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Abstract: Extracting effective features from high-dimensional datasets is crucial for determining
the accuracy of regression and classification models. Model predictions based on causality are
known for their robustness. Thus, this paper introduces causality into feature selection and utilizes
Feature Selection based on NOTEARS causal discovery (FSNT) for effective feature extraction. This
method transforms the structural learning algorithm into a numerical optimization problem, enabling
the rapid identification of the globally optimal causality diagram between features and the target
variable. To assess the effectiveness of the FSNT algorithm, this paper evaluates its performance by
employing 10 regression algorithms and 8 classification algorithms for regression and classification
predictions on six real datasets from diverse fields. These results are then compared with three
mainstream feature selection algorithms. The results indicate a significant average decline of 54.02%
in regression prediction achieved by the FSNT algorithm. Furthermore, the algorithm exhibits
exceptional performance in classification prediction, leading to an enhancement in the precision
value. These findings highlight the effectiveness of FSNT in eliminating redundant features and
significantly improving the accuracy of model predictions.

Keywords: causal inference; relevance; feature extraction; compare

1. Introduction

In order to reduce the computational cost of model classification or regression, it
is desirable to select as few features as possible while ensuring estimation quality. Fur-
thermore, utilizing all available features not only invalidates the model’s calculation [1]
but also increases the likelihood of overfitting [2], consequently reducing the predictive
accuracy. Feature selection is a fundamental and relatively straightforward strategy in data
mining [3]. It should be noted that we focus solely on the correlation between variables,
not causality, as correlation does not imply causation. Correlations can exist between two
non-causal variables [4].

The traditional feature selection algorithm searches for the relevant feature according
to the correlation between feature variables and target variable [5]. However, correlation
can only indicate the coexistence relationship between the target variable and a feature, and
does not account for the underlying mechanisms that influence the target variable [6]. For
instance, consider “lung cancer” as the target variable, and “yellow fingers” and “smoking”
as the feature variables. “Smoking” can serve as an explanatory factor for “lung cancer,”
and the long-term habit of smoking leads to tar pollution on fingers. While a correlation
exists between “yellow fingers,” “smoking,” and “lung cancer,” only “smoking” and “lung
cancer” exhibit a causal relationship. If some smokers attempt to conceal their smoking
habits by removing the yellow stains from their fingers, a prediction model relying on
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“yellow fingers” would be ineffective, whereas a model based on “smoking” would be
more reliable.

These studies and practices demonstrate that causality unveils the genuine impact
of one variable on another, and models based on causality offer enhanced explanatory
power and robustness [7]. Currently, causality has found successful applications in various
domains such as medicine, economy, environment, interpretable artificial intelligence, and
more [8]. Consequently, we made the decision to incorporate causality into feature selection
and identify features by establishing a causal structure diagram between the features and
target variables. The NOTEARS algorithm [9], utilized in this study, distinguishes itself
from prior causal discovery algorithms that rely on local heuristics. It does not require
an extensive understanding of graph theory; instead, it can identify the globally optimal
causal graph structure by transforming the initially intricate structural learning algorithm
into a relatively manageable numerical optimization problem. Utilizing the acquired global
causal graph structure, this study calculates the causal strength among the characteristic
nodes and subsequently obtains a feature subset through the process of feature selection.

This study utilizes the Feature Selection algorithm based on the NOTEARS causal
discovery algorithm (FSNT) to investigate the causal relationship among data feature
variables. It extracts informative features from multidimensional feature data, generates a
causal network based on these features to visually represent the causal relationship [10],
and employs the causal strength between nodes for feature selection [11]. To validate
the efficacy of the proposed method, commonly employed feature selection methods
serve as benchmark algorithms and experiments are conducted on publicly available
real datasets. The selected benchmark algorithms comprise the XGBoost Feature Selection
(XGBFS), the Chi-square Filter Feature Selection (CSFFS) [12], and the Random Forest-based
Hybrid Feature Selection (RFHFS). Additionally, a Baseline is established by considering
no feature selection. Four comparison algorithms are employed, along with a diverse range
of popular classification and regression algorithms, to compare the performance on six real
datasets. This comparison aims to ascertain the strengths and weaknesses of utilizing the
FSNT algorithm.

The main contributions of this study are as follows: (1) The utilization of the NOTEARS
algorithm enables the identification of the globally optimal causal structure and its appli-
cation in feature selection, along with the calculation of causal strength between nodes,
validates its effectiveness in practical feature selection, offering valuable insights and appli-
cations. (2) Regression prediction and classification prediction are conducted on six real
datasets using ten regression algorithms and eight classification algorithms. The effective-
ness of the four feature selection algorithms is assessed using the explained variance ratio.
The experimental results demonstrate that the proposed algorithm outperforms others in
feature selection.

2. Related Work

Feature selection encompasses various classification methods, including Filter, Wrap-
per, Embedded, and Hybrid, depending on the combination of feature selection techniques
and learners [11]. This section primarily focuses on introducing these methods.

One example of a filtering feature selection algorithm is the filter feature selection
algorithm framework based on feature ranking. This method employs specific evaluation
criteria to assign scores to each feature, ranks the features in descending order based on
their scores, and selects the top-k features. In this study, a popular filter feature selection
algorithm based on the chi-square test [12] is employed. The chi-square test is a hypothesis
test that approximates the distribution of statistics to the chi-square distribution under
the null hypothesis. Its fundamental concept involves assessing the correlation between
two variables based on sample rates. Consequently, a larger chi-square value indicates
a stronger relationship between the two classification variables and a lower degree of
independence. Conversely, a smaller value suggests a weaker relationship and a higher
degree of independence.
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The filter feature selection algorithm employed in this study demonstrates high effi-
ciency, enabling rapid removal of a significant number of irrelevant features when dealing
with high-dimensional data. However, it is not guaranteed that the combination of all
strongly correlated features will yield satisfactory overall performance for the feature
subset. Numerous features exhibit high redundancy and this redundancy detrimentally
affects the overall performance of the feature subset. Additionally, some weakly correlated
features may be important and essential.

The embedded feature selection algorithm is to embed the classification algorithm
into the learning process. When the training process of the classification algorithm is
finished, the feature subset can be obtained. The embedded feature selection method can
solve the problem of high redundancy of filter algorithm results based on feature sorting
and can also solve the problem of high time complexity of the wrapper algorithm. The
embedded feature selection algorithm does not have a unified process framework and
different algorithm frameworks are different.

The boosting algorithm is widely recognized as an effective ensemble learning tech-
nique in the field of data mining. By assigning weights and combining individual weak
classifiers, it effectively reduces errors, and yields a higher accuracy and more precise
classification results [13]. The fundamental concept behind boosting is to iteratively di-
minish the residuals and further minimize residuals based on the gradient direction of the
previous model, resulting in the creation of a new model [13]. Chen et al. [14] proposed
XGBoost, also known as extreme gradient boosting, in 2015. The XGBoost algorithm draws
inspiration from random forest during the training process by sampling the data at each
iteration and utilizing certain sample characteristics for training purposes [15]. Neverthe-
less, the number of embedded algorithms is limited and the performance is contingent
upon the characteristics of the learners. Certain learners possess inherent feature selection
capabilities, while others lack this functionality. Furthermore, while the feature subset
exhibits exceptional performance, it is prone to overfitting as it is specifically optimized
for itself.

