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Abstract: In this paper, we propose an enhanced version of the distributed attentional actor architec-
ture (eDA3-X) for model-free reinforcement learning. This architecture is designed to facilitate the
interpretability of learned coordinated behaviors in multi-agent systems through the use of a saliency
vector that captures partial observations of the environment. Our proposed method, in principle,
can be integrated with any deep reinforcement learning method, as indicated by X, and can help
us identify the information in input data that individual agents attend to during and after training.
We then validated eDA3-X through experiments in the object collection game. We also analyzed
the relationship between cooperative behaviors and three types of attention heatmaps (standard,
positional, and class attentions), which provided insight into the information that the agents consider
crucial when making decisions. In addition, we investigated how attention is developed by an agent
through training experiences. Our experiments indicate that our approach offers a promising solution
for understanding coordinated behaviors in multi-agent reinforcement learning.

Keywords: multi-agent deep reinforcement learning; explainable reinforcement learning; distributed
system; attentional mechanism; coordination; cooperation; alter-exploration problem

1. Introduction

Explainable reinforcement learning (XRL) has gained considerable attention from
both academia and industry due to the vast potential of deep reinforcement learning
(DRL) in various applications. However, the black-box problem of DRL, which refers to
its unaccountable decision-making process, remains a significant limitation. XRL seeks to
overcome this challenge by providing transparency and interpretability in the decision-
making process of DRL agents. This is particularly important in critical domains such as
autonomous vehicles, where even a small error in the decision can lead to undesirable
real-world consequences. Providing explanations for DRL algorithm decisions not only
facilitates error identification and correction but also builds trust and acceptance of DRL
across various industries.

According to recent research [1–3], multiple categories of XRL provide the interpretabil-
ity of agents. For example, the decision-making process of agents has been interpreted by
decomposing reward functions [4–7] or visualizing their saliency maps based on the inte-
grated gradients method [8–11]. The attention mechanism and transformer developed by
Vaswani et al. [12] also play a critical role in providing transparency to the decision-making
process. As a result, various neural network models based on the attention mechanism
and transformer, such as vision transformer (ViT) [13] and decision transformer [14], have
facilitated the successful visualization of input information that is instrumental in achieving
state-of-the-art performance for explainability in computer vision and DRL.

Despite the importance of clarifying the black-box coordination/cooperation mecha-
nism for enhancing the productivity and robustness of the entire system, limited research
has been conducted on XRL in multi-agent systems (MAS). The multi-actor-attention-critic
(MAAC) [15], which integrates the attention mechanism in the style of MADDPG [16],
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illustrates how agents selectively focus on cooperative agents using the central attention
mechanism, thereby improving the overall efficiency of the system. Motokawa and Sug-
awara [17] have proposed a multi-agent transformer deep Q-network (MAT-DQN) to
establish the interpretability of distributed agents’ coordinated behaviors by analyzing
individual agents’ attention mechanisms. Their findings are expected to enhance the ex-
plainability of learned behaviors of individuals as well as the efficiency of the entire system.
However, their investigation on attention analysis remains inadequate; for instance, they
have not addressed how the agents’ attention patterns change throughout their training.

To address this shortcoming, we previously proposed a distributed attentional actor
architecture (DA3-X) [18], an extension of MAT-DQN [17], to enhance the interpretability
of coordinated behaviors in multi-agent DRL (MADRL). The proposed model architecture
relies on trainable parameters known as saliency vectors. As implied by X in DA3-X, the
network architecture can accommodate various reinforcement learning algorithms, such as
DA3-RAINBOW [19], DA3-DDPG [20], and DA3-IQN [21] to support agents’ adaptation
flexibility to a variety of environments. DA3-X is a sequential network architecture com-
prising three main modules: state embedder, transformer encoder, and DRL head. Agents
utilizing DA3-X (DA3-X agents) can visualize information that is relevant to their learned
actions via attention heatmaps. Similar to those of the ViT [13], attention heatmaps of
DA3-X indicating the intensity of interest in the image-like observation can be generated by
extracting the attention weight from the attention mechanism in the transformer encoder.
The justification and rationale behind the decision-making process of DA3-X agents are
interpretable by representing their observation through the state embedder and transformer
encoder, along with the attention mechanism inside DA3-X. Our preliminary version of
DA3-X has already demonstrated its effectiveness; however, the resolution of the analysis
was insufficient to distinguish the information that attracts regular attention from the one
that attracts flexible, situation-specific attention.

In this paper, we introduce a more interpretable version of the DA3-X algorithm,
known as enhanced DA3-X (eDA3-X), which incorporates three different types of attention
mechanisms, namely standard attention, positional attention, and class attention. Note
that the standard attention is the same as that used in the previous version of DA3-X. The
positional attention provides insights into the underlying strategy of each agent and where
to focus, regardless of the situation. Meanwhile, the class attention is more conditional
and specific to the situation. To evaluate eDA3-X, we conducted experiments on the
object collection game scenario, where multiple agents learn to coordinate their behavior
and collect objects in each environment. Our results show that eDA3-X outperforms
the baseline DRL algorithms while providing better interpretability. Furthermore, we
conducted attention analysis by comparing agents’ coordinated behaviors and three types
of attention heatmaps generated by eDA3-X to validate its effectiveness against DA3-X.

