: YOLOv5n (nano), YOLOv5s (small), YOLOv5m
(medium), YOLOv5l (large), YOLOv5x (extra-large), YOLOv6n, YOLOv6s, YOLOv6m, YOLOv6l,
YOLOv7, YOLOv7x, YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l and YOLOv8x.

Model Parameters
(Millions) GFlops a Year AP (%) b Repository Reference

YOLOv5n 1.8 4.2

2020 55.8
https://github.com/ultralytics/YOLOv5

(accessed on 2 July 2023) [33]
YOLOv5s 7.1 16.5
YOLOv5m 20.9 48.2
YOLOv5l 46.1 108.2
YOLOv5x 86.2 204.6

YOLOv6n 4.3 11.1

2022 52.5
https://github.com/meituan/YOLOv6

(accessed on 2 July 2023) [34]
YOLOv6s 17.2 44.2
YOLOv6m 34.3 82.2
YOLOv6l 58.5 144.0

YOLOv7 37.2 105.1
2022 56.8

https://github.com/WongKinYiu/yolov7
(accessed on 2 July 2023) [35]YOLOv7x 70.8 188.9

YOLOv8n 3.0 8.2

2023 53.9
https://github.com/ultralytics/ultralytics

(accessed on 2 July 2023)
-

YOLOv8s 11.2 28.6
YOLOv8m 25.9 79.1
YOLOv8l 43.6 165.4
YOLOv8x 68.2 258.1

a GFlops is a computational power unit of measure equal to 1 B floating-point operations per second. b AP (%)
represents the average precision of the YOLO detectors on the COCO 2017 dataset [49].

In general, larger model scales provide higher accuracy but a lower inference speed.
Therefore, for this trial, all five of the YOLOv5 model scales, four of the YOLOv6 models,
the two YOLOv7 models, and all five YOLOv8 model scales were used to train the weed
detection algorithm. Hereafter hyperparameters for the training process are listed in Table 2.

EfficientDet was also trained and compared with the abovementioned YOLO models.
EfficientDet is a SSD which employs bi-directional feature pyramid network (BiFPN) to
enhance multi-scale feature fusion performance [52] and EfficientNet [53] backbones to
boost image classification performance. The model was trained for 1000 iterations, with
images size of 640 × 640, a learning rate of 0.0001 and a batch size of 8.

https://github.com/ultralytics/YOLOv5
https://github.com/meituan/YOLOv6
https://github.com/WongKinYiu/yolov7
https://github.com/ultralytics/ultralytics
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Table 2. Hyperparameters used for YOLOv5, YOLOv6, YOLOv7, and YOLOv8 models train.

Model Anchor Boxes Image
Size

Batch
Size Epochs Loss lr Solver Agumentation

YOLOv5

[10,13], [16,30], [33,23],
[30,61], [62,45], [59,119],

[116,90], [156,198],
[373,326]

640 × 640 8 100 0.02 0.01 SGD
(0.937 momentum)

hsv (h: 0.015; s: 0.7, v: 0.4),
translate: 0.1,
scale: 0.5,
flip left-right: 0.5,
mosaic: 1.0

YOLOv6 - 640 × 640 8 100 0.02 0.01 SGD
(0.937 momentum)

hsv (h: 0.015; s: 0.7, v: 0.4),
translate: 0.1,
scale: 0.5,
flip left-right: 0.5,
mosaic: 1.0

YOLOv7 - 640 × 640 8 100 0.02 0.01 SGD
(0.937 momentum)

hsv (h: 0.015; s: 0.7, v: 0.4),
translate: 0.2,
scale: 0.9,
flip left-right: 0.5,
mosaic: 1.0
mixup: 0,15

YOLOv8 - 640 × 640 8 100 0.02 0.01 SGD
(0.937 momentum)

hsv (h: 0.015; s: 0.7, v: 0.4),
translate: 0.1,
scale: 0.5,
flip left-right: 0.5,
mosaic: 1.0