The hybrid feature selection algorithm draws inspiration from ensemble learning tech-
niques. This approach trains multiple feature selection methods and combines their results,
leading to improved performance compared to using a single method. One mainstream
hybrid feature selection algorithm is the use of random forest as the learner [16]. In this
study, recursive feature selection with random forest importance is employed. Random
forest assigns similar importance to highly correlated features and utilizes a recursive
method to remove the least important feature, recalculating the importance in each round,
and continuing this process until the least important feature is eliminated. This approach
allows for better feature selection by avoiding the simultaneous removal of features based
solely on their importance in the initial set. Consequently, when another highly correlated
feature is removed, the importance of the remaining features tends to increase, resulting in
improved selection of the feature subset space.

However, many hybrid algorithms exhibit sensitivity to variations in data distribution.
Even when using the same algorithm, changing the training set for feature selection can
yield significantly different results. This issue is of significant concern; reproducing the
feature subset becomes challenging due to its high time complexity.

Recent studies [6] have shown that incorporating causality to assess the relationships
between features enhances the interpretability and robustness of the algorithm. The process
of learning the structure of a causality graph, also known as learning the structure of a
directed acyclic graph (DAG), is a well-known NP-hard problem [17]. Current structure
learning algorithms struggle to effectively enforce the acyclic constraint. This limitation
arises from the combinatorial nature of the acyclic constraint, where the computational
complexity grows exponentially with the number of nodes. Furthermore, even if a directed
acyclic graph is obtained that partially satisfies the constraint conditions, it may not be
suitable for general-purpose optimization. Presently, structure learning algorithms employ
various local heuristic approaches which, although capable of reducing computational
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complexity, do not guarantee the attainment of a globally optimal structure. Commonly
used algorithms encompass branch-cut methods, dynamic programming, A* search, greedy
algorithms, and coordinate descent methods [18].

In contrast to these algorithms, the approach employed in this paper utilizes distinct
methods to transform the original structural optimization problem into a mathematical
optimization problem. Importantly, the solution obtained in this study represents a globally
optimal Bayesian network structure for the given data, showcasing significant improvement
over traditional heuristic algorithms. Additionally, the employed algorithm does not
necessitate researchers to possess an extensive understanding of graph theory, thereby
rendering it highly valuable for research and practical applications.

The paper [9] compares it with the greedy equivalent search (GES) [19], PC
algorithm [20], and LINGAM [21]. The Fast Greedy Search (FGS) by Ramsey et al. [22]
is employed for GES. PC and LINGAM exhibit significantly lower accuracy compared to
FGES or NOTEARS. The experiment in the paper [9] demonstrates that, as the number
of nodes in the dataset increases, the accuracy of FGS measured by structural Hamming
distance (SHD) declines rapidly, whereas NOTEARS exhibits excellent performance. More-
over, this discrepancy is magnified with a higher number of nodes. Furthermore, the paper
demonstrates that NOTEARS outperforms for each noise model (Exp, Gauss, and Gumbel),
irrespective of the absence of any prior knowledge regarding noise types.

3. Proposed Methods Based on Causal Inference
3.1. Mathematical Representation of Causal Network

This section provides a detailed description of the feature selection method in data
mining based on a causal network. The dataset W consists of two parts: the input features
and the output results. Let X =

{
xij
}

denote the input matrix and Y = {yi} represent
the results, where i = 1, 2, . . . , n, j = 1, 2, . . . , m. The equation below illustrates
this relationship.

W = [X, Y] =


x11 x12 . . . x1m y1
x21 x22 . . . x2m y2

...
...

. . .
...

...
xn1 xn2 . . . xnm yn

 (1)

The algorithm employed in this study introduces a novel approach for describ-
ing Bayesian networks. By solving an optimization problem with smooth constraints,
we can determine the optimal directed acyclic graph. Specifically, for a given dataset
W =

(
ωij
)
∈ Rd×d, where A(W) ∈ {0, 1}d×d is a binary adjacency matrix representing a

directed graph, the description is as follows:
[
A(W)]ij = 1⇔ ωij 6= 0 ; otherwise, it is 0.

Moreover, let D ⊂ {0, 1}d×d represent a subset of the binary matrix B, where B is the
adjacency matrix of the acyclic graph. Consequently, the optimization problem for Bayesian
structure is transformed into the following nonconvex form:

mind×d
WεRQ(W; X) subject to h(W) = 0 (2)

The loss function Q, which is associated with the data, is denoted by X ∈ Rn×d,
representing the data matrix. The smoothing function h : Rd×d → R is only applicable
when A(W) ∈ D and h(W) = 0. Consequently, the Bayesian network’s structure, based
on graph theory, is transformed into a nonconvex optimization problem. This problem
can be solved using mathematical optimization tools. However, prior to finding a formal
solution, it is necessary to further characterize and express the acyclic constraint in the
aforementioned equation using mathematical methods. This step facilitates the subsequent
optimization problem’s solution.

This section presents a novel representation method for acyclic constraints, utilizing
the concept of matrix indices to facilitate subsequent optimization problems. The matrix
exponent, analogous to the exponential function, is introduced as a function applicable to
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square matrices. In this representation method, the variables of the exponential function
are replaced by a block matrix. The specific definition is as follows:

eB = ∑∞
k=0

1
k!

Bk (3)

Notably, B is an n × n matrix if and only if trexp(B) = d, where B ∈ {0, 1}d×d

represents the adjacency matrix of a DAG.

Proof. If
(

Bk)ii = 0 holds for all k ≥ 1 and all i, B indicates the absence of loops in the
directed graph, resulting in:

trexp(B) = tr
∞

∑
k=0

Bk

k!
= tr

∞

∑
k=1

Bk

k!
+ d = tr

∞

∑
k=1

d

∑
i=1

(Bk)ii
k!

+ d = d (4)

�

Given the usage of the block matrix B in the aforementioned theorem, and since B is a
binary matrix, it is not generally applicable to diverse data types. Therefore, a method is
required to substitute B with an arbitrary weight matrix W. Here, we employ the Hadamard
product of matrices, defined as follows:

A ◦ B =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 ◦


b11 b12 . . . b1n
b21 b22 . . . b2n

...
...

...
bm1 bm2 . . . bmn

 =


a11b11 a12b12 . . . a1nb1n
a21b21 a22b22 . . . a2nb2n

...
...

...
am1bm1 am2bm2 . . . amnbmn

 (5)

where A, B ∈ Cm×n and A =
{

aij
}

, B =
{

bij
}

both of size m × n. After the aforemen-
tioned transformation, the acyclic constraint for a given weight matrix W ∈ Rd×d can be
expressed as:

h(W)= trexp(W ◦W)− d = 0 (6)

The h(W)’ gradient value is:

∇h(W) = [ exp(W ◦W)]T ◦ 2W (7)

Here we need to provide an explanation for the validity of this substitution. In the
previous formula, tr

(
B + B2 + · · ·

)
represents the count of cycles in B. After the matrix

index transformation, we assign weights to these counts. By replacing B with W ◦W, we
recompute these weighted cycle counts, where the weight of each edge becomes ωij

2.

