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Abstract: Small data sets make developing calibration models using deep neural networks difficult
because it is easy to overfit the system. We developed two deep neural network architectures by
revising two existing network architectures: the U-Net and the attention mechanism. The major
changes were to use 1D convolutional layers to replace the fully connected layers. We also designed
and combined average pooling and maximum pooling in our revised networks, respectively. We
applied these revised network architectures to three publicly available data sets and the result-
ing calibration models can generate acceptable results for general quantitative analysis. It also
generated rather good results for data sets that concern calibration transfer. It demonstrates that
constructing network architectures by properly revising existing successful network architectures
may provide additional choices in the exploration of the application of deep neural network in
analytical chemistry.

Keywords: deep neural networks; revised U-Net DNN; revised attention mechanism DNN; quantitative
analysis; calibration transfer

1. Introduction

Near-infrared spectroscopy (NIR) continues to be a developing analytical detection
technique, and it is also one of the most effective means for qualitative, quantitative and
structural analysis of organic matter. NIR combined with chemometrics and computer
technology is fast, highly accuracy, and has low analysis costs. It can be applied to the
simultaneous analysis of multiple components. Now, NIR techniques are widely used
in medicine, food quality, industry, pharmaceuticals, and other fields [1,2]. For example,
Shadrin et al. [3] proposed a method to analyze the different stages of apple tree disease.
They found the best spectral bands to detect a specific disease and distinguish it from other
diseases and healthy trees. Guo et al. [4] used NIR spectroscopy to analyze the contents of
apple watercore and soluble solid to detect apple quality.

However, NIR techniques usually require a data set large enough to obtain good
results. The data sets contain typical NIR spectra and the amount of the target species,
which are used as reference samples. Calibration models are established using chemometric
methods and then used to provide quantitative analysis of the target species from the
samples [5]. The size of the reference samples has a large influence on the quality of the
calibration model.

One of those chemometrics methods, the deep neural network (DNN), has some
obvious advantages over traditional chemometric methods. DNNs can automatically
extract features from spectral data [6,7] to better capture their nonlinear characteristics.
Therefore, DNNs have strong, nonlinear modeling ability and can learn complex nonlinear
relationships in spectral data. DNN is also suitable for processing high-dimensional data,
which effectively reduces computational complexity through a series of operations such
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as convolution and parameter sharing. Most importantly, DNNs also have the ability to
generalize the calibration, improving the generalization performance of models through
data augmentation and end-to-end learning.

In recent years, many researchers have tried to use DNNs in analytical chemistry.
Zeng et al. [8] reported a pattern recognition method using NIR spectroscopy for qualitative
food analysis using a convolutional neural network architecture. Qu et al. [9] presented
a DNN applied to nuclear magnetic resonance spectra using relatively small data sets.
Gabrieli et al. [10] established a DNN classifier on an open source platform. By introducing
users’ labeling of their data set, they developed a machine learning model for the automatic
assessment of the quality of NIR signals. Rankine et al. [11] studied a deep neural network
for fast prediction of X-ray absorption spectra, which can estimate the X-ray absorption
spectra of near-edge structures of matter in a very short time without the need for geometric
information about the local environment at the absorption location. Le [12] used a deep-
learning stacked sparse autoencoder (SSAE) method to extract advanced features of NIR
spectra and used an affine transformation (AT) and an extreme learning machine (ELM)
to build prediction models. Gan and Luo [13] constructed the simplest possible DNN
architecture. They showed that applying convolutional layers instead of fully connected
layers was a good strategy to overcome the overfitting problem of small data sets.