2. Related Work

Attention-based method in XRL: The incorporation of the attention mechanism in mod-
els is one of the most popular methods in XRL [22], aside from developed methods through
the research on visual explanations such as feature-based [23–25], embedding-based [9,26],
perturbation-based [27–29], and gradient-based methods [8–11]. Although there are some
studies pointing out that the attention mechanism is not always an effective explanation in
text classification [30,31], we support that the attention mechanism demonstrates mean-
ingful interpretation on the decision-making process of deep learning, as discussed by
Wiegreffe and Pinter [32]. According to Shi et al. [25], there are two main approaches
for the attention-based method: querying the observation of agents through customized
self-attention modules assembled sequentially [33–36] and using convolution [37–41]. Re-
cently, we proposed a previous version of DA3-X [18] as an extension of MAT-DQN [17] to
demonstrate how decentralized agents coordinate with each other in MAS by highlighting
the influence of relevant tasks, other agents, and the noise in local observations through the
attention mechanism.
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Transformer variants: Transformers and their variants achieved recognition for their
performance [12,13,42] and are widely applied in the fields of natural language processing
and computer vision. However, there are still relatively few studies that adapt transformers
to DRL because of the high variance of states in the training phase. Some prior works sought
to imitate outsourcing-supervised (human) actions [43] and interacted with agents via text
descriptions through the transformer (multi-modal transformer) [44]. Upadhyay et al. [45]
proposed deep transformer Q-networks (DTQN) to incorporate the transformer in conven-
tional reinforcement learning algorithms in continuous environments, and Xu et al. [46]
demonstrated that transformer-based models called Trans-v-DRQN outperformed other
models in text adventure games. Ritter et al. [47] proposed an episodic planning network
(EPN), which characterizes experienced memories retrieved from episodic storage under
rapid task-solving games. Chen et al. [14] presented decision transformers, which perceive
environments as conditional sequences; these were subsequently modified by introducing
the trajectory transformer [48].

However, many previous investigations on transformer architectures have focused on
enhancing their learning efficiency rather than elucidating the decision-making mechanisms
of agents. Consequently, long short-term memory recurrent neural networks (LSTMs) [49],
gated recurrent units (GRUs) [50], and transformers are frequently used primarily as vast
memory banks rather than as state representation generators [46]. On the other hand,
lightweight transformers are installed as the transformer encoders in the DA3-X to reduce
computational costs in entire MADRL. By introducing a simple transformer encoder, we
aimed the cost-effective interpretability of agents in MADRL.

Explainable Multi-Agent Systems: There are several human-centered approaches on ex-
plainable multi-agent systems (XMAS) as a part of explainable AI (XAI) [51].
Kraus et al. [52] proposed the explainable decisions in multi-agent environments (xMASE),
aiming at increasing user satisfaction. Calvaresi et al. [53] introduced blockchain technology
to establish explainability, and investigated their method using a swarm of unmanned
aerial vehicles. Alzetta et al. [54] proposed the real-time beliefs–desires–intentions (RT-BDI)
framework, and highlighted the need of XMAS in a real-time process.

In this paper, we particularly pursue an approach to establish interpretability of agents
in MADRL, instead of introducing an interpretable neural network architecture in MAS.
We focus on incorporating the attention mechanism in an actor neural network to highlight
which information is correlated to the unknown decision-making process in MADRL.

Attention mechanism in MADRL: Various MADRL models utilizing the attention
mechanism for XRL have also been proposed. Previous studies [15,55–61] often used
the attention mechanism as a centralized communication processor that efficiently han-
dles encoded messages among agents in MADRL. Incorporation of the attention mecha-
nism in MAS is also beneficial for constrained problems [62], such as the approximation
of underlying behaviors of agents [63] and trajectory prediction [64,65]. In particular,
Choi et al. [55] introduced the multi-focus attention network, which helps agents attend
to important sensory-input information using multiple, parallel attention mechanisms in
a grid-like environment. Zambaldi et al. [66] investigated the enhancement of the agents’
ability to efficiently adapt to complicated environments (Box-World and StarCraft II) that
require relational reasoning over structured representations by the attention mechanism.
Lee et al. [67] introduced joint attention, which aggregates every other agent’s attention
map and demonstrated its cost-effectiveness in multi-agent coordination environments.

The initial investigations into MADRL concentrated on improving agents’ performance
by using centralized attentions in the centralized training with decentralized execution
(CTDE) [68] methodology. Nonetheless, the fully decentralized approach is generally
more dependable because of reduced policy update variability, and is more realistic in
real-world environments [69]. Furthermore, the analysis of coordination through attention
heatmaps has not been fully explored. We aim to conduct a specific behavioral analysis of
collaborative agents using decentralized attention heatmaps to determine how to employ
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alternate strategies and establish coordination based on their observations, to improve
interpretability.

DA3-X: DA3-X is a neural network model comprising the attention mechanism [18].
The key aspect of DA3-X lies in its ability to provide interpretability for agents in distributed
multi-agent systems. In such systems, agents must establish coordination with one another,
making it essential to understand how their cooperative behaviors arise from their black-
box decision-making processes. While previous studies have explored transparency in
coordination within centralized multi-agent systems, they have often overlooked the more
practical distributed systems commonly found in real-world applications. By employing
DA3-X as a baseline method, we present an analysis of its interpretability, specifically its
capability to selectively identify crucial segments of observation by examining the attention
weights within DA3-X [18]. Additionally, the flexible network structure of DA3-X allows for
the application of various reinforcement learning methods. Furthermore, we demonstrate
that the scalability of DA3-X remains unaffected by the number of agents, as it assumes a
distributed system and does not rely on models from other agents.

In this paper, we further extended the attention mechanism of DA3-X for further
interpretability of agents in MADRL. While only standard attention is available in DA3-X,
our proposed method, eDA3-X, is capable of serving the positional attention and class
attention in addition to the standard attention. This novel enhancement enables us to
conduct a more granular analysis of the interpretable coordinated behavior exhibited by
agents in MADRL scenarios.