3.2. NOTEARS Causal Discovery Algorithm

The mathematical expression for the Bayesian network has been previously provided
and the transformation of the acyclic constraint yielded the final mathematical expression
that requires optimization:

mind×d
W∈RQ(W; X) +

ρ

2
|h(W)|2 (8)

Subject to the constraint h(W) = 0, a quadratic penalty term is introduced here with
ρ > 0 representing the penalty for violating the constraint h(W) = 0. The equation above
can be solved using the augmented Lagrange method with dual variables α. The augmented
Lagrange method can be expressed as follows:

Lα(W, α) = Q(W; X) +
ρ

2
|h(W)|2 + αh(W) (9)
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Its dual form is:

maxd×d
α∈RD(α), D(α) := mind×d

W∈RLρ(W, α) (10)

Subsequently, a challenging constrained optimization problem is transformed into an
unconstrained augmented problem, as shown in the formula above. Let W∗α be the local
solution for fixed α in the augmented problem, then:

W∗α = argmind×d
W∈RLρ(W, α) (11)

This problem can be effectively solved using any numerical method for unconstrained
smooth minimization problems. Now, the initial solution W∗α has been obtained. Since
the dual objective function D(α) and α satisfy a linear relationship, and the gradient value
can be expressed as ∇D(α) = h(W∗α ), the most straightforward approach to solve the
optimization problem is the gradient ascent method:

α← α + ρh(W∗α ) (12)

The step size, denoted by ρ, is determined by comparing the augmented problem with
the initial constraint problem. The gradients of these two expressions are as follows:

∇Q(W; X) + [α + ρh(W)]∇h(W) = 0
∇Q(W; X) + α∇h(W) = 0

(13)

Based on the solution process of the aforementioned unconstrained optimization
problem, the complete procedure for the novel causal network structure learning algorithm
employed in this paper is presented in Algorithm 1. It is worth noting that the expression
for the acyclic constraint is h(W) = 0. However, the optimization accuracy set in the
algorithm is ε > 0, a value very close to 0. This introduces a challenge. Although the
final result closely approximates a directed acyclic graph, it cannot guarantee obtaining
a directed acyclic graph that strictly satisfies the constraint conditions. Therefore, a post-
processing step is introduced: defining B(ω) = I(|W|) > ω and finding the minimum
threshold ω∗ > 0 that satisfies the definition. By doing so, we can obtain the directed
acyclic graph, where I(|W|) represents the indicator function.

Algorithm 1: NOTEARS algorithm.

Input: minimization speed C ∈ (0, 1), penalty growth rate r > 1, initial solution (w0, α0),
optimization accuracy ε > 0.
Output: Return the threshold matrix to build causal network

1. For t = 0, · · · , ∞.
2. Solve the initial problem Wt+1 ← argminLρ(w, αt) ;
3. If h(Wt+1) ≥ c · h(Wt); let ρ← rρ and return 1;
4. If h(Wt+1) < ε then return;
5. Otherwise, use the pairwise gradient ascent method αt+1 ← α + ρh(Wt+1) and repeat the

above procedure until the optimization accuracy is set

3.3. Calculation of Causal Strength between Nodes

The causal strength between nodes represents the measure of impact in a causal
relationship. In this study, the absolute value of the Pearson correlation coefficient,
Equation (14) [23], is employed to quantify the causal strength between two continuous
variables.

S(A, B) = |r(A, B)| = |Cov(A, B)|√
Var(A) ·Var(B)

(14)
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Variables A and B are denoted by their covariance, Cov(A, B), and their respective
variances, Var(A) and Var(B).

Alternatively, the information gain ratio can be utilized to assess the causal strength
between two discrete variables [24]. The information gain ratio is commonly employed
in feature selection [25], as illustrated in Equation (15). This approach mitigates the is-
sue of overfitting caused by selecting variables with large values due to inherent de-
viations. In Equation (15), the mutual information, I(A, B), quantifies the level of in-
terdependence between the two variables, as shown in Equation (16). The information
entropy, H(A), calculated in Equation (17), measures the uncertainty of the variables, where
p(xi) refers to the probability within set A. The conditional entropy, H(B|A), defined in
Equation (18) [26], quantifies the uncertainty in variable B given variable A.

IGB =
I(A, B)
H(A)

(15)

I(A, B) = H(A)− H(A|B) = H(B)− H(B|A) (16)

H(A) = −∑ p(xi)logp(xi) (17)

H(B|A) = ∑ p(xi)·H(B|A = xi) (18)

S =
I(A, B)√

H(A) · H(B)
(19)

In order to solve the issue of asymmetric information gain ratio, where the information
gain ratio from variable A to variable B differs from that from variable B to variable A, in this
study, a modified information gain ratio is employed as the variable representing the causal
strength between two discrete variables. Equation (19) illustrates this modified information
gain ratio, where a higher value indicates a stronger causal relationship between the
considered variables.

Following the construction of a cause-and-effect diagram between features and vari-
ables using the NOTEARS causal discovery algorithm, features that have a direct cause-
and-effect relationship with the target variable are identified. Subsequently, the selected
features are ranked based on their causal strength, resulting in the final feature subset.

4. Experiment Setup

The experiment aims to assess the effectiveness and universality of the proposed
FSNT algorithm for feature selection using a public dataset. The benchmark algorithms
employed include the XGBFS algorithm with embedded feature selection, the CSFFS feature
selection algorithm based on filtering, and the RFHFS feature selection algorithm based on
hybrid methods. Additionally, six real datasets are utilized, employing various mainstream
classification and regression algorithms, to perform comparative experiments, and evaluate
the advantages and disadvantages of using the FSNT algorithm. Figure 1 presents the
overall flowchart of the experiment.



Appl. Sci. 2023, 13, 8438 8 of 22

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 22 

  

  

the probability within set 𝐴. The conditional entropy, 𝐻(𝐵|𝐴), defined in Equation (18) 
[26], quantifies the uncertainty in variable 𝐵 given variable 𝐴. 𝐼𝐺𝐵 = ( , )  ( ) (15)

𝐼(𝐴, 𝐵) = 𝐻(𝐴) − 𝐻(𝐴|𝐵) = 𝐻(𝐵) − 𝐻(𝐵|𝐴)  (16)𝐻(𝐴) = − ∑ 𝑝(𝑥 ) 𝑙𝑜𝑔 𝑝(𝑥 ) (17)𝐻(𝐵|𝐴) = ∑ 𝑝(𝑥 ) ⋅ 𝐻(𝐵|𝐴 = 𝑥 ) (18)𝑆 = ( , )( )⋅ ( ) (19)

In order to solve the issue of asymmetric information gain ratio, where the infor-
mation gain ratio from variable 𝐴 to variable 𝐵 differs from that from variable 𝐵 to var-
iable 𝐴, in this study, a modified information gain ratio is employed as the variable rep-
resenting the causal strength between two discrete variables. Equation (19) illustrates this 
modified information gain ratio, where a higher value indicates a stronger causal relation-
ship between the considered variables. 

Following the construction of a cause-and-effect diagram between features and vari-
ables using the NOTEARS causal discovery algorithm, features that have a direct cause-
and-effect relationship with the target variable are identified. Subsequently, the selected 
features are ranked based on their causal strength, resulting in the final feature subset. 