2.2. Datasets Description and Preparation
2.2.1. The ‘Weeds’ Public Dataset

A public ‘Weeds’ dataset [54] was used for this trial to train the different YOLO
models. The ‘Weeds’ dataset is a collection of weeds growing in lawns and in typical urban
backgrounds that can easily confuse object detection models due to the similarity of the
weeds with their surroundings. This dataset contains 4203 images with weeds labeled
for 11,385 annotations. The ‘Weeds’ dataset contains approximately 62% of images of
weeds with turf backgrounds, 13% of images with third surfaces (different floor patterns)
backgrounds, and approximately 24% of images with both backgrounds (results from image
analysis on 500 images sample). Weeds identified in this dataset were Erigeron canadensis L.
(43%), Sonchus spp. (23%), Taraxacum officinale L. (weber) (18%), Oxalis spp. (4%), Cerastium
spp. (3%) and a small percentage of unknown (results from image analysis on 500 images
sample). No sufficient images for each species were provided in the dataset for training
multi-class detectors; thus, only one class (Weeds) was assumed for this trial. The labels
correlogram in the relationship between the position, width, and height of the dataset’s
objects (weeds) annotations. Generally, our datasets contain mostly small and stretched
objects positioned at the center of the digital image. Before training the model, the images
were cropped to obtain a resolution of 640 × 640 pixels without applying any resizing and
were subjected to the auto-orient function. The auto-orient strips images of their EXIF data
to be displayed in the same way as they are stored on disk.

To assess the model’s performance on this dataset, a k-fold cross-validation was
performed. K-fold cross-validation is a simple popular method for model evaluation. This
procedure generally consists of dividing the dataset into k subsets after a random shuffle,
training the model on k-1 subsets, and using the remaining subset to test the model. The
evaluation scores produced are considered more reliable as a model performance summary.
This dataset was divided into five subsets (two of 804 and three of 805 images); therefore,
a five-fold cross-validation was performed. The best-performing models of each YOLO
version were then trained on the dataset (train: 3664 images, validation: 359 images, and
test: 180 images) and evaluated. The online platform Google Colaboratory (Colab), offered
by Google, was used to implement and train the model. Colab, a cloud service based on
Jupyter Notebooks, provides a free single 12 GB NVIDIA Tesla K80 GPU.
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2.2.2. Additional Test Datasets

Furthermore, three additional test datasets were used to evaluate different model
detection and to assess the potential use of the trained models for weed detection in
other contexts.

The Home Lawn dataset comprises 180 images featuring 473 annotations of weeds
proliferating in a mature stand of bermudagrass (Cynodon dactylon (L.) Pers.) during its early
green-up phase (indicative of low-quality turf) as well as weeds emerging on hard surfaces
such as streets, curbs, and brick floors. These intricate background settings, commonly
found in residential and urban areas, could potentially influence the efficacy of weed
detection. The images were captured in various locations, including residential lawns and
parks, in Seville, Spain (37◦389 N, 5◦985 W; Datum: WGS84).

The Baseball Field dataset comprised 180 images and 285 annotations of weeds devel-
oping in a bermudagrass turf overseeded with ryegrass (Lolium perenne L.) actively growing.
In this dataset, image backgrounds are considered uniform (high-quality turf) and most
weeds are small in size and partially growing within the turf or with altered shapes due to
the intense management. Images of this dataset were collected at the Opelika High School
baseball field (Opelika, AL, USA; 32◦645 N, 85◦378 W; Datum: WGS84).

The Manila grass dataset consisted of 180 digital images and 242 annotations of weeds
developing in a mature stand of manila grass (Zoysia matrella (L.) Merr. cv ‘Diamond’)
actively growing. In this dataset, most weeds are large in size and with full growth shape.
Images were taken at the experimental farm of the Department of Agriculture, Food and
Environment of the University of Pisa (San Piero a Grado, Pisa, Italy; 43◦400 N, 10◦190 E;
Datum: WGS84).

In all datasets, T. officinale, Plantago lanceolata L., and Sonchus spp. were identified as
significant weed species and examples of imags are depicted in Figure 1.
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The Robotflow API (https://app.roboflow.com; accessed on 2 July 2023) was used to
annotate additional test dataset images and convert them into the respective YOLO version
format and dataset split for the five-fold cross-validation.