3. Preliminaries
3.1. Dec-POMDP

We assumed the decentralized partially observable Markov decision process (dec-POMDP) [70]
of N agents. Dec-POMDP is formulated by a tuple:

〈I ,S , {Ai}, pT , {ri}, {Ωi},O, H〉 (1)

where I = {1, . . . , N} indicates a set of agents in the system; S is a finite set of possible
states; Ai is a finite set of action space of each agent i ∈ I . For a ∈ A (= A1 × · · · × AN)
and s, s′ ∈ S , pT(s′|s, a) is a transition probability; ri(s, a) ∈ R is the reward obtained by
i ∈ I ; Ωi is a finite set of observations by i ∈ I ; O(o|s, a) is an observation probability
that i sees o ∈ Ω when i takes action a in state s; H is the time horizon of the process.
In dec-POMDP, the objective of agents is to maximize the discounted cumulative reward
Ri = ∑H

t=0 γtri(s, a) by optimizing their policies πi, where γ is a discount factor (0 ≤ γ < 1).

3.2. Problem Setting

To evaluate our method, we employ the object collection game where agents collect as
many objects as possible in a grid-like environment of size GX × GY, as shown in Figure 1a,
where GX = GY = 25. At the beginning of each episode, agents are placed at the initial po-
sitions indicated by numbered blue and red cells in Figure 1a and begins exploration in the
environment. At each time step, agents decide their action ai ∈ Ai = {up, down, right, left},
wherein each element describes the movement direction of agents. Agent ∀i receives
a reward ri(s, a) depending on the state s′ ∈ S at the next time step after the joint ac-
tion a = (a1, . . . , ai, . . . , aN) ∈ A; i.e., i obtains a positive reward ri(s, a) = robs > 0 if it
moves to the same position as an object to collect in state s′; it receives a negative re-
ward ri(s, a) = rcol < 0 if it collides against other agents or walls in s′; otherwise, it
receives ri(s, a) = 0. Despite the simple tasks in this game and the required coordination
structure being straightforward, it makes it easier to reason why the individual agents
analyzed the specific parts of input data to decide actions for the evaluation of the proposed
method, eDA3-X.
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Figure 1. Environment and observation matrices with respect to view method. (a) Environment used
in our study. Black cells represent walls, numbered blue and red cells represent the initial position
of agents, and F marks represent objects. Green, red, and beige cells represent regions where F
spawn, and white cells represent empty space. (b) Encoding local view observation of agent 0 in
NC × RX × RY. The visible range of agent 0 is represented as blue square line. (c) Encoding relative
view observation of agent 2 in NC × GX × GY. The visible range of agent 2 is represented as red
square line.

At each step, agents encode their observations of the environment in NC channels of
RX × RY binary matrices in {0, 1} or {0,−1} (where RX × RY is the size of the observation
matrices ∈ RRX×RY ) and feed their observation tensor in shape of NC × RX × RY into their
neural networks. In this study, we introduce two types of observation methods, namely, local
view and relative view methods [71], as shown in Figure 1b,c. Note that the leftmost figure
in Figure 1b,c depicts the example environment, whose size is {GX × GY} = {10× 10},
including the walls; thus, they are smaller than that in Figure 1a. In these figures, black
cells are walls, black star-shaped marks are objects, and blue and red numbered cells are
agents in the environment.

Local view: Agents generate the matrices of the local view based on their local ob-
servations; thus, RX × RY is the same size as the visible range. Figure 1b shows example
environment and matrices when {RX × RY} = {7× 7}, where the blue square line indi-
cates agent 0’s surrounding sight (visible range). Suppose NC = 5, agent 0 obtains its local
observation matrices where the first three indicate agents’ position, the fourth channels
indicate objects’ position, and the fifth channel shows walls and invisible area. Note that
the area behind the walls cannot be observed.

Relative view: Unlike with the local view method, agents obtain their observation
matrices in the shape of {RX × RY} = {GX × GY} with the relative view method. An
example is shown in Figure 1c, where the red square indicates agent 2’s visible range, whose
size is 7× 7 and {RX × RY} = {10× 10}. The encoding mechanism of the relative view is
similar to that of the local view, where each channel indicates the locations of agents, objects,
or walls within the visible range; other elements are filled with zeros. As an advantage of
the relative view method, agents observe their global positions in the environment.

3.3. Multi-Head Attention

The self-attention mechanism [12] was introduced to calculate similarities between
sequences as

Attention(Q, K, V) = Softmax(
Q · KT
√

d
)V, (2)

where Q, K, and V denote query, key, and value matrices, respectively, and d is the dimension
of the query/key. The attention weight is obtained by softmax function of the dot product
between the query and key matrices in Equation (2). Multi-head attention (MHA) is
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determined by calculating the self-attention in h parallel attention heads, as shown in the
equation below:

MHA(Q, K, V) = Concat(head1, . . . , headh)WO

headl = Attention(Q ·WQ
l , K ·WK

l , V ·WV
l ),

(3)

where WQ
l , WK

l , WV
l , WO are projected parameter matrices for attention head headl (1 ≤ l ≤ h),

and Concat denotes the concatenation procedure of output matrices from h attention heads
(for further details, please refer to the original paper [12]).