In recent work, we followed our previous approach of simplicity in constructing DNN
architectures, but the focus was on revising two existing well-known network architectures,
the U-Net [14] and the attention mechanism [15]. The former was implemented for image
segmentation while the latter was developed for sequence modeling and transduction
problems. Guo et al. [16] applied a one-dimensional U-Net to remove artifacts from
infrared spectra of complex samples. Wang et al. [17] applied the multiple-head self-
attention mechanism to improve the representation and classification performance of
this model. However, the applications of the two network architectures in quantitative
analysis has not yet been applied to NIR spectral data. We modified the two networks by
using 1D convolutions to replace the 2D ones. We also removed fully connected layers.
Some additional changes were made to improve the performance of the revised networks.
The method was tested by applying our revised networks to the quantitative analysis of
near-infrared (NIR) spectral data.

The organization of this paper is as follows: (1) In the Section 2, we first discuss the
data information. Then, we discuss the revising of the two networks in detail. Finally,
we include a simple discussion of the hyperparameters. (2) In the Section 3, we present
the results of applying the revised networks to three standard testing data sets. (3) In the
Conclusion, we emphasize the reasons for the success of this work.

2. Materials and Methods
2.1. Data

The data sets are the same as our previous work [13]. The data sets have been widely
applied to test the newly developed chemometric method. The details of the training sets,
validation sets, and test sets are presented in Table 1. The CGL data sets were downloaded
from https://eigenvector.com/resources/data-sets/(access 6 June 2023). The data sets
contain the NIR spectra of grain samples and the quantities of casein, glucose, lactate and
moisture (wt%). Thus, the data sets provide a good example to examine the methods’
abilities to deal with multiple component quantitative analysis. Classical chemometric
methods cannot solve this problem in an effective way, but a DNN can do it well [13].

The IDRC-2002 denotes the “Shootout” data sets at the International Diffuse Re-
flectance Conference (IDRC) in 2002 [18]. The IDRC-2002 data sets contain NIR spectra
and the quantities of active substances in escitalopram tablets obtained with two NIR
transmittance spectrometers from a single manufacturer. We used the IDRC-2002 set 1 to
develop the DNN model and then tested its applicability on the IDRC-2002 set 2. This
chemometric application is a calibration transfer.

https: //eigenvector.com/resources/data-sets/
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The IDRC-2016 also denotes the IDRC 2016 “Shootout” data sets. The details of these
data sets can be found in the meeting report [19]. The data sets were obtained using
instruments from manufacturers A and B, respectively. Each of them measured the same
grain wheat samples using three instruments. The reference protein results of the samples
were also provided, which are marked as IDRC 2016 T in Table 1. The data set used as the
unknown samples (named test set) is marked as IDRC 2016 V in the table and was used to
test the calibration models. In Table 1, we marked the data sets in a way familiar to people
in the field of chemometrics and machine learning.

Table 1. The classifications of three data sets.

Data Set Total Samples Training Set Validation Set Test Set Features 1

CGL 231 139 46 46 116
IDRC-2002 set 1 655 391 131 131 281
IDRC-2002 set 2 — — — 655 281
IDRC-2016 A1 248 248 — — 740
IDRC-2016 A2 248 — — 248 740
IDRC-2016 A3 248 — — 248 740
IDRC-2016 B1 646 — — 646 740
IDRC-2016 B2 248 — — 248 740
IDRC-2016 B3 248 — — 248 740
IDRC-2016 T 248 — 248 — 740
IDRC-2016 V 248 — — 248 740

1 These values are the numbers of measurement wavelength.

2.2. Revision of the U-Net

The original U-Net was introduced at the 2015 IEEE 12th International Symposium on
Biomedical Imaging [14]. The U-Net is a variant of fully connected network architecture
that retains the Encoder–Decoder structure. The Encoder part consists of convolution
and downsampling operations that extract image feature information. A feature map is
generated in each downsampling process. The Decoder part consists of deconvolution
operations and performs upsampling on the feature maps. Unlike typical fully connected
network structures, the U-Net uses skip-connections to fuse the feature maps from the
downsampling process with the feature maps from the upsampling process. The authors
claimed that this operation can compensate for the loss of edge features during downsam-
pling. They achieved very good results without using huge data sets. Thus, we assumed a
revised U-Net could provide a new tool for quantitative analysis.