2.3. Metrics

The trained models for weed detection were tested on the test subset and three
additional small datasets mentioned in Section 2.2.2. The number of weeds per image was
manually counted and reported as a ground truth value. Consequently, with this data,
precision (P) and recall (R) were used as the evaluation metrics for weed detection. These
model evaluation metrics are defined as follows:

Precision(P) =
TP

TP + FP
(1)

Recall(R) =
TP

TP + FN
(2)

where TP consists of the true positives (when the algorithm correctly detects weeds with
a bounding box); FP corresponds to the false positives (when the algorithm computes
a bounding box in a location without weeds); and FN indicates false negatives (when a
target weed is not detected). The IoU between the bounding box produced by the detection
and the ground truth is calculated. For each image, If the IoU is over a predetermined
threshold (0.5 in this study), a TP is produced; otherwise, the result is an FP. As mentioned
in Section 2.1, the trained model provides a TP using bounding box coordinates and a
confidence score (the model’s confidence regarding each detection performed). The area
under the precision–recall curve represents the average precision (AP).

Average Precision(AP) =
∫ 1

0
P(R)dR (3)

AP is a number between 0 and 1 used to summarize the different precision values
obtained in the recall function. Furthermore, the mean average precision (mAP) is used to
evaluate a model and is obtained by averaging the AP for each class.

Mean Average Precision(mAP) =
1
n∑i=n

i=1 APi (4)

Generally, two maps are produced using two different thresholds: the mAP_0.5,
the mean of the AP with a confidence score between 0 and 0.5, and the mAP_0.5:0.95,
which is the mean of the AP with a confidence score between 0.5 and 0.95. Therefore,
precision (P), recall (R), mean average precision 0.5 (mAP_0.5), and represent average
precision 0.5–0.95 (mAP_0.5:0.95) are considered the most common metrics when evaluating
object detectors [25].

Models performance metrics (P, R, mAP_0.5 and mAP_0.5:0.95) obtained after the
5-fold cross validation have been subjected to a one-way ANOVA using statistical software
R [55]. Data normality assumptions were assessed using the Shapiro-Wilk for normality
and Levene’s test for homoscedasticity using ‘car’ package [56]. Pairwise comparisons and
mean separation were performed with a Tukey HSD post hoc test (FDR adjusted p-value)
using ‘scmamp’ package [57]. In Figure 2 is depicted and resumed the framework of the
current study.

https://app.roboflow.com
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3. Results and Discussion

The Analysis of variance revealed significant differences on models performance
metrics (Table 3). Among these models, YOLOv5s, YOLOv6n, and YOLOv6l achieved
the highest precision (P) scores with values of 0.9445 ± 0.0281, 0.9456 ± 0.0146, and
0.9414 ± 0.023, respectively. Notably, these three models exhibited significantly higher
precision scores compared to EfficientDet, which yielded the lowest precision score of
0.9033 ± 0.0244 (p < 0.05). Conversely, no significant differences in precision scores were
observed among the other models. Regarding the recall (R) metric, YOLOv7 yielded the
best results with a score of 0.9552 ± 0.0136. No significant differences were found between
YOLOv7 and YOLOv7x, as well as all scales of YOLOv8 models. However, YOLOv7
displayed significant differences when compared to EfficientDet (p < 0.01) and all scales of
YOLOv5 and YOLOv6 models (p < 0.001, except for YOLOv5n with a p < 0.05). For the mean
average precision at an intersection over union (IOU) threshold of 0.5 (mAP_0.5), YOLOv8
and YOLOv7 demonstrated the highest performance with scores of 0.9594 ± 0.0214 and
0.955 ± 0.0263, respectively. No significant differences were observed between these models
and all scales of YOLOv6, YOLOv7x, and YOLOv8 (except for YOLOv8s with p < 0.05),
as well as YOLOv5s and YOLOv5l. Conversely, all other models exhibited significantly
lower mAP_0.5 values, with EfficientDet performing the worst (p < 0.01, with a score of
0.8931 ± 0.0312). In terms of the mAP_0.5 to 0.95 metric, all YOLOv5 models (except
YOLOV5n with p < 0.001) achieved the best results, ranging from 0.8841 ± 0.0795 for
YOLOv5m to 0.8606 ± 0.0442 for YOLOv5l. YOLOv8l exhibited a significantly lower
mAP_0.5 to 0.95 score (p < 0.01) compared to other YOLOv8 models, but it was the best-
performing model within the YOLOv8 series, achieving a score of 0.8043 ± 0.015. No
significant differences were found between YOLOv8l and other YOLOv8 models, as well
as YOLOv7. Notably, all other models displayed significantly lower mAP_0.5 to 0.95 scores,
with YOLOv5n performing the worst (p < 0.001) at a value of 0.7002 ± 0.012.
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Table 3. Results on five-fold cross validation test of different models studied.