4. Proposed Method: eDA3-X
4.1. Neural Network Architecture

The key idea of proposed method, eDA3-X, is to consistently use the saliency vector
(trainable parameters) throughout eDA3-X, as illustrated in Figure 2. In this approach,
eDA3-X is capable of visualizing relevant information in the attention heatmaps and
allows us to interpret the decision-making process of eDA3-X agents. The eDA3-X mainly
comprises three modules: state embedder, transformer encoder, and DRL head. eDA3-X
first expresses the observation in the saliency vector through the MHA mechanism inside
its transformer encoder and propagates the saliency vector to the DRL head, as shown in
Figure 2a,b, respectively.
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(a) eDA3-X and transformer encoder
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(b) Saliency vector fed to DRL head

Figure 2. eDA3-X architecture, based on the DA3-X architecture [18].

In state embedder, observation matrices of shape NC × RX × RY are projected to
C× b RX

P c × b
RY
P c using a convolutional neural network with kernel size of P, where C > 0

is the length of saliency vector, and P > 0 is patch size. The matrices are flattened and
concatenated with the saliency vector vsal ∈ RC to produce matrices in the shape of (b RX

P c ·
b RY

P c+ 1)× C. Position embedding Ppos, which is a set of trainable parameters in the shape
of (b RX

P c · b
RY
P c+ 1)× C, is then appended to the matrices for the attention calculation.

In the transformer encoder, the matrices undergo the norm, MHA, and the multi-
layer perceptron (MLP) layers for L times, as shown in Figure 2a. The similarities of each
sequence in the matrices, derived from embedded observation and saliency vector, are
obtained in MHA calculation as explained in Equation (3). In other words, eDA3-X agents’
focus in their observations is interpretable by comparing the intensity of attention weight
based on similarities between the saliency vector and other elements in observation. The
remaining calculation in the transformer encoder is identical to that of MAT-DQN [17].
Note that the shape of matrices remains the same as (b RX

P c · b
RY
P c+ 1)× C before and after

the process in transformer encoder.
Only the saliency vector in the matrices from the transformer encoder are extracted

and fed to the DRL head, as shown in Figure 2b. Unlike in MAT-DQN [17], any deep neural
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network can be applied to the DRL head in eDA3-X using arbitrary reinforcement learning
algorithm, such as RAINBOW [19], DDPG [20], or IQN [21] (hence denoted as X in eDA3-
X). The variety in DRL heads is expected to enhance agents’ learnability and adaptation
flexibility. Indeed, we previously reported flexible adaptation to complex environment by
adopting different reinforcement learning algorithm in its DRL head [18].

4.2. Standard, Positional, and Class Attentions

Based on our previous study [18], we further extend DA3-X to improve its interpretabil-
ity. While only standard attention is available in DA3-X, we introduce hyperparameters to
derive positional attention and class attention in eDA3-X. The following equation is the
mathematical procedure of decision-making process in DA3-X:

h0 = [vsal; x1E; x2E; . . . ; xI E] + Ppos

hl = TEL(hl−1), l = 1, . . . , L

Q = DRLHead(h0
L)

(4)

where x ∈ RI×(P2 NC) are patched observation matrices, E ∈ R(P2 NC)×C represents embed-
ding parameters, I = b RX

P c · b
RY
P c is the number of the matrices after the patch operation.

Each line in Equation (4) corresponds to the procedure in the state embedder, transformer
encoder layer (TEL), and DRL head in Figure 2, respectively.

We introduce a new state embedder based on the previous state embedder in Equation (4)
to derive the positional attention and class attention in addition to the standard attention
in eDA3-X. The state embedder in eDA3-X becomes

h0 = [vsal; αx1E; αx2E; . . . ; αxI E] + βPpos (5)

where α ∈ {0, 1} and β ∈ {0, 1} are hyperparameters depending on the purpose of attention
analysis. While the eDA3-X agent is trained, those parameters are set as α = 1 and β = 1,
such that Equation (5) becomes identical to that in Equation (4). We call it standard attention
to distinguish it from other attentions. Suppose α = 0 and β = 1, we derive

h0 = [vsal; 0; 0; . . . ; 0] + Ppos. (6)

during attention analysis. When α = 0, all information about the observation is masked
to zero, meaning the observation information is omitted. Hence, similarities between the
saliency vector and sequences of position embedding are obtained in MHA. We call this
attention positional attention. Similarly, when we set α = 1 and β = 0, the state embedder
in Equation (5) becomes

h0 = [vsal; x1E; x2E; . . . ; xI E] (7)

where the similarities of the saliency vector only depends on embedded observation
matrices. In this case, we call this attention class attention. Each combination of parameters
({α, β} = {1, 1}, {0, 1}, {1, 0}) allows us to examine attention analysis in different aspects.

The DA3-X model utilized only the standard attention ({α, β} = {1, 1}), which high-
lighted influential segments in observation, such as cooperative agents with a high attention
weight. However, it was unclear whether DA3-X assigned high attention to these segments
to identify cooperative/coordinated actions or simply due to their proximity as nearby
locations/objects that require constant awareness. This lack of interpretability hindered a
thorough understanding of the model’s decision-making process.

Conversely, eDA3-X incorporates positional attention ({α, β} = {0, 1}) and class
attentions ({α, β} = {1, 0}) to improve the interpretability of agents’ decision making.
The positional attention highlights the segments that eDA3-X always pays attention to,
regardless of the situation-specific observations. For example, eDA3-X’s focus on its
surroundings in standard attention can be explained by the positional attention of eDA3-
X. The class attention interprets the significance of the contribution of the attribute of
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segments to an agent’s decision-making process, regardless of the observation’s distance.
For instance, eDA3-X assigns the same intensity of class attention to the same class of
segments (other agents, objects, or walls), thereby elucidating how eDA3-X considers other
agents’ cooperativeness or irrationality in constructing coordination.