4. Experiment Setup
The experiment aims to assess the effectiveness and universality of the proposed 

FSNT algorithm for feature selection using a public dataset. The benchmark algorithms 
employed include the XGBFS algorithm with embedded feature selection, the CSFFS fea-
ture selection algorithm based on filtering, and the RFHFS feature selection algorithm 
based on hybrid methods. Additionally, six real datasets are utilized, employing various 
mainstream classification and regression algorithms, to perform comparative experi-
ments, and evaluate the advantages and disadvantages of using the FSNT algorithm. Fig-
ure 1 presents the overall flowchart of the experiment. 

Figure 1. Overall experimental process. 
Figure 1. Overall experimental process.

4.1. Experimental Setup

The computer used in this experiment has the following basic configuration: Win-
dows 10 operating system, Intel(R) Core (TM) i7-8750 CPU @ 2.20 GHz, 8 GB RAM
(Intel, Santa Clara, CA, USA). The experiment was conducted in Python 3.8. The training
set and validation set were randomly partitioned with a ratio of 7:3.

To evaluate the performance of FSNT in feature selection for classification, three
real datasets were chosen to assess the accuracy of classification, while another three real
datasets were selected to examine the regression performance. The six real datasets used
in the study are as follows: Student-por, Student-mat, Online News Popularity, Student
Archive, Superconductivity, and TCGA Info with Grade; Student-por and Student-mat
encompass scores of secondary school students from two Portuguese schools, collected
through questionnaires and provided by [27]. Student-por is employed for regression to pre-
dict students’ final scores, which are continuous values, whereas Student-mat is utilized for
classification to predict students’ scores divided into five categories. The Online News Pop-
ularity dataset, sourced from the website (www.mashable.com, accessed on 22 June 2023)
and made available by [28], focuses on regression and aims to predict news popularity.
Student Archive, provided by [29], was developed as part of a project to identify at-risk
students early in their academic journey using machine learning technology; the dataset
encompasses three types of classification tasks (dropout, enrollment, and graduates). The
Superconductivity dataset, obtained from [30], pertains to superconducting materials and
is used for regression to predict the critical temperature. TCGA Info with Grade involves
the 20 most frequently mutated genes and three clinical features from projects. The ob-
jective is to determine whether patients exhibit specific clinical and molecular/mutation
characteristics of LGG or GBM, as provided by [31]. These datasets are derived from
practical applications and are typically employed to compare the classification performance
of feature selection results in subsequent classification learning models, thereby evaluating
the algorithm. Refer to Tables 1 and 2 for basic information on these test datasets, including
name, sample size, number of features, and number of categories.

To address the issue of data imbalance and ensure sample balance, we employed
the SMOTENC algorithm [32]. This algorithm is an enhanced version of the SMOTE
oversampling algorithm, and is capable of handling both continuous and discrete data. The
algorithm’s workflow can be described as follows:

(1) For each sample (x1, x2) belonging to a minority class label, calculate its distance from
sample points of other minority class labels in the multidimensional space. Obtain

www.mashable.com


Appl. Sci. 2023, 13, 8438 9 of 22

the k nearest neighboring points to the sample by performing the K-nearest neighbors
(KNN) algorithm on the sample points of the minority class label.

(2) Determine the sampling rate based on the proportion of each sample label type.
For sample points belonging to a minority class with a relatively small proportion
compared to other labels, randomly select a subset of samples from their k neighboring
points. These selected samples are denoted as

(
x
′
1, x

′
2

)
.

(3) For continuous data, and each selected adjacent sample from the previous step,
generate a new sample according to Equation (20):

(X1, X2) = (x1, x1) + rand(0, 1)× ∆ (20)

where rand(0, 1) represents a random number between 0 and 1, and
∆ =

{(
x
′
1 − x1

)
,
(

x
′
2 − x2

)}
.

(4) For discrete data, the new sample value is determined by selecting the discrete value
with the highest frequency of occurrence among the nearest neighbor samples.

Table 1. Classified experimental datasets.

Name Sample Size Number of Features Classification Category

Student-mat 649 33 5
Student Archive 4424 36 3

TCGA Info with Grade 839 23 3

Table 2. Regression experimental datasets.

Name Sample Size Number of Features

Student-por 649 33
Superconductivity 21,263 81

Online News Popularity 39,797 61

4.2. Evaluation Metrics

To validate the effectiveness of the FSNT method, it is crucial to employ the information
obtained through different feature reduction techniques as input for prediction models.

The performance improvement observed in prediction tasks after feature selection
serves as evidence of the method’s effectiveness. Consequently, ten popular regression
machine learning algorithms are utilized, namely: multiple linear regression [33], elastic
net regression [34], random forest [35], extra trees [36], SVM [37], gradient boosted [38],
decision tree regressor [39], AdaBoost regressor [40], Gaussian process regressor [41], and
MLP regressor [42].

For classification tasks, eight machine learning algorithms are employed: KNN [43],
SVM, decision tree, random forest, Gaussian naive Bayes [44], neural network [45], logistic
algorithm [46], and AdaBoost [47]. To evaluate the regression performance, the following
indicators are used:

• Mean absolute error (MAE)

This indicator is the expected value of absolute error loss

MAE
(

y,
∧
y
)
=

1
n∑n

i=1|yi − ŷi| (21)

Root of square error or root of mean square error (RMSE), this indicator corresponds
to the expectation of square (quadratic) error.

RMSE
(

y,
∧
y
)
=

√
1
n∑n

i=1‖yi − ŷi‖
2
2 (22)
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In order to evaluate the classification performance, the following indicators are used.
In a binary classification problem where instances are classified into positive or negative
classes, the classification process can result in the following four scenarios: (1) when an
instance belongs to the positive class and is correctly predicted as positive, it is considered
a true positive (TP); (2) if an instance is positive but is incorrectly predicted as negative, it is
a false negative (FN); (3) if an instance is negative but is erroneously predicted as positive,
it is a false positive (FP); (4) when an instance belongs to the negative class and is accurately
predicted as negative, it is a true negative (TN).

Accuracy is defined as the ratio of the number of samples correctly classified by the
classifier to the total number of samples in a given test dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(23)

Precision is the ratio of the number of positive cases correctly classified to the number
of instances classified as positive cases. It measures the accuracy of the algorithm.

Precision =
TP

TP + FP
(24)

To assess the strengths and weaknesses of various algorithms, the concept of the F1
score is introduced, which combines precision and recall to provide an overall evaluation;
it integrates the outcomes of micro-average precision and micro-average recall, where 1
represents the optimal model output, while 0 represents the poorest model output:

F1 = 2× Precision× Recall
Precision + Recall

(25)

In order to effectively measure the precision value for multiple classification targets,
the micro-average precision is employed as the methodology. Firstly, the cumulative
number of true positive (TP) and false positive (FP) predictions across all categories is
computed. Subsequently, the precision and recall rate are calculated using these aggregated
counts, as illustrated in Formula (26):

Precision =
TP1 + TP2 · · · TPn

TP1 + FP1 + · · · TPn + FPn
(26)

In addition to the aforementioned performance indicators, the effectiveness of data
mining methods can also be evaluated by assessing the explained variance ratio. The
explained variance ratio is defined as the ratio of the sum of variances of the selected
features to the sum of variances of all features [48]. The calculation process is illustrated by
the following formula:

R =
∑k

i=1 var(Ti)

∑n
i=1 var(Ti)

(27)

where n represents the total number of features reconstructed by feature selection, k denotes
the number of selected features, and Var(Ti) represents the variance of the i feature in
the selected feature. A good feature selection method aims to achieve a high explanatory
variance ratio while utilizing as few features as possible.