Model Precision Recall mAP_0.5 mAP_0.5:0.95

EfficientDet 0.9033 ± 0.0244 * b ** 0.8862 ± 0.0312 c 0.8931 ± 0.0312 d 0.7172 ± 0.0313 ef

YOLOv5n 0.9259 ± 0.0102 ab 0.893 ± 0.0594 bc 0.9343 ± 0.0387 abcd 0.7002 ± 0.012 f
YOLOv5s 0.9445 ± 0.0281 a 0.756 ± 0.0233 de 0.9104 ± 0.0408 bcd 0.8674 ± 0.0664 a
YOLOv5m 0.9305 ± 0.0484 ab 0.7305 ± 0.0381 e 0.9057 ± 0.0307 cd 0.8841 ± 0.0795 a
YOLOv5l 0.9264 ± 0.0484 ab 0.7313 ± 0.0672 e 0.9197 ± 0.0333 abcd 0.8606 ± 0.0442 a
YOLOv5x 0.939 ± 0.0459 ab 0.7928 ± 0.0181 d 0.9104 ± 0.06 bcd 0.8789 ± 0.0507 a

YOLOv6n 0.9456 ± 0.0146 a 0.7594 ± 0.0172 de 0.9539 ± 0.0142 ab 0.7112 ± 0.0093 ef
YOLOv6s 0.9331 ± 0.0294 ab 0.7707 ± 0.0223 de 0.9392 ± 0.0286 abc 0.7208 ± 0.0186 ef
YOLOv6m 0.9401 ± 0.0237 ab 0.7344 ± 0.0293 e 0.9237 ± 0.0354 abcd 0.7156 ± 0.0192 ef
YOLOv6l 0.9414 ± 0.023 a 0.7728 ± 0.0346 de 0.9508 ± 0.0147 ab 0.7277 ± 0.0178 def

YOLOv7 0.9111 ± 0.0209 ab 0.9552 ± 0.0136 a 0.9594 ± 0.0214 a 0.7625 ± 0.014 bcde
YOLOv7x 0.9398 ± 0.0238 ab 0.9338 ± 0.0321 ab 0.9366 ± 0.0302 abcd 0.7393 ± 0.0244 cdef

YOLOv8n 0.9266 ± 0.0265 ab 0.9269 ± 0.0271 abc 0.9412 ± 0.0202 abc 0.7547 ± 0.0403 bcde
YOLOv8s 0.9169 ± 0.0275 ab 0.939 ± 0.0526 ab 0.9051 ± 0.0625 cd 0.7517 ± 0.043 bcdef
YOLOv8m 0.9227 ± 0.0257 ab 0.9247 ± 0.0363 abc 0.9385 ± 0.0326 abc 0.7769 ± 0.0302 bcd
YOLOv8l 0.9235 ± 0.0276 ab 0.9244 ± 0.0417 abc 0.955 ± 0.0263 a 0.8043 ± 0.015 b
YOLOv8x 0.9304 ± 0.021 ab 0.9189 ± 0.0417 abc 0.9477 ± 0.0296 abc 0.7925 ± 0.0333 bc

* Values refer to the mean and standard deviation of models performance on five-fold cross validation. ** Different
letters on the same column represent different values at p < 0.05.