5. Experiments and Results
5.1. Experimental Setup

For our experiment, we utilized a grid-like environment E , as illustrated in Figure 1a,
where GX × GY = 25× 25, including the walls. Each cell in E is represented by different
colors to indicate entities, where black represents walls, blue and red represent the initial
position of agents, and white represents empty space. The object spawn regions are
represented by green, red, and beige segments, respectively. The agents aim to collect the
F-marked objects, with a total of 40 objects in the environment. Once an object is collected
by an agent, a new object will spawn at a random location within the corresponding
spawn region.

We consider a scenario where six agents (N = 6) are placed in the environment E ,
consisting of four intelligent agents and two roaming agents. At the beginning of each
episode, the intelligent agents spawn at specific blue cells ({0, 1, 2, 3}) in Figure 1a and
start exploring. Each agent learns its policy πi to maximize the collection of objects in its
designated area without collisions. Specifically, agent 0 and agent 1 can collect objects only
in the green and beige regions, while agent 2 and agent 3 can collect objects in the red and
beige regions. If agents try to pick up objects outside their designated area, the objects
remain in the same location, and the agents receive zero reward ri(s, a) = 0. The agents
are not aware of this region’s limitations and need to learn it through their experience.
The roaming agents spawn at the red cells ({4, 5}) and randomly move around in the
environment without collecting objects, potentially confusing the intelligent agents. Since
the roaming agents are not cooperative, the intelligent agents must determine which agents
in E are worth building coordination and exclude the non-cooperative agents. We set
NC = N + 2 = 8, where N = 6 matrices are used to distinguish the agents’ location and
those of other nearby agents, and two matrices are used for objects and the invisible area,
as shown in Figure 1b,c.

In our experiment, we investigated the performance of two types of agents, namely
eDA3-DQN agents and eDA3-IQN agents. The former had a multi-layer perceptron (MLP)
as a deep Q-network (DQN) [72] installed in their DRL head, while the latter had an implicit
quantile network (IQN) [21] installed. The eDA3-X agents were equipped with four atten-
tional heads (h = 4), and the transformer encoder was looped only once (L = 1), which
are the same hyperparameters as previous study [18]. The patch size was set to P = 1 and
P = 5 for the local and relative views, respectively. The length of the saliency vector vsal

was set to C = 64 (same as [18]). As for the baseline algorithms, we trained standard DQN
agents and IQN agents using the double Q-learning [73] and dueling network [74] algorithms.

We trained agents for 5000 episodes, each consisting of H = 200 steps. The reward
functions used were robs = 1 for agents moving to a collectible object and rcol = −1 for
colliding with other objects such as agents and walls. Agents were provided with an
image-like partial observation of size RX, RY = 7, 7 using either local view or a relative
observation of size RX, RY = GX × GY = 25× 25 using the relative view method, with a
visible range of 7× 7.

5.2. Quantitative Learning Performance

The results depicted in Figure 3 illustrate the total reward obtained by four intelligent
agents per episode (episode reward) over 5000 training episodes utilizing different obser-
vation methods and DRL algorithms (DQN and IQN based). The solid blue and red lines
in Figure 3 represent the learning performances of eDA3-X agents with relative and local
view methods, respectively. Conversely, the dashed blue and red lines depict the baseline
method performances. Table 1 provides a quantitative comparison of the observation
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methods, including the number of objects collected, collisions between agents, collisions
with walls, and episode reward. Each value in Table 1 is the average value over the final
100 episodes with a range of one standard deviation (±σ).
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Figure 3. Learning performance comparison between local and relative view methods. (a) Episode
reward by DQN-based algorithms. (b) Episode reward by IQN-based algorithms.

Based on the results presented in Figure 3 and Table 1, it can be observed that all
the intelligent agents were able to successfully learn how to collect objects within the
environment, as indicated by the steadily increasing episode rewards and low collision
counts. Moreover, it was found that performance improvements were more notable when
agents used the relative view to observe the environment rather than the local view,
regardless of the DRL algorithms employed. This is likely due to the additional global
positional information provided by the relative view.

Table 1. Quantitative performance comparison.

Observation Model Episode Reward Objects Collected Agents Collision Walls Collision

local dqn 62.95± 26.42 68.41± 26.56 2.63± 2.36 2.83± 2.81
iqn 64.95± 33.87 70.04± 33.27 2.27± 1.99 2.82± 3.36
eda3-dqn 82.36± 33.86 86.58± 34.22 2.03± 1.09 2.19± 2.25
eda3-iqn 93.17± 38.17 99.23± 37.83 3.04± 5.09 3.02± 5.64

relative dqn 200.49± 48.18 210.36± 28.15 3.60± 3.74 6.27± 23.47
iqn 234.19± 16.14 239.99± 14.62 3.13± 3.11 2.67± 4.76
eda3-dqn 243.73± 18.84 249.11± 15.10 3.16± 5.08 2.22± 4.39
eda3-iqn 250.26± 13.17 255.67± 12.09 3.19± 3.76 2.22± 2.81

Moreover, the results presented in Figure 3 and Table 1 suggest that the eDA3-X agents
outperformed the baseline methods in terms of building more efficient policies in the
environment. Specifically, when using the local view method, eDA3-DQN and eDA3-IQN
agents collected 18.17 (26.56%) and 29.19 (41.68%) more objects than their DQN and IQN
counterparts, respectively. On the other hand, when using the relative view method, the
eDA3-DQN and eDA3-IQN agents achieved an improvement in episode reward by 43.24
(21.57%) and 16.07 (6.86%) compared to the baseline methods. The following sections
present a detailed discussion on the performance improvement by using the relative
view method.