Figure 1 shows our modified network structure. We modified all the 2D convolutional
layers into 1D convolutional layers with a kernel size of 3 and a stride of 1. Thus, the
revised U-Net can process 1D NIR spectra. At the same time, we constructed “ResBlocks”
in our architecture. Each ResBlock is composed of three 1D convolutional layers and a
residual network [20] followed by an activation operation called Softplus. The output from
upsampling is introduced into a maximum pooling residual module (MPR) and an average
pooling residual module (APR). The APR module consists of two residual convolutional
layers to perform sampling through average pooling. The MPR module consists of two
residual convolutional layers that extract features through maximum pooling.

These two modules extract feature information at different levels. The outputs from the
APR and MPR modules are fused by channel concatenation. The fused layer is transferred
into the final output. In Figure 1, the output channel is channel 4 and is aimed at CGL data.
One can be changed into other values depending on their target property.
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Figure 1. Our DNN architecture by revising U-Net architecture (Model 1).

2.3. Revision of Attention Mechanism Network

The attention mechanism was one of the most influential discoveries in machine
learning [15]. The attention mechanism performs well in capturing relatively small but
important information from huge input data sets and thereby focuses on the important part.
This capability makes the model more flexible and adaptable to various input data sets and
tasks, and reduces the risk of redundant computation and overfitting. Compared to tradi-
tional DNNs, attention-mechanism-based DNNs can solve feature extraction and learning
efficiency problems in a better way so as to achieve better performance. Although the
attention mechanism was put forward for sequence-to-sequence models such as machine
translation, we were attracted by its input pattern. The inputs of the attention mechanism
are all vectorized information so this provides a chance to deal with quantitative-analysis-
based NIR spectroscopy. In short, we expected that the attention mechanism will help
capture important information in the NIR spectra for quantitative analysis.

Figure 2 shows our final constructed DNN architecture obtained by revising the atten-
tion mechanism. We made the following modifications to the network for the calculation of
matrices Q, K and V, respectively: convolution with channel = 128, kernel size = 3, and
step = 1. The selection of the number of channels, kernel size, and step size should be
made according to the actual data situation. Adjustments need to be made for different
data sets. The network diagram was adjusted for the CGL data set. We obtained it by
multiplying the Q and K matrices and forming the attention distribution map through
Softmax. The matrix obtained by Softmax was then multiplied with the following attention
distribution weighted by the aggregate value vector of V to obtain a final output, which
represents the fusion vector of the original set of input vectors. However, it is impossible to
obtain a stable network by only relying on attention weight. In the second network, we
also borrowed the idea of the ResNet [20]. We introduced the residual module to extract
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and continuously compress the data features. We gradually compressed the data from
128 channels to 4 channels to extract more details in the features. In our revised attention
mechanism architecture, we also used the average pooling residual (APR) and maximum
pooled residual (MPR) modules to compress the modules into 4 channels. Finally, we
simultaneously averaged the spectral data by using the torch.mean(X, axis = 2) in relation
to the corresponding components.
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Figure 2. Our DNN architecture created by revising the attention mechanism (Model 2). Although
we had tried stacking multiple attention modules, finally we only used one because no significant
improvements were obtained based on the multiple module approach. Multiple 1D convolutional
layers are still the major part of our revisions.

2.4. Hyperparameters and Evaluation Criteria

In this paper, the hyperparameters such as the filter number, the kernel size, the batch
size, the learning rate (LR), etc., are similar to our previous work [13]. The setting of the
hyperparameters is usually achieved by trial-and-error strategies [21]. Thus, we will not be
concerned with the so-call optimized hyperparameters.

The LR is still the following form:

LR = 0.001× 0.5
iter

10000 (1)

where iter denotes the number of training iterations. The LR was combined with an Adam
optimizer in the training process.