4.3. Analysis of Experimental Results of Classified Datasets with Different Feature Numbers

Figure 2 displays the average classification accuracy achieved by five feature selection
algorithms (CSFFS, XGBFS, RFHFS, Baseline, and FSNT) along with eight classification
algorithms (KNN, SVM, decision tree, random forest, Gaussian naive Bayes, neural network,
logistic algorithm, and AdaBoost) on the Student Archive dataset. The x-axis represents
the number of selected features (K), while the y-axis represents the average precision,
average F1 score, and average accuracy obtained by each feature selection method. The
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black horizontal line represents the values obtained without using any feature selection
algorithm. The comparison includes the FSNT algorithm and the three other feature
selection algorithms, ranging from selecting 4 to 20 features.
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For the Student Archive dataset, the FSNT algorithm outperforms the other three
algorithms in terms of F1 score, accuracy, and precision when k ≤ 8. It achieves the
maximum values at k = 20, surpassing XGBFS in F1 score and slightly trailing behind
the CSFFS method in precision. Moreover, the FSNT algorithm also outperforms other
methods in accuracy.

Regarding the explanatory variance ratio chart for student achievement, the x-axis
represents the number of selected features (k), while the y-axis represents the explanatory
variance ratio obtained by each feature selection method. Both the CSFFS and FSNT
methods exhibit significant superiority over the other two methods when k = 16. When the
total number of features is 36, the FSNT method reaches a variance ratio exceeding 90% at
k = 20, indicating the retention of the most information.

Figure 3 illustrates the feature selection algorithm ranging from 4 to 20 features. For
the TCGA Info with Grade dataset, the FSNT algorithm initially falls behind the other
three algorithms in terms of F1 score, accuracy, and precision from K ≥ 6 to 16. However,
after k = 16, the FSNT method surpasses the CSFFS and RFHFS methods in F1 score,
accuracy, and precision. At k = 20, all four methods exhibit similar performance across all
evaluation criteria.
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On the explanatory variance ratio chart of the dataset, the CSFFS and FSNT methods
outperform the other two methods when k = 8. Subsequently, the FSNT method begins to
trail behind the CSFFS method until k = 20, while all methods maintain a variance ratio
above 90%.

Figure 4 illustrates the feature selection algorithm ranging from 3 to 15 features. For
the Student-mat dataset, the FSNT algorithm achieves its highest F1 score at k = 6 before
decreasing. At k = 9 and k = 12, the FSNT algorithm performs slightly lower than the
CSFFS method but significantly outperforms the XGBFS method. At k = 15, the FSNT
algorithm, as Baseline, significantly surpasses the other three methods. In contrast, the
XGBFS method consistently lags behind the other methods from k = 3 to k = 20. The RFHFS
method initially decreases to its lowest value at k = 6, then gradually rises and approaches
the performance of the CSFFS method. The CSFFS method consistently outperforms the
XGBFS and RFHFS methods, reaching its peak at k = 9 and k = 12 before decreasing.



Appl. Sci. 2023, 13, 8438 13 of 22
Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 22 

(a) (b) 

(c) (d) 

Figure 4. Performance of different feature selection methods on Student-mat dataset. (a) F1; (b) 
precision; (c) accuracy; (d) dataset variance. 

On the whole, the CSFFS, XGBFS, RFHFS, and FSNT algorithms demonstrate their 
respective advantages in classifying different datasets, although the RFHFS algorithm ex-
hibits slightly inferior performance. However, the CSFFS algorithm solely selects features 
based on high correlation using the chi-square value, without considering feature differ-
ences or redundancy, resulting in poorer performance compared to information theory-
based feature selection algorithms such as XGBFS, RFHFS, and FSNT. Based on the three 
evaluation criteria (F1, precision, and accuracy) for the three datasets and the explained 
variance ratio of the datasets, the classification accuracy of the FSNT method surpasses 
that of the CSFFS, XGBFS, and RFHFS methods. This indicates that the FSNT method is 
capable of generating feature subsets with stronger classification abilities. 

4.4. Analysis of Experimental Results of Regression Datasets with Different Feature Numbers 
Figure 5 illustrates the average regression accuracy obtained by four feature selection 

algorithms (CSFFS, XGBFS, RFHFS, and FSNT) and ten regression algorithms (multiple 
linear regression, elastic net regression, random forest, extra trees, SVM, gradient boosted, 
decision tree regression, AdaBoost regression, Gaussian process regression, and MLP re-
gression) used on the Superconductivity dataset. The x-axis represents the number of se-
lected features (K), while the y-axis represents the average MAE and average RMSE 
achieved by each feature selection method. The black horizontal line represents the Base-
line. The FSNT algorithm and the other three feature selection algorithms were compared 
using feature subsets ranging from 6 features to 30 features. 

Figure 4. Performance of different feature selection methods on Student-mat dataset. (a) F1;
(b) precision; (c) accuracy; (d) dataset variance.

Regarding accuracy, all methods exhibit similar trends to the F1 score except for the
FSNT method. The FSNT method achieves accuracy equivalent to Baseline at k = 3 and
reaches its peak at k = 6, significantly surpassing the performance of the Baseline. For
precision, except for the CSFFS method, all other methods peak at k = 6, significantly
outperforming the performance of the Baseline, and then decrease. The CSFFS method
reaches its peak at k = 12.

On the explanatory variance ratio chart of the dataset, the FSNT method outperforms
the other three methods at k = 15, maintaining a unique variance ratio exceeding 90% and
retaining the most information.

On the whole, the CSFFS, XGBFS, RFHFS, and FSNT algorithms demonstrate their re-
spective advantages in classifying different datasets, although the RFHFS algorithm exhibits
slightly inferior performance. However, the CSFFS algorithm solely selects features based
on high correlation using the chi-square value, without considering feature differences or
redundancy, resulting in poorer performance compared to information theory-based fea-
ture selection algorithms such as XGBFS, RFHFS, and FSNT. Based on the three evaluation
criteria (F1, precision, and accuracy) for the three datasets and the explained variance ratio
of the datasets, the classification accuracy of the FSNT method surpasses that of the CSFFS,
XGBFS, and RFHFS methods. This indicates that the FSNT method is capable of generating
feature subsets with stronger classification abilities.
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4.4. Analysis of Experimental Results of Regression Datasets with Different Feature Numbers