According to results from the five-fold cross-validation experiment, ten models
(YOLOv5n, YOLOv5s, YOLOv5m, YOLOv6n, YOLOv6l, YOLOv7, YOLOv7x, YOLOv8s,
YOLOv8l, and YOLOv8x) were trained on the ‘Weeds’ public dataset for 100 epochs
(Table 2) and best performing models for each YOLO version were selected to be tested on
the four different test datasets. Performances of the ten models are resumed and depicted
in Figure 3.
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for the four studied YOLO versions trained on the ‘Weeds’ public dataset for 100 epochs. (a) Different
model scales Precision values for 100 epochs; (b) Different model scales Recall values for 100 epochs;
(c) Different model scales mAP_0.5 values for 100 epochs; (d) Different model scales mAP_0.5:0.95
values for 100 epochs.

In general, YOLOv6 model scales depicted a different trend during the train pro-
cess since this model provide evaluation at the first epoch, the 20th, the 40th, and every
three epochs starting from the 50th. Among YOLOv5 model scales, YOLOv5s obtained
the highest P (0.9485), while YOLOv5m obtained the best R (0.9761), mAP_0.5 (0.9783)
and mAP0.5:0.95 (0.7811). Among the YOLOv6 models, YOLOv6n obtained the best
P (0.9646) and best mAP_0.5 (0.9651), while YOLOv6l resulted with the best R (0.8893)
and best mAP_0.5:0.95 (0.7421). YOLOv7 surpassed YOLOv7x for all the metrics resulting
in P (0.9466), R (0.9663), mAP_0.5 (0.9758), and mAP_0.5:0.95 (0.7672). Among YOLOv8
model scales, YOLOv8x obtained the best P and R values (0.95463 and 0.9761, respectively)
while YOLOv8l resulted with the best mAP_0.5 and mAP_0.5:0.95 (0.9775 and 0.8129,
respectively). Based on these results, YOLOv5m, YOLOv6l, YOLOv7, and YOLOv8l were
tested on the four different test datasets. The results of this trial are reported in Table 4.

Table 4. Performance and inference time of best YOLO model scales for the four studied YOLO
versions (YOLOv5m, YOLOv6l, YOLOv7, and YOLOv8l) and EfficientDet.

Model Dataset P R mAP_0.5 mAP_0.5:0.95 Inference (ms) a

EfficientDet

‘Weeds’ public 0.9133 0.9273 0.9426 0.7023 44.3
Home Lawn 0.5982 0.5149 0.5195 0.4155 52.0

Baseball Field 0.6138 0.7069 0.6614 0.4136 54.2
Manila grass 0.6047 0.6954 0.5691 0.4369 50.1

YOLOv5m

‘Weeds’ public 0.9433 0.9663 0.9772 0.7828 16.2
Home Lawn 0.6331 0.5272 0.5399 0.4263 19.2

Baseball Field 0.6856 0.8126 0.7135 0.4716 24.1
Manila grass 0.6441 0.5433 0.6412 0.5007 18.7

YOLOv6l

‘Weeds’ public 0.9442 0.9494 0.9747 0.7612 22.8
Home Lawn 0.7836 0.6446 0.7057 0.5022 32.5

Baseball Field 0.6098 0.6491 0.5379 0.4108 47.9
Manila grass 0.5865 0.7571 0.7014 0.5248 26.6

YOLOv7

‘Weeds’ public 0.9265 0.9627 0.9745 0.7685 16.1
Home Lawn 0.7118 0.6454 0.7108 0.5209 29.1

Baseball Field 0.6223 0.7579 0.6379 0.4009 35.6
Manila grass 0.6549 0.7571 0.6461 0.4614 27.5

YOLOv8l

‘Weeds’ public 0.9476 0.9610 0.9795 0.8123 34.0
Home Lawn 0.6567 0.6422 0.6564 0.4721 37.4

Baseball Field 0.6672 0.6474 0.6459 0.4312 19.7
Manila grass 0.7635 0.6519 0.7589 0.5296 36.6

a Inference time refers to the average time needed for the model to detect weeds on a single digital image.