The loss function is still the following form:

L =
||prediction− property||

property
(2)

where property denotes the quantities of substances and the prediction is the final output
from the DNN.
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The training process was conducted by minimizing the loss function, but the stop crite-
rion was based on the determination coefficient R2 between the prediction and property.
The minimum loss function value is theoretically the best value. In the practical training
process, we cannot set the optimum threshold for the loss function. However, in quantita-
tive analysis, R2 ≥ 0.95 is a widely acceptable threshold. Our previous work [13] shows
that using R2 as stopping criterion was workable and satisfactory results were obtained.
We also used root mean squared error (RMSE) as a reference evaluation criterion as follows:

RMSE =

√
∑n

i (propertyi − predictioni)
2

n
(3)

All the codes for the neural networks were written in Python platform using PyTorch.
The codes were run on a DELL Precision-3640-Tower workstation with an NVIDIA RTX
3090 graphics card of 24 GB of RAM. The operation system was the Ubuntu 20.04 LTS.

3. Results and Discussion

Our training strategy was aimed at achieving better accuracy of the resulting calibra-
tion model. Thus, we continuously increased the threshold of R2 to obtain a better DNN
architecture and hyperparameters. We aimed at obtaining acceptable network architecture
but not the so-called optimized network architecture.

3.1. Two Revised DNNs Applied to the CGL Data Sets

Figure 3 shows the results of applying our revised U-Net DNN to the CGL data sets.
The training set was used to train the model independently. The batch size is set at 12.
The training process was focused on minimizing the loss function. In each of the training
iterations, we obtained a temporary calibration model. We then conducted a random
sampling to pick 12 samples from the training set and the validation set, respectively. We
applied the temporary calibration model to the selected samples to obtain the calculated
values of the four components and then to calculate the R2 values from the reference values
of the components. When the minimum values of R2 for both the training set and the
validation set reached the threshold of R2 ≥ 0.999, we stopped the training process and
obtained an acceptable calibration model.

The R2 and RMSE values shown in Figure 3 were calculated using the whole set of
samples from the three data sets and not the 12 randomly picked samples. In this work,
we continuously used this strategy in training our network and presenting our results.
Compared with our previous work [13], the results shown in Figure 3 are adequate.

Figure 4 shows the results of applying our revised attention mechanism DNN to the
CGL data sets. The results were still acceptable compared with the results shown in Figure 3
and our previous results [13]. The more important thing is that we still fulfill the goal of
establishing a single calibration model for four species. So far, to our knowledge, no other
researchers have reached that goal.

We did not try the transformer model architecture [15] because it is too complicated
for us to find a reasonable way to use it. We did try multiple stacking of the attention
module but failed to achieve better results in what was then a more complex model. Thus,
we only used one attention module followed by the MPR and the APR modules. It might
be that convolutional layers play the major role. However, these results mean that there
may still room for further improvements.
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Figure 3. Predicted versus measured plots of the training set, validation set and test set using revised
U-Net DNN.

Figure 4. Predicted versus measured plots of the training set, validation set and test set using revised
attention mechanism DNN.
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3.2. Two Revised DNNs Applied to the IDRC 2002 Data Sets

Figure 5 shows the revised U-Net DNN applied to the IDRC 2002 data sets. The
threshold is set R2 ≥ 0.95. The training process was based on IDRC 2002 set 1. The
results are shown on the top subplots of Figure 5. One can see that the training, validation,
and testing results are sufficient. The calibration model obtained from IDRC 2002 set 1
was then applied to IDRC 2002 set 2 and the results are shown in the bottom subplots of
Figure 5. The results were also sufficient. Thus, the revised U-Net DNN can fulfill the goal
of calibration transfer.

Figure 6 shows the application of the revised attention mechanism DNN applied
to the IDRC 2002 data sets. The training process was applied to the IDRC-2002 set 1.
The results are shown on the top subplots of Figure 6. The bottom subplots show the
calibration transfer results using the obtained calibration model from IDRC 2002 set 1
applied to the IDRC-2002 set 2. The results were still acceptable and the calibration transfer
was satisfactory.