Figure 5 illustrates the average regression accuracy obtained by four feature selection
algorithms (CSFFS, XGBFS, RFHFS, and FSNT) and ten regression algorithms (multiple
linear regression, elastic net regression, random forest, extra trees, SVM, gradient boosted,
decision tree regression, AdaBoost regression, Gaussian process regression, and MLP
regression) used on the Superconductivity dataset. The x-axis represents the number
of selected features (K), while the y-axis represents the average MAE and average RMSE
achieved by each feature selection method. The black horizontal line represents the Baseline.
The FSNT algorithm and the other three feature selection algorithms were compared using
feature subsets ranging from 6 features to 30 features.
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On the Superconductivity dataset, the MAE and RMSE curves of XGBFS, RFHFS,
and FSNT algorithms exhibit alternating increases with the number of selected features,
whereas the MAE and RMSE curves of the CSFFS method initially rise and then decline,
reaching their peak at k = 12, followed by a decrease with the increasing number of features.
However, the final MAE and RMSE values for CSFFS are still larger than those of other
methods. Regarding the MAE value, the XGBFS, RFHFS, and FSNT algorithms show slight
increases as the number of features increases. When k ≤ 18, the three methods exhibit
minimal differences compared to the MAE value of the Baseline and display horizontal
oscillation. At k = 24, the maximum MAE value for the three algorithms surpasses the
Baseline, after which it decreases. Finally, when k = 30, the three methods converge to
the MAE value of the Baseline. Concerning the RMSE value, XGBFS, RFHFS, and FSNT
algorithms demonstrate an alternating oscillation pattern below the horizontal line of the
benchmark as the number of selected features increases. At k = 24, the RMSE value reaches
its peak before decreasing. Only the RFHFS algorithm eventually matches the RMSE value
of the Baseline, while the FSNT algorithm slightly surpasses RFHFS and XGBFS slightly
surpasses FSNT.

As shown in Figure 6, on the Online News Popularity dataset, the MAE and RMSE
values of the RFHFS and FSNT algorithms exhibit curves that remain below the curve
obtained by the Baseline throughout the entire process. Additionally, at k = 18, these curves
reach their lowest point before gradually increasing and returning to the horizontal line
corresponding to the absence of feature selection at k = 30. In contrast, the MAE curve of
the XGBFS algorithm oscillates around the horizontal line, reaching its peak at k = 18 and
subsequently decreasing. Moreover, for k ≤ 12, its RMSE curve is lower than the curves of
the other three algorithms, after which it gradually rises. At k = 18, it surpasses the RMSE
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curve of the RFHFS and FSNT algorithms, and, from k ≥ 24 onwards, the three curves
converge. The CSFFS algorithm displays significant variation in its MAE and RMSE curves,
continually rising until k ≤ 24. Notably, between k = 18 and k = 24, the curves experience a
sharp increase, reach their maximum, and then decline. Finally, at k = 30, they return to the
horizontal line representing the Baseline.
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As shown in Figure 7, the FSNT algorithm and the other three feature selection algo-
rithms involved in the comparison range from selecting 3 features to selecting
15 features. On the Student-por dataset, with the increase in feature selection number,
the MAE and RMSE curves of the CSFFS, XGBFS, RFHFS, and FSNT feature selection algo-
rithms show an alternating oscillation state, and the whole process is above the horizontal
line. The MAE and RMSE curves of the XGBFS algorithm are generally below the curves
of the other three algorithms, rising to the maximum MAE and RMSE at k = 9, and then
falling to near the horizontal line. The MAE curve of the RFHFS algorithm reach the first
peak at k = 6, reach the second peak at k = 12, and then continue to decline. The RMSE
curve of RFHFS reaches the maximum at k = 6 and then decreases slowly until it rapidly
decreases to the minimum at k = 30. The MAE curve of CSFFS is similar to the RMSE curve,
reaching the maximum value at k = 6 and then decreasing slowly. Similarly, the MAE curve
of the FSNT algorithm is similar to the RMSE curve. When k = 6, it drops to the lowest
point, then rises to the highest point at k = 9, and then drops again. Finally, when k = 15,
the three algorithms CSFFS, RFHFS, and FSNT descend to similar MAE and RMSE values.

Since the feature selection algorithm used for both the Student-por dataset and the
Student-mat dataset selects the same features, and the explained variance ratio of the
Student-mat dataset has been previously presented, there is no need to reiterate the ex-
plained variance ratio for the Student-por dataset.

As shown in Figure 8, Turning to the variance ratio of the Superconductivity dataset,
the x-axis represents the number of selected features (k), while the y-axis represents the
variance ratio obtained through the interpretation of each feature selection method. CSFFS,
XGBFS, RFHFS, and FSNT all demonstrate an increase in variance ratio as the number
of features increases. Among them, the RFHFS algorithm consistently yields the lowest
variance ratio throughout the entire process, with the XGBFS algorithm also lagging behind
the other two algorithms. Conversely, the CSFFS algorithm achieves the highest variance
ratio. When the feature selection algorithm employs 81 features and k = 30, the explanatory
variance ratio ranges between 0.7 and 0.8, indicating that it retains the most information.
Similarly, when k = 30, the explanatory variance ratio of the FSNT algorithm surpasses 0.7,
positioning it as the second-best method for information retention.
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Regarding the variance ratio of the Online News Popularity dataset, CSFFS, XGBFS,
RFHFS, and FSNT exhibit an increase in variance ratio as the number of features increases.
Throughout the entire process, the RFHFS algorithm consistently produces the lowest
variance ratio, with the XGBFS algorithm also significantly trailing the other two algorithms.
On the other hand, both the CSFFS and FSNT algorithms consistently maintain the same
explanatory variance ratio, significantly surpassing the other algorithms. When the feature
selection algorithm incorporates 61 features and k = 30, the explanatory variance ratio for
both algorithms exceeds 0.8, meaning that, even with only 50% of the feature number used,
more than 80% of the information is retained.

Overall, CSFFS, XGBFS, RFHFS, and FSNT exhibit distinct advantages in the classifica-
tion results across different datasets, with RFHFS showing a slightly inferior performance.
However, the CSFFS algorithm solely relies on selecting features based on high correlation
according to the chi-square value, without considering feature differences or redundancy.
Consequently, it performs worse compared to other feature selection algorithms based on
information theory, such as XGBFS, RFHFS, and FSNT. When evaluating the three datasets
using the two criteria of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE),
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along with considering the explained variance ratio, the classification accuracy of the FSNT
method surpasses that of CSFFS, XGBFS, and RFHFS. This demonstrates that the FSNT
method can obtain a feature subset with enhanced regression capabilities.

4.5. Analysis of Experimental Results of Different Datasets with Different Feature
Selection Methods

In the classification evaluation, precision is chosen as the evaluation metric, indicating
the proximity of the value to 1 corresponds to higher classification accuracy. The bold font
in Table 3 represents instances where the precision value of FSNT is equal to or greater
than that of other feature selection algorithms. The performance of four feature selection
methods (CSFFS, XGBFS, RFHFS, and FSNT), along with a non-Baseline feature selection
algorithm, is compared using eight classification algorithms. Across most datasets, once
the number of features reaches 20, the explanatory variance ratio exceeds 90%. Further
increasing the number of features does not result in a significant improvement in the
explanatory variance ratio. Consequently, these feature selection methods all choose
20 features and their classification accuracy is compared in combination with different
classifier ratios. This finding aligns with the analysis presented in literature [49].

Table 3. Precision values of datasets based on different feature selection methods.

