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Abstract: Non-destructive assessment of fruits for grading and quality determination is essential
to automate pre- and post-harvest handling. Near-infrared (NIR) hyperspectral imaging (HSI) has
already established itself as a powerful tool for characterizing the quality parameters of various fruits,
including apples. The adoption of HSI is expected to grow exponentially if inexpensive tools are
made available to growers and traders at the grassroots levels. To this end, the present study aims to
explore the feasibility of using a low-cost visible-near-infrared (VIS-NIR) HSI in the 386–1028 nm
wavelength range to predict the moisture content (MC) and pH of Pink Lady apples harvested at
three different maturity stages. Five different machine learning algorithms, viz. partial least squares
regression (PLSR), multiple linear regression (MLR), k-nearest neighbor (kNN), decision tree (DT),
and artificial neural network (ANN) were utilized to analyze HSI data cubes. In the case of ANN,
PLSR, and MLR models, data analysis modeling was performed using 11 optimum features identified
using a Bootstrap Random Forest feature selection approach. Among the tested algorithms, ANN
provided the best performance with R (correlation), and root mean squared error (RMSE) values
of 0.868 and 0.756 for MC and 0.383 and 0.044 for pH prediction, respectively. The obtained results
indicate that while the VIS-NIR HSI promises success in non-destructively measuring the MC of
apples, its performance for pH prediction of the studied apple variety is poor. The present work
contributes to the ongoing research in determining the full potential of VIS-NIR HSI technology in
apple grading, maturity assessment, and shelf-life estimation.

Keywords: hyperspectral imaging; apple; pH; moisture content; machine learning

1. Introduction

Apple is one of the most widely grown fruits around the world. Over the past decade,
there has been a remarkable increase in apple production worldwide. Between 2010 and
2020, worldwide apple production grew from 71.19 million metric tons to 86.44 million
metric tons [1]. This edible fruit is a good source of antioxidants such as ascorbic acid and
polyphenols, which are known to improve human health. Apple is also high in vitamins,
minerals, and sugars [2–4]. The fruit grade/quality is determined by various factors,
including mass, pH, firmness, soluble solids content (SSC), color, moisture, and internal
browning [5]. Most of these parameters are also critical in determining apple ripeness
and/or optimal harvest times. Among them, moisture content (MC) is the most important
quality attribute that directly affects the fruit’s shelf life [6].

Unfortunately, the conventional methods for evaluating the aforementioned quality
traits are destructive, subjective, time-consuming, and/or prone to operational errors.
Therefore, identifying intelligent and non-destructive alternative technologies for assessing
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apple quality is of great interest to the industry [7]. Over the past decade, hyperspectral
imaging (HSI) has shown promising performance as a reliable tool for the safety and
quality assessment of agricultural products [8,9]. This non-destructive method combines
the features of traditional imaging and spectroscopy to simultaneously analyze spatial
and spectral information of a sample, making it an invaluable tool for assessing quality
indicators of fruits, vegetables, legumes, oilseeds, and grains [7]. For example, scholars
previously explored the capability of HSI in assessing the MC of various fruits such as
strawberries [10], mango [11], tomatoes [12], potatoes [13], mushrooms [14], and persim-
mons [15]. Moreover, scientists implemented HSI for pH prediction of various fruits such
as grapes [16], apples [17], peaches [18], kiwifruit [19], cherries [20] and strawberries [21].

Despite several research studies on the use of HSI to monitor fruit quality, one of the
main challenges in implementing this technology in the industry has been the enormity of
the datasets and the cumbersome analysis that is required to glean useful information from
them. One potential solution to overcome this challenge may be the implementation of state-
of-the-art machine learning algorithms [22–24]. Over the past few years, machine learning
algorithms have become increasingly popular in classification and prediction research, with
techniques such as k-nearest neighbor (kNN), artificial neural networks (ANN), decision
trees (DT), and convolutional neural networks (CNN) being widely employed [25–32].