5.3. Attention Analysis from Coordination

It was confirmed that eDA3-DQN and eDA3-IQN agents learn to adapt to the object
collection game in the environment. In addition to the performance improvement of eDA3-
X agents (Figure 3 and Table 1), eDA3-X agents can provide the information to interpret
their decisions unlike agents with the baseline methods. Therefore, we first analyzed
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the interpretability of eDA3-X agents with the local view method. Note that eDA3-DQN
agents provided similar interpretability as eDA3-IQN agents; hence, we only analyzed
the attention of the eDA3-IQN agents. Figure 4 shows the attention heatmaps of a trained
eDA3-IQN agent named agent A in three different cases when it behaves cooperatively. The
left figure in Figure 4 is an observation of agent A. The color and marks in the observation
are identical to those in Figure 1a, and the blue arrow next to agent A expresses the direction
of the next movement. Three attention heatmaps depict the standard, class, and positional
attention heatmaps of agent A from left to right, respectively. Each value in the attention
heatmaps corresponds to the same segment in the observation, and each value in the
attention heatmap is the attention weight. Note that positional attention heatmaps are
identical throughout the three cases because positional attention shows the underlying
focus strategy and is not affected by individual observations (see Equation (6)).
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(c) Case 3.
Figure 4. Attention analysis with local view. Blue cell labeled A at center is observing agent. Blue
arrow represents the direction of next movement. F marks represent objects. Blue and red cells
labeled A’ and R represent intelligent coworker and roaming agent, respectively.

In Case 1, agent A finds two objects at different distances and approaches the closer
object, as shown in Figure 4a. This action is explained as agent A assigns higher attention
weight to the closer object than to the farther one (0.221 and 0.139, respectively), according
to the standard attention heatmap in Figure 4a. The standard attention heatmap also
demonstrates that agent A assigns attention weight to its surrounding cells as its right,
upside, left, and downside cells show attention weights of 0.028, 0.034, 0.031, and 0.055,
respectively. This phenomenon has already been reported in previous studies [17,18] but
with an insufficient explanation of this feature; for example, we cannot explain using only
standard attention why the lower cell has a larger weight of 0.055 than that of the left cell
(0.031), which is the position after the next move. On the other hand, with eDA3-X, we can
explain that the lower cell is assigned a larger attention weight in the standard attention
because the lower cell is usually more focused (0.125) than left cell (0.041) regardless of
observation situation, according to the positional attention heatmap.
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Besides the discussion on the standard attention, we discuss the explanation based on
the class and positional attention. In the class attention heatmap in Case 1, agent A assigns
a high attention weight of 0.304 on both objects, 0.009 on itself and 0.004 elsewhere. In
the positional attention, values of attention weight around agent A are relatively higher
(0.075, 0.078, 0.041, and 0.125); this implies that agents are slightly but always aware of
their surroundings. Note that because only standard attention heatmaps are generated
by DA3-X [18], the detailed explanation provided by class and positional attentions is the
interpretation made possible by eDA3-X.

Figure 4b (Case 2) is a demonstration of agent A behaving cooperatively when it
observes agent A’, which is an intelligent coworker, along with two objects. Accordingly,
agent A yields agent A’ for the closer object and moves downward to approach a slightly
farther object. The standard attention heatmap shows high intensity on agent A’ (0.231) and
a decrease in the attention weight on the closer object as it changes from 0.221 in Case 1 to
0.181 in Case 2. We can verify that such differences in attention weight are derived from
class attention. Once agent A sees agent A’ nearby, it puts 0.395 of attention weight on the
coworker and relatively less attention (0.187) on objects, indicating the high impact of the
existence of agent A’ for agent A’s decision-making process.

Lastly, agent A ignores agent R, which is a roaming agent, and approaches a closer
object in Case 3 (Figure 4c). In other words, agent A successfully recognizes agent R as an
irrational agent and learns that it is unworthy to coordinate with agent R. Unlike in Case 2
shown in Figure 4b, agent A assigns only 0.078 of attention weight on agent R, as shown in
the standard attention heatmap in Figure 4c. This decrement of attention weight on agent R
is derived from the class attention because it indicates a higher attention weight on objects
than that on agent R (0.248 and 0.188).

5.4. Positional Attention Analysis

In this section, we discuss the contribution of positional attention to the performance
difference between the two observation methods and the effects of observation methods on
cooperative behaviors as the attention heatmaps indicate the underlying strategy where
they focus their attention acquired during learning. We present three types of heatmaps for
eDA3-IQN agent i (∈ {0, 1, 2, 3}) in Figures 5 and 6: the positional attention heatmap (top),
the heatmap of agent i’s trajectory indicating where i visited through 1000 episodes (middle),
and the heatmap indicating where agent i collected objects through 1000 episodes (bottom).
For this analysis, we removed the constraints of designated areas of object collection to
evaluate the agents’ ability to learn their areas of responsibility correctly; in other words, we
replaced all green and red regions to beige regions in Figure 1a. Thus, agents were allowed
to collect objects anywhere in the environment E . The heatmaps of agent 4 and agent 5 were
omitted as they were roaming agents. Notably, the positional attention heatmaps of local
views are 7× 7 in Figure 5, whereas those of relative views are 5× 5, as shown in Figure 6.
This difference is because the environment size is GX × GY = 25× 25, and the patch size
is P = 5 for the relative view method. Thus, each attention weight at each segment of the
attention heatmaps in Figure 6 corresponds to a 5× 5 area of the environment.