Datasets
Feature

Selection
Method

KNN SVM DT RF Ada LA GNB NN

Student-
mat

CSFFS 0.7128 0.6658 0.6991 0.6639 0.6982 0.6658 0.7972 0.8016
XGBFS 0.7457 0.6658 0.7098 0.7085 0.6610 0.6658 0.7620 0.8355
RFHFS 0.7233 0.6658 0.7147 0.6648 0.7223 0.6658 0.8070 0.6630
FSNT 0.6951 0.7158 0.6658 0.6658 0.6542 0.6658 0.8172 0.7858

Baseline 0.7371 0.6658 0.7265 0.6648 0.6768 0.7137 0.7618 0.7403

Student
Archive

CSFFS 0.6820 0.7169 0.6849 0.7487 0.7245 0.7318 0.6962 0.7450
XGB 0.6930 0.7045 0.6773 0.7427 0.7072 0.7184 0.6894 0.7512

RFHFS 0.6475 0.7036 0.6848 0.7497 0.7240 0.7275 0.6712 0.7452
FSNT 0.6814 0.7103 0.7005 0.7498 0.7269 0.7025 0.7081 0.7227

Baseline 0.6348 0.7129 0.6965 0.7540 0.7244 0.7365 0.6906 0.7371

TCGA
Info with

Grade

CSFFS 0.8446 0.7470 0.8050 0.8487 0.8660 0.8867 0.8540 0.8576
XGB 0.8446 0.7470 0.7867 0.8471 0.8660 0.8867 0.8540 0.8924

RFHFS 0.8199 0.7420 0.8145 0.8546 0.8660 0.8867 0.8509 0.8867
FSNT 0.8199 0.7420 0.8166 0.8437 0.8660 0.8867 0.8540 0.8924

Baseline 0.8214 0.7424 0.8101 0.8336 0.8660 0.8867 0.8476 0.8924

Table 3 presents the precision results of three datasets across eight classifiers: KNN,
SVM, decision tree, random forest, Gaussian naive Bayes, neural network, logistic algo-
rithm, and AdaBoost. The precision values in the table are reported with four decimal
places. The bold values within each row indicate instances where FSNT outperforms the
other three methods.

Regarding the Student-mat dataset in Table 3, FSNT achieves the highest precision
value under the SVM classification algorithm, surpassing the other three feature selection
algorithms by 5%. Conversely, under the logistic algorithm, CSFFS, XGBFS, RFHFS, and
FSNT achieve the same optimal precision value, but it is 4.72% lower compared to the sce-
nario without a feature selection algorithm. Additionally, when considering the Gaussian
naive Bayes algorithm, the FSNT algorithm once again achieves the highest precision value,
demonstrating the best classification accuracy among the student performance datasets.
Notably, the FSNT algorithm outperforms the CSFFS algorithm by 2%, the XGBFS algo-
rithm by 5.52%, the RFHFS algorithm by 1.02%, and the non-feature selection algorithm by
5.54%, showcasing its distinct advantages.

For the Student Archive dataset, the precision value of four of the eight classification
algorithms for FSNT feature selection is the best. Among them, under the random forest
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and AdaBoost classification algorithms, the advantages of the FSNT algorithm are not
obvious, but slightly better than CSFFS, XGBFS, and RFHFS. Under the decision tree
classification algorithm, the notes algorithm is 1.57% higher than RFHFS, 1.56% higher
than CSFFS, and 2.32% higher than XGBFS. Compared with other algorithms, the notes
algorithm has advantages. Under Gaussian naive Bayes classification algorithm, the notes
algorithm is 3.69% higher than RFHFS, 1.19% higher than CSFFS, and 1.87% higher than
XGBFS. In the Student Archive dataset, the notes algorithm is significantly higher than the
RFHFS algorithm, chi square filter, and XGBFS.

For the TCGA Info with Grade dataset, CSFFS, XGBFS, RFHFS, and FSNT achieved
the same optimal precision under the SVM classification algorithm, logistic algorithm,
and AdaBoost classification algorithm. Under the neural network classification algorithm,
XGBFS and FSNT achieved the same optimal precision, slightly higher than RFHFS by
0.57% but significantly higher than CSFFS by 3.47%. In the decision tree classification, the
precision obtained by FSNT is higher than that of the other three algorithms, which is
significantly higher than that of the XGBFS algorithm by 2.99%, slightly higher than that of
CSFFS and RFHFS, and also higher than the Baseline, with the best performance. In the
TCGA Info with Grade dataset, the FSNT feature selection algorithm is not obvious but it
still has advantages.

In general, the proposed FSNT algorithm performs better than other algorithms
on average. Two of the three datasets have obvious advantages. The only algorithm
competitive with the FSNT algorithm is the RFHFS algorithm. The experiment shows that
the FSNT algorithm performs better in the student performance dataset and the Student
Archive dataset than in the TCGA Info with Grade dataset. It can be concluded that the
FSNT algorithm is more suitable for small sample datasets. In the student performance
dataset, the highest classification precision value was 81.72%, which was determined by
FSNT and Gaussian naive Bayes. In the Student Archive dataset, the highest classification
precision value was 75.12%, which was determined by XGBFS and neural networks. In
the TCGA Info with Grade dataset, the highest classification precision value was 89.24%,
which was determined by FSNT and neural networks.

When using RMSE as the evaluation index for regression, a smaller difference between
the predicted and real values indicates better performance. The bold font in Table 4
represents the RMSE values that are the same or smaller compared to FSNT and other
feature selection algorithms. The performance of four feature selection methods, namely
CSFFS, XGBFS, RFHFS, and FSNT, is compared with a feature selection algorithm not used
as a Baseline, using 10 regression algorithms. In the dataset, when the number of features
reaches 30, it can be observed from the above analysis that the explained variance ratio
exceeds 80%. However, despite increasing the number of features, the explained variance
ratio does not show significant improvement. Therefore, all these feature selection methods
select 30 features.

Table 4 presents a summary of the RMSE values for the three datasets across
10 regression algorithms, which include linear regression, elastic net regression, random
forest, extra trees, SVM, gradient boosted, decision tree regression, AdaBoost regression,
Gaussian process regression, and MLP regression. The RMSE values are reported with four
decimal places. The bold value in each row of the table indicates that FSNT achieves the
same or better performance compared to the other three methods.

In Table 4, for the Student-por dataset, FSNT achieved the lowest RMSE under the
elastic net regression algorithm, slightly surpassing the RMSE values of other feature
selection algorithms and the Baseline by 1.3%. The FSNT algorithm exhibits a significantly
lower RMSE value compared to CSFFS and RFHFS under the random forest regression
algorithm, by 4.48%. The FSNT algorithm demonstrates superior regression performance
compared to CSFFS and RFHFS by 2.57% under the SVM regression algorithm, and it also
slightly outperforms RFHFS and the Baseline. The FSNT algorithm exhibits significant
advantages under the decision tree regression algorithm. Its RMSE value is 14.13% lower
than that of RFHFS, 10.77% lower than that of CSFFS, and 2.43% lower than that of XGBFS
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and the Baseline. The RMSE value of the FSNT algorithm remains the lowest among
all feature selection algorithms under the Gaussian process regression algorithm, with a
difference of approximately 2.8%.

Table 4. RMSE values of datasets based on different feature selection methods.