The present work aims to assess apples’ pH and MC variations at different maturity
stages. Unlike the majority of hyperspectral data analysis models that only utilize partial
least squares regression (PLSR) and/or multiple linear regression (MLR), herein, we explore
the performance of three additional machine learning algorithms (i.e., kNN, DT, and ANN)
in predicting the industry-accepted quality parameters to contribute to the ongoing effort
in resolving data analysis challenge of hyperspectral data. Considering we previously
demonstrated the capability of visible-near-infrared (VIS-NIR) HSI technology for apple
firmness, SSC [33], ripening levels [34], phenolic content, antioxidant activity, and ascorbic
acid prediction [4,35], the present work contributes to revealing the full potential of VIS-NIR
HSI in apple grading, maturity assessment, and shelf life estimation. Such a tool has the
potential to enhance sustainable apple production through improved quality assessment,
waste reduction, and increased energy efficiency in data processing.

2. Material and Methods
2.1. Apple Samples

One hundred Pink Lady apples harvested at three different stages of maturity were
selected (in total, 300 apples) for HSI acquisition. The first harvest date was 10th October
2019 (maturity stage 1), and the subsequent harvesting took place on the 7th day (maturity
stage 2) and 14th day (maturity stage 3) after that. The apples selected for spectral data
collection were sound without any damage or deterioration on their exterior surface. Their
soundness was confirmed via visual inspection by a panel of experts. The collected apples
were individually labeled and stored at 4 ◦C prior to being imaged. Hyperspectral image
acquisition of all samples was completed within two weeks of harvesting.

2.2. Standard Measurements for Quality Attributes
2.2.1. pH Measurement

In order to determine apple pH values, sample juices were extracted and analyzed
using a pH meter (Hanna HI 2002-02, Woonsocket, RI, USA).

2.2.2. Moisture Content Measurement

For MC measurement, 100 g of flesh fruit from 100 different samples for each maturity
stage was placed in an oven (Memmert UN55, Schwabach, Germany) at 70 ◦C for 48 h.
MCs (wet basis) were obtained by using Equation (1) [36].

Mc =
Wi −W f

Wi
× 100 (1)
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where Mc represents moisture content (%), Wi indicates the initial mass (g), and Wf repre-
sents the product’s final mass (g).

2.3. Data Collection
2.3.1. Hyperspectral Imaging System

The apple samples were imaged using a push-broom hyperspectral camera (PIKA-L,
Resonon Inc., Bozeman, MT, USA). The HSI system was comprised of five components,
including a PIKA HSI camera, a supporting tower, a motion platform, an illumination
source, and a system controller. This device collected reflectance data across 300 spectral
bands, ranging from 386–1028 nm wavelengths, producing a spectral resolution of 2.1 nm,
with a digital yield of 12 bits. The target lens, with a focal length of 17 mm, was specifically
tailored for NIR and VIS-NIR spectra. Lighting conditions were maintained consistent
with the help of four 15 W 12 V bulbs positioned symmetrically around the lens. The
camera was set up 50 cm over the linear movement stage, generating a spatial resolution of
approximately 50 pixels per square millimeter.

Prior to initiating data collection, a dark calibration process was carried out with
several dark frames captured while the lens cover was kept shut. These readings served
to counteract the dark current noise during actual measurements. A Teflon piece (K-Mac
Plastics, Wyoming, MI, USA) was utilized to ensure white balance. The illumination system
was turned on for a half-hour prior to capturing the images to bring the system to a stable
state. The spectral data were then derived from the processed images [33]

2.3.2. Image Analysis

Image segmentation and selection of a region of interest (ROI) is an important step in
the analysis of HSI data. Automatic thresholding (Otsu’s method) was initially performed to
segment the apples from their background, but the performance was unreliable. Therefore,
an alternative approach based on the calculation of standard deviations of the spectral
reflectance values of all pixels was adopted. The details of this segmentation procedure can
be found in [33].

2.4. Data Pre-Processing, Feature Selection and Cross-Validation

All measured pH and MC values were normalized for training and testing. Spectral
reflectance, pH, and MC data were normalized using the Z-score normalization method
according to Equation (2):

x′i =
xi − x

σx
(2)

where xi, x, and σx represent the value of the ith observation, mean, and the standard
deviation of the x-variable, respectively.

The feature selection process in this study was conducted using embedded methods,
as described in [33]. Specifically, the Bootstrap Random Forest technique was employed as
a machine learning method for bagging ensemble learning. This involved training multiple
Random Forest trees on different subsets of observations using bootstrap sampling, where
each tree is trained on a different subset of observations. The remaining observations,
known as the out of bag (OOB) sample, are then used to estimate the model’s performance.
The final model predictions are generated by averaging the outcomes of all the trees. This
process is designed to reduce variance and improve the model’s accuracy.