Table 4 shows the results of the YOLO model’s detection on the four test datasets
(confusion matrix is reported in Table A1 of Appendix A). All the tested models obtained
higher performances on the ‘Weeds’ public dataset than the additional test datasets. For
this test, YOLOv8l resulted with the highest P value (0.9476), best mAP_0.5 (0.9795), and
mAP_0.5:0.95 (0.8123). YOLOv5m resulted in the highest R (0.9663). The time required for
models to inference on this test dataset was approximately 34 ms per image for YOLOv8l
and 16.2 ms for YOLOv5m. When performing inference on the Home Lawn dataset,
YOLOv6l resulted with the best P (0.7836), while YOLOv7 obtained the best R (0.6454),
best mAP_0.5 (0.7108), best mAP_0.5:0.95 (0.5209). The inference time required for this
dataset was approximately 32.5 ms for YOLOv6l and 29.1 ms for YOLOv7. The best models
performing inference on the Baseball Field dataset were YOLOv5m with the best P (0.6856),
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best R (0.8126), mAP_0.5 (0.7135) and best mAP_0.5:0.95 (0.4716). The inference time
required was approximately 24.1 ms for YOLOv5m. For the Manila grass dataset, the best
P was obtained from YOLOv8l (0.7635), and the best R was obtained from YOLOv7 and
YOLOv6l (both models got R of 0.7571). YOLOv8l resulted in the highest mAP_0.5 and
mAP_0.5:0.95 (0.7589 and 0.5296, respectively). Yu et al. [18] trained and tested multiple
species of two-stage detectors to detect different weeds among actively growing perennial
ryegrass, obtaining higher values of R (>0.98). Low R values suggest that the model
misclassifies target weeds as turfgrass, thus producing an FN. This is unacceptable for
field applications since weeds would be missed, leading to unsatisfactory weed control in
turfgrass. Figure 4 shows an example of YOLOv5m, YOLOv6l, YOLOv7, and YOLOv8l
weeds detection on the test datasets.
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and YOLOv8l models on the four test datasets (public ‘Weeds,’ Home lawn, Baseball Field, and
Manila grass).

As shown in Figure 4, the model effectively detected weeds at a mature stage (>5 true
leaves) growing outside from a turfgrass canopy. The training dataset consists of a multiple
weed species dataset, most of which were rosettae-forming weeds grow in turfgrasses. For
this reason, the model showed high performances in a situation similar to those occurring
in the public ‘Weeds’ dataset. These findings are in accordance with [20]. In this research,
authors argued that the detection is highly affected by the broad-leaved weeds morphology
and leaf pattern and color variations among species and within the same species. The
authors proposed that multiple-species neural network training and images gathered from
different geographical regions (to include various turf sites and weed biotypes) may be
beneficial for the overall accuracy of weed detection models. However, the results obtained
from experiments conducted on different datasets suggest that efforts are still required to
improve the overall accuracy. Benjumea et al. [58] proposed an improved YOLO architecture
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that allows a more efficient detection of smaller objects. A more minor object detection was
improved by modifying the architecture structure and fine-tuning parameters and resulted
in an increased mAP_0.5 of approximately 7% without significantly affecting the inference
time. Moreover, the models failed to detect weeds close to the image edge. Yu et al. [19]
claim that the edge effect may be reduced by the continuous frames inputs (since in field
applications, weed detection is based on videos), thus boosting detection accuracy. In this
trial, all the models were able to detect weeds at the edge of the image frames. Furthermore,
highly complex backgrounds such as low-quality turf may increase the computational
complexity for feature extraction and a reduced R of the model [19]. In this trial, only
YOLOv5m models agree with this finding. Indeed, YOLOv5m obtained the lowest R when
detecting weeds in the Home Lawn dataset, which had the most complex background. This
limitation may be overcome by increasing the number of training images. Zhuang et al. [28]
obtained similar low P and R values when using YOLOv3 for R. scabra detection in drought-
stressed and unstressed turfgrasses. In this research, authors argued that high background
variability in the training dataset increases cause a less efficient feature extraction and
consequently decreases P and R metrics. For this reason, the authors suggest further
research on training object detectors on images with the simplest background. Additionally,
the annotation method used in this trial consisted of drawing bounding boxes around
the weed within the image, which is not the method with the highest resolution. Indeed,
Sharpe et al. [59] demonstrate that higher-resolution annotation methods improve the
overall neural network accuracy. Moreover, artificial neural networks recognize plants
using color, texture, and shape features [60], and Hahn et al. [61] found that multispectral
components are highly effective in broadleaves weed detection in turfgrass. Thus, further
research may be addressed to assess and clarify how these techniques and methods can
improve detector’s performances. According to Yang et al. [62], high image processing
speed is imperative for real-time weed detection and treatment. Eventual actuators for
weed control would only have a few seconds to detect weeds by processing images and
delivering the treatments.