Dataset
Feature

Selection
Method

LR ENR RF ET SVM GBR DTR ABR GPR MLLPR

Student-
por

CSFFS 2.8401 3.0566 3.0000 3.0553 2.9342 2.8461 3.9514 2.9749 3.1705 3.1648
XGBFS 2.8081 3.0566 2.9088 2.9186 2.8815 2.7792 3.6470 2.9224 3.1947 2.9115
RFHFS 2.8374 3.0670 3.0013 3.0578 2.9390 2.8909 4.0737 3.1024 3.1925 2.9329
FSNT 3.0641 3.0126 2.8695 3.1101 2.8602 3.0243 3.5585 3.1701 3.1086 3.1230

Baseline 2.8081 3.0566 2.9088 2.9186 2.8815 2.7792 3.6470 2.9224 3.1947 2.9115

Online
News
Popu-
larity

CSFFS 0.1038 0.1035 0.1114 0.1045 0.5056 0.1158 0.1391 0.1350 0.1421 2.0169
XGBFS 0.1029 0.1035 0.1116 0.1048 0.5056 0.1154 0.1335 0.1541 0.1595 1.7150
RFHFS 0.1035 0.1035 0.1115 0.1047 0.5056 0.1185 0.1338 0.1411 0.1633 1.8974
FSNT 0.1041 0.1035 0.1112 0.1050 0.5056 0.1186 0.1462 0.1317 0.1409 2.0082

Baseline 0.1035 0.1035 0.1120 0.1046 0.5056 0.0179 0.1313 0.1561 0.1158 2.1284

Supercon-
ductivity

CSFFS 0.1062 0.1009 0.0311 0.0263 0.0789 0.0300 0.0346 0.0343 0.0526 0.0625
XGBFS 0.1800 0.1009 0.0414 0.0245 0.0698 0.0365 0.0480 0.0420 0.0260 0.0544
RFHFS 0.0112 0.1009 0.0349 0.0232 0.0805 0.0313 0.0508 0.0444 0.0273 0.0523
FSNT 0.0110 0.1009 0.0450 0.0225 0.0687 0.0428 0.1436 0.0466 0.0391 0.0363

Baseline 0.0494 0.1009 0.0375 0.0260 0.0748 0.0321 0.0524 0.0331 0.0408 0.0484

For the student performance dataset, FSNT achieved the lowest RMSE under the elastic
net regression algorithm, slightly surpassing the RMSE values of other feature selection
algorithms and the Baseline by 1.3%. The FSNT algorithm exhibits a significantly lower
RMSE value compared to CSFFS and RFHFS by 4.48% under the random forest regression
algorithm. The FSNT algorithm demonstrates superior regression performance compared
to CSFFS and RFHFS by 2.57% under the SVM regression algorithm, and it also slightly
outperforms RFHFS and the Baseline. The FSNT algorithm exhibits significant advantages
under the decision tree regression algorithm. Its RMSE value is 14.13% lower than that
of RFHFS, 10.77% lower than that of CSFFS, and 2.43% lower than that of XGBFS and the
Baseline. The RMSE value of the FSNT algorithm remains the lowest among all feature
selection algorithms under the Gaussian process regression algorithm, with a difference of
approximately 2.8%.

For the Online News Popularity dataset, the RMSE value of FSNT, along with the
other three feature selection algorithms, is the same as the RMSE of the Baseline under the
elastic net regression algorithm and SVM regression algorithm. The RMSE value of the
FSNT algorithm is slightly lower than that of CSFFS, XGBFS, and RFHFS under the random
forest regression algorithm. The FSNT algorithm demonstrates significant advantages
under the AdaBoost regressor regression algorithm. Its RMSE value is 6.02% lower than
RFHFS, slightly lower than CSFFS, and 14.35% lower than XGBFS and the Baseline. Among
the three feature selection algorithms under the Gaussian process regression algorithm, the
FSNT algorithm achieves the smallest RMSE value, which is approximately 13.72% lower
than the Baseline.

In the Superconductivity dataset, the FSNT algorithm achieves an exceptionally low
RMSE compared to other methods. The RMSE of FSNT is 0.0110, while CSFFS has an RMSE
of 0.1062 and XGBFS has an RMSE of 0.1800, making FSNT only one-tenth of the magnitude
of the other methods. Only RFHFS approaches the performance of FSNT, but the RMSE
value of the Baseline is 0.0494, making FSNT 77.73% lower than the Baseline. Under the
elastic net regression algorithm, the RMSE values of the four feature selection algorithms
and the Baseline are the same value. Under the extra trees regression algorithm, FSNT
achieves an RMSE value that is 8.16% lower than that of XGBFS, which is comparable to
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RFHFS, while CSFFS has a higher value than the Baseline. In the SVM regression algorithm,
only FSNT and XGBFS have lower RMSE values than the Baseline, with FSNT having the
lowest value. Under the MLP regressor regression algorithm, the RMSE value of the FSNT
algorithm is significantly lower compared to CSFFS, XGBFS, and RFHFS, and it is the only
algorithm with a lower value than the Baseline.

Overall, the proposed FSNT algorithm performs exceptionally well across all datasets
and exhibits clear advantages. The RFHFS algorithm is the only competitor to the FSNT
algorithm. The FSNT algorithm achieves an average reduction of 54.02% in the RMSE
value for regression prediction by selecting the regression algorithm with the lowest RMSE
in the dataset and averaging their results. The experiment demonstrates that the FSNT
algorithm outperforms other algorithms in the regression dataset, suggesting its suitability
for regression analysis.

5. Conclusions

Feature selection for high-dimensional data aims to maximize prediction accuracy by
identifying the smallest possible subset of features. However, traditional methods suffer
from drawbacks such as excessive parameter adjustments and significant variations in
results among different classifiers. In this study, causality is introduced into the domain
of feature selection. The FSNT algorithm is employed to identify causal relationships
among features in high-dimensional datasets, constructing a causality diagram to guide
the selection of features based on their causal strength. Three distinct feature selection
algorithms, namely CSFFS, XGBFS, and RFHFS, are chosen, with the absence of a feature
selection algorithm serving as the Baseline. The study employs six real-world datasets
with varying sizes and domains, encompassing eight classification algorithms and ten
regression algorithms.

The results indicate that the FSNT algorithm effectively eliminates redundant fea-
tures in the three classification datasets and demonstrates superior overall classification
performance compared to other feature selection algorithms. Among the three datasets,
two datasets exhibit notable advantages, and the RFHFS algorithm emerges as the sole
competitive algorithm to the FSNT algorithm. Across the three regression datasets, the
FSNT algorithm performs exceptionally well and demonstrates clear advantages in regres-
sion evaluation for all datasets. The FSNT algorithm exhibits an average precision value
improvement of 82.03% compared to other algorithms and achieves a significant reduction
in the RMSE value. These results suggest that the FSNT algorithm is highly suitable for
regression datasets. Extensive experiments have demonstrated the superior performance
of the FSNT compared to other mainstream feature selection algorithms. However, it is
observed that the running speed of the algorithm decreases when there is a large num-
ber of samples. Consequently, future research will focus on algorithm optimization and
improving running speed to propose a more effective feature selection method.
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