Figure 5. Predicted versus measured quantities of the active substance of the Escitalopramt tablets
based on the revised U-Net DNN.

One can see from Figures 5 and 6 that some samples appear to be outliers. We did not
make further efforts to determine the issues associated with them because it was outside
the scope of the present work. The important thing is that we could use a small batch size
of 12 in the training process and evaluate the threshold R2. Furthermore, the obtained
calibration model can be effectively applied to the whole data sets. Thus, this strategy can
obtain a calibration model with good generalization capability.
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Figure 6. Predicted versus measured quantities of the active substance of the Escitalopramt tablets
based on the revised attention mechanism DNN.

3.3. Two Revised DNNs Applied to the IDRC 2016 Data Sets

The IDRC 2016 “Shootout” data sets mainly aimed to provide a calibration transfer
challenge. Calibration transfer means to establish a calibration model for one instrument
and then apply it to other different instruments. This transfer is usually ineffective because
the differences among the instruments will generate sufficiently different spectra even
measuring same sample that the calibration fails. However, for a big enterprise that
deploys many of the instruments at different locations, calibration transfer is a necessity
that cannot be avoided. One can see from the IDRC 2016 report [19], some participants did
obtain satisfactory results by combining multiple techniques. However, their success was
highly dependent on the experience and skill of these skilled participants and may not be
possible for typical users.

Figures 7 and 8 show the results of applying the two revised DNNs to the data sets.
We used the IDRC-2016 A1 in Table 1 as the training set (corresponding to CalSetA1 in
Figures 7 and 8) and the IDRC-2016 T (corresponding to Test set in Figures 7 and 8) as the
validation set in the training process. The threshold was set as R2 ≥ 0.99. The obtained
calibration model was then applied to calculate other data sets.

It can be seen that the results are sufficient when the calibration model was applied
to the data sets from manufacturer A. However, somewhat poorer results were obtained
when the calibration model was applied to the data sets from manufacturer B because
the calibration model was established based on the measured data sets on the instrument
of manufacturer A. Thus, for a large enterprise, deploying instruments from same man-
ufacturer will be the best choice. Although the results were not fully satisfactory when
the calibration model was applied to the unknown samples (Validation set in Figures 7
and 8), these results are understandable because the unknown samples were developed
to be the most challenging ones. It may be that there were intentionally designed spectra
pretreatments, wavelength selections, calibration transfer techniques, etc. However, we
did not apply pretreatment of the spectra. We did not use extra techniques such as the
wavelength selection, and we did not use any other calibration transfer techniques. Thus,
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future work could be to develop DNN architectures that possess multiple abilities such as
the most effective wavelength selection.

Figure 7. Predicted versus measured plots of the all data sets based on an acceptable quantitative
model established from the NIR spectra of CalSetA1 of manufacturer A using the revised U-Net DNN.
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Figure 8. Predicted versus measured plots of the all data sets based on an acceptable quantitative
model established from the NIR spectra of CalSetA1 of manufacturer A using the revised attention
mechanism DNN.

4. Conclusions

In this paper, two DNN architectures were successfully constructed; one was based
on revising the U-Net and the other was based on revising the attention mechanism. The
results showed that the two DNNs can be applied to quantitatively model NIR spectra.
Thus, it is also potentially applicable to other types of spectroscopic data. The results of
the CGL data showed that the DNN was a good tool for multiple-component quantitative
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analysis by providing convenience in its creation and the maintenance of the resulting
calibration model. We see the DNNs provided the capability to cope with the challenging
problem of calibration transfer even though the present results are not fully acceptable.
Future work could be focused on how to capture the kernel information in the spectra
related to the quantity of a component. We emphasize that replaying fully connected layer(s)
with convolutional layers played an important role in our work. This approach could be a
primary standard by which to judge the practicability of a DNNs in analytical chemistry.
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