The obtained results revealed disparities in the required inference time among different
models. Specifically, YOLOv5m exhibited efficient inference time, taking less than 20 ms
for all the datasets except for the Baseball Field, where it required approximately 24 ms.
Similarly, YOLOv6l and YOLOv7 showed a similar trend, achieving detection within less
than 30 ms for the public ‘Weeds’, Home Lawn and Manila grass datasets, while requiring
longer inference time for the Baseball Filed dataset. For YOLOv5m, YOLOv6l and YOLOv7,
the average mAP_0.5 values were 0.72, 0,73 and 0.74, respectively, with corresponding
average mAP_0.5:0.95 values of 0.55, 0.55 and 0.54. Notably, YOLOv5m and YOLOv7
consistently achieved detections in less than 30 ms, while YOLOv6l resulted with an
average inference time of 33 ms (Figure 5). Conversely, YOLOv8l exhibited a contrasting
trend, requiring more than 30 ms for inference on all test datasets, except for the Baseball
Field dataset, where it required less than 20 ms. YOLOv8l resulted with an average mAP_0.5
of 0.76 and an average mAP_0.5:0.95 of 0.56, with an average inference time of 32 ms. On
the other hand, EfficientDet exhibited the lowest average mAP_0.5 and mAP_0.5:0.95
(0.67 and 0.49, respectively) and the highest average inference time (50 ms). The situation
among inference time, models and test datasets is not straightforward and warrants further
investigation for clarification. Thus, additional studies should be conducted to explore and
elucidate the intricate dynamics among these factors.
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4. Conclusions

The task of achieving satisfactory weed detection in turfgrass through training digital
images poses significant challenges. In this study, different YOLO object detectors were
prepared and tested for weed detection in turfgrasses, considering different weeds species
as a single class (‘Weeds’). Among the tested models, YOLOv8l demonstrated the highest
overall performance on the test dataset, achieving a precision of 0.9476, mAP_0.5 of 0.9795,
and mAP_0.5:0.95 of 0.8123. Despite YOLOv8l high performances, results on the additional
test datasets were not acceptable for a professional use. Consequently, it became evident
that several obstacles hinder accurate weed detection, emphasizing the need for more
in-depth research. To enhance performance, future investigations should focus on explor-
ing weed detection algorithms that incorporate multiple vegetative indices and features.
Additionally, alternative annotation techniques, such as instance segmentation, should be
compared with the more conventional bounding box-based object detection to determine
whether different techniques can potentially yield improvements in weed identification.
Moreover, a broad spectrum of weed species and ecotypes should be included in the train-
ing and testing of weed detection algorithms to ensure accurate performance in turfgrass
scenarios. In conclusion, the findings of this study underscore the challenges associated
with weed detection in turfgrass using digital image training. Further research endeavors
are imperative to address the identified limitations and advance the field of weed detection
in turfgrass through the exploration of enhanced algorithms, annotation techniques, and
broader inclusion of weed species and ecotypes.
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Appendix A

Table A1. Confusion matrices of studied models.

Model Dataset TP FP FN TN

EfficientDet

‘Weeds’ public 412 39 46 0
Home Lawn 164 117 161 0

Baseball Field 154 95 63 0
Manila grass 95 61 41 0

YOLOv5m

‘Weeds’ public 492 31 26 0
Home Lawn 222 127 199 0

Baseball Field 139 63 56 0
Manila grass 103 56 89 0

YOLOv6l

‘Weeds’ public 478 28 31 0
Home Lawn 226 63 126 0

Baseball Field 187 81 72 0
Manila grass 138 101 49 0

YOLOv7

‘Weeds’ public 482 39 18 0
Home Lawn 250 101 136 0

Baseball Field 175 106 58 0
Manila grass 191 101 58 0

YOLOv8l

‘Weeds’ public 499 31 23 0
Home Lawn 243 132 138 0

Baseball Field 198 101 114 0
Manila grass 178 55 99 0
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