The attention heatmaps depicted in Figure 5 reveal that eDA3-IQN agents typically
focus on their adjacent cells. Notably, the region of attention varies for each agent; for
example, the positional attentions of agent 0, agent 1, and agent 3 are mainly directed
towards the neighboring and boundary cells (Figure 5a,b,d) whilst that of agent 2 indicates
high attention on the neighboring cells only (Figure 5c). The heatmaps of object collection
indicate that the agents roughly divide the environment for exploration. Each agent is
responsible for the region around a particular corner. However, the trajectory heatmaps
in Figure 5 indicate that agents move in the same regions; for instance, agent 1 sometimes
explored the upper region where agent 2 and agent 3 were collecting objects. Similarly,
agent 2 also covered the areas partly overlapped with agent 0 and agent 1. In other words,
agents sometimes move into another agent’s region to collect objects whilst the other
agent is distant from it. We interpret this behavior as a combination of two strategies:
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(1) segmenting the area per agent and (2) moving in the same direction collecting objects.
As a result of following two strategies, agents with the local view method obtain such a
vague allocation of regions that leads to lower performance compared to agents with the
relative view method.
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(d) Agent 3.
Figure 5. Positional attention analysis with local view. Each row shows positional attention heatmap
in 7× 7 (top), heatmap of agent i’s trajectory (middle), and heatmap of collected objects by agent
i (bottom).
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(c) Agent 2.
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(d) Agent 3.
Figure 6. Positional attention analysis with relative view. Each row shows positional attention
heatmap in 5× 5 (top), heatmap of agent i’s trajectory (middle), and heatmap of collected objects by
agent i (bottom).

The relative view method leads to a nearly equal distribution of the environment
among agents, as illustrated in Figure 6. The positional attention heatmaps of each agent
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highlight the same region that they mostly explore because of the rough (P = 5) global
positions. For instance, agent 0’s attention is mainly focused on the upper-left region of its
heatmap, which corresponds to its areas of exploration and object collection, as depicted in
Figure 6a. Other agents also assume responsibility for specific regions of the environment
and rarely interfere with one another. It is indeed interesting that regions that agents mostly
take care of can be interpreted by visualizing the positional attention heatmaps from each
eDA3-X agent. Consequently, the performance of eDA3-X agents significantly improves
when using the relative view method to observe the environment. Unlike agents with
the local view method that follow two strategies, agents with the relative view method
seem to follow only one solid strategy: segmenting the area for each agent. Hence, agents
with the relative view achieve an explicit allocation of regions per agent, resulting more
efficient performance.

5.5. Positional Attentions Analysis from Respective Channels

We discussed how the positional attention varies depending on observation methods.
In this analysis, we further examined how the positional attention is correlated with
respective observation channels. Figures 7 and 8 present the positional attention heatmaps
of a trained eDA3-IQN agent using the local view (Figure 7a) and relative view methods
(Figure 8a) as well as the heatmaps indicating how many times an agent, object, and wall
were observed (i.e., count 1 or −1) at specific cells in respective observation channels over
5000 episodes of the training phase. Our experiments used NC = 8 channels, and the second
and third rows in Figures 7 and 8 show eight heatmaps. As with the example in Figure 1, the
first six channels in the observation (Figures 7b–g and 8b–g are dedicated to agents, while
the seventh and eighth channels (Figures 7h,i and 8h,i are for object observation and visible
area. Note that the accumulated values in the visible sight heatmaps (Figures 7i and 8i)
are multiplied by −1 to visualize explicitly, as the visible sight within walls is encoded in
{0,−1} as shown in Figure 1b,c.
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Figure 7. Positional attention and observation statistics with local view of agent 1.



Appl. Sci. 2023, 13, 8454 14 of 19

0 1 2 3 4

0
1

2
3

4

0.093 0.152 0.050 0.000 0.000

0.125 0.254 0.080 0.000 0.000

0.057 0.105 0.001 0.000 0.000

0.000 0.000 0.032 0.000 0.000

0.000 0.000 0.003 0.000 0.000

0.00

0.05

0.10

0.15

0.20

0.25

(a) Positional attention.

(b) Agent 0. (c) Agent 1. (d) Agent 2. (e) Agent 3.

(f) Agent 4. (g) Agent 5. (h) Objects. (i) Walls.

Figure 8. Positional attention and observation statistics with relative view of agent 0.

Figure 7 displays the positional attention and the accumulated counts heatmap of
agent 1 that mainly explores the lower right region of the environment with the local view
Figure 5b. The positional attention heatmap of agent 1 highlights only its center, which
corresponds to its location (Figure 7c). According to the positional attention heatmap in
Figure 7a, agent 1 mainly focuses on its four adjacent cells with attention weights of 0.075,
0.078, 0.041, and 0.125, corresponding to locations where objects have been frequently
observed at the seventh channel (132, 675 times on the right, 117, 147 times on the left,
112, 755 times on the top, and 105, 387 times at the bottom), as shown in Figure 7h. In
contrast, only an attention weight of 0.021 is assigned to the center despite objects appearing
162, 974 times at this location (Figure 7a,h). Therefore, we verify that eDA3-X agents tend to
focus their attention on neighboring cells and less attention on distant location, anticipating
immediate object collection and rewards from their subsequent actions and considering
distant objects less influential in their decision-making process.

Furthermore, the attention heatmap (Figure 7a) places significant attention weight
where other agents are frequently detected (Figure 7b–e). For instance, agent 0 and agent 2,
which mostly explored the left and lower region of the environment (Figure 5a,c), were
observed 2495 and 2824 times at two cells away in the upper direction from agent 1. Agent 4,
which randomly moved in the environment, was also observed 3897 times at the same cell.
As mentioned in Section 5.4, agents sometimes explored the same regions. Consequently,
agent 1 assigned an attention weight of 0.024 to the corresponding cell, which was relatively
high when compared to that of other cells (Figure 7a). Similarly, agent 3 was observed
9908 times at the two cells away in the right direction, resulting in a relatively high attention
weight (0.032). Agent 1 also focused on the lower segments, possibly because it frequently
encountered walls on the lower side of the environment (Figure 7i). Thus, we confirmed
that eDA3-X agents also pay close attention to the areas where other agents are detected,
indicating that the agents aim to avoid collisions with them.
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The positional attention heatmap and observation of agent 0 in Figure 8 reveal that the
eDA3-X agent with relative view method mainly focuses on the area that agent 0 explored,
unlike the previous positional attention analysis with the local view method, as shown in
Figure 8a,h,i. The positional attention does not highlight the region where other agents
are frequently observed, even though agent 1, agent 2, and agent 3 are observed up to 200,
2500, and 700 times. The counts of encountering other agents with a relative view are much
fewer than those with a local view, as shown in Figure 6, as can be expected given the clear
allocation of regions in the environment. Since agents can determine their global positions
through relative views in a bottom-up manner, we confirmed that eDA3-X agents with the
relative view method can perform well by directing their positional attention to the areas
where they are responsible for collecting objects.

6. Discussion

In our study, we conducted a quantitative analysis of learning performance, comparing
agents using the eDA3-X model to those utilizing the baseline method. We found that agents
equipped with eDA3-X not only exhibited improved interpretability but also outperformed
agents using the baseline method. As previously reported in the literature, the attention
mechanism provides agents with the ability to adapt flexibly to their environment [18]. By
leveraging the attention weights to selectively focus on important segments of their obser-
vations, agents utilizing eDA3-X achieved more efficient learning performance compared
to those relying on the baseline methods. Notably, the improvement in learning perfor-
mance was particularly remarkable when employing a simple neural network architecture
(specifically, DQN in this paper) within the DRL head in eDA3-X. This finding suggests
that the limited information available in observations can be leveraged more effectively for
learning performance when using a simple reinforcement learning algorithm.

Through experiments and attention analysis, we validated the interpretability of
eDA3-X agents by examining their standard, class, and positional attention heatmaps. Our
analysis of the standard attention heatmaps and cooperative behaviors indicates that eDA3-
IQN agents selectively assign attention weight to their observations based on the intensity
of interest, focusing on nearby objects when multiple objects are present. Additionally,
these agents give high attention to other agents. When encountering agents that behave
randomly, the eDA3-X agents seem to learn that adaptation is not worthwhile. While this
feature has been previously reported, in this paper, we further classified standard attention
into class and positional attention for a more granular analysis. The comparison of attention
weight in the class attention may allow one to interpret the efficiency of eDA3-X agents
to perceive each element type in the observation regardless of location. For example, as
illustrated in Figure 4b,c, our analysis points towards some agent considering another
similar agent more important than objects, while it deems a randomly behaving agent
less significant. Furthermore, we discussed the potential of positional attention conveys
distinct meanings based on either a local or relative observation method. In the case of
the local view method, the positional attention may reveal the areas where eDA3-X agents
pay attention, as demonstrated in Figure 4. Conversely, with the relative view method, the
positional attention may indicate the region an agent learned to be responsible for.

In addition to the above analysis, we examined the development of positional attention
throughout training. As shown in Figures 7 and 8, the agents assign positional attention
weight based on relevant information, such as frequently observed agents, objects, and
edge of the environment. As previously mentioned, eDA3-X agents using the local view
method focus on their four adjacent cells and the area where other agents are often observed,
while those using the relative view method focus on their assigned region. We believe
that this difference in positional attention contributes significantly to the disparity in
learning performance.

Limitations: For our approach, there may still be limitations in terms of quantitatively
evaluating the interpretability of agents. In this study, we introduced the observation mech-
anism of eDA3-X agents through attention heatmaps, for which we illustrated the potential
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value for explanations. However, the lack of quantitative evaluation on explainability may
be critical in safety-critical applications such as self-driving systems, where high safety and
algorithmic accountability must be ensured. Hence, to overcome such limitations, our next
study will focus on conducting a quantitative examination of the decision-making process
transparency of the agents through attention heatmaps.

In this paper, we have presented our results and findings based on experiments con-
ducted in the object collection game. However, it is important to note a primary limitation
of our approach, which is that eDA3-X is currently applicable only to grid-like environ-
ments, as depicted in Figure 1a. In real-world applications, continuous environments such
as the multi-agent particle environment [16] are more prevalent. Additionally, our attention
analysis has been limited to a few specific cases in a simple scenario within this paper. In
order to thoroughly evaluate the versatility of interpretability provided by eDA3-X, further
investigation of our proposed method and attention analysis across a diverse range of
environments and test cases is required.

7. Conclusions

In this study, we introduced eDA3-X as a novel method to enhance the interpretabil-
ity of agents in multi-agent deep reinforcement learning. Our proposed approach was
validated through experiments conducted using the object collection game. The result
quantitatively demonstrates that eDA3-X agents outperform baseline algorithms using the
saliency vector. With an initial analysis, we identified indicators how eDA3-X agents effec-
tively adapt to other agents by analyzing the three types of attention heatmaps generated
from the attention weights in the local transformer encoder. Additionally, we explored the
development of positional attention, a feature that has not been extensively studied before.
Our findings show that the positional attention heatmaps exhibit distinct characteristics
depending on the observation method.
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