To identify the most important features for predicting pH and MC values, 100 dif-
ferent spectrum features were extracted for each wavelength at each maturity stage. The
features that best estimated each output value were then selected. Model performance
was evaluated using k-fold cross-validation, where k = 10 owing to the 10 subsets in our
dataset. The training set was split into 10 sub-sets, with one subset reserved for testing and
the other nine used for training in each iteration. This process was repeated 10 times to
ensure the robustness of the results [37].
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2.5. Machine Learning Algorithms and Statistical Methods

This section describes the models used for analyzing the VIS-NIR HSI data. Python
3.11 software was employed to make predictions using machine learning algorithms on
a computer equipped with a core i5 CPU running at 3.2 GHz and 12 GB of memory. The
dataset consisted of measurements for 100 different apples across the three maturity stages.
The entire dataset was randomly divided into 70% spectra for training and 30% for testing
purposes for all models.

2.5.1. Artificial Neural Network

ANN is a machine-learning tool that can be utilized for pattern recognition. Herein,
multilayer feed-forward neural network (MFFNN) structure was used as an ANN tool
to predict the desired parameters. A typical MFFNN structure involves an input layer,
multiple hidden layers, and an output layer. Our model architectures consisted of one-to-
three hidden layers. The number of neurons ranged from 5 to 90 in each hidden layer to
determine the most reliable ANN structure. Different activation functions, viz. hyperbolic
tangent (tanh), logarithmic sigmoid (Logsig), linear (Purelin), and Gaussian, were used to
update the network’s weights.

The developed model included an input layer fed by 11 features, two hidden layers,
and an output layer. The first hidden layer had 10 computational units (neurons) with
the sigmoid activation function. The second hidden layer had 70 neurons with the linear
activation function. The ANN model had a layer configuration of 11-10-70-2. However,
only the best-performing model’s outcomes have been presented in the results section.

A total of 500 epochs were used for the analysis, and the activation functions tanh-tanh
were applied to both pH and MC output parameters. Analyses were conducted using a total
of 500 epochs. The tanh-tanh activation function was applied to both output parameters
to capture the complex non-linear patterns within the data: MC and pH. This activation
function maps input values within a wide range to a bounded output between −1 and +1,
offering non-linearity, continuous differentiability, and confined outputs.

The learning rate, a crucial factor in ANN models, determines the pace at which the
model assimilates information and adjusts its parameters during training. It remarkably
impacts the model’s convergence and ability to find an optimal solution. A trial-and-error
approach was used to identify the ideal learning rate for the neural network. Different
learning rates (0.001, 0.01, 0.1, 0.2, and 0.3) were explored to pinpoint the rate that led to
the most reliable performance. After training iterations, it was found that a learning rate of
0.01 provided the best performance. This value expedited smooth convergence during the
training process and resulted in superior prediction accuracy.

2.5.2. Decision Tree

As a supervised learning algorithm, a DT works on a set of tree-like decision rules and
their various consequences to classify/predict the desired value of a dependent variable [38].
In fact, the algorithm employs conditional control rules to make a prediction. The DT
regression mechanism is described in detail elsewhere [39]. The numbers of split trees in
the DT models were 2 and 5 for pH and MC, respectively.

2.5.3. k-Nearest Neighbor Algorithm

The kNN model is an important non-parametric supervised proximity-based machine
learning predictive model. Initially, the algorithm considers all of the observation values
as a cluster. The clusters then progressively combine to create new clusters. In kNN
regression, the dependent variable is usually obtained by averaging the dependent values
of k nearest neighbors in the training models. The Euclidean distance method is commonly
implemented to identify the closest neighbors [40,41]. More details on the principles of
kNN regression can be found elsewhere [42]. In this work, k was set to 10 for both pH and
MC predictions.
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2.5.4. Multiple Linear Regression

MLR is a common regression method to predict a linear relationship between depen-
dent and independent variables. This technique implements several independent variables
to predict the outcome of a dependent variable by minimizing the difference between the
predictions and the actual values of the target variable. In this work, Equation (3) [43]
was used to estimate a dependent (response) variable (y) using the selected features (see
Section 2.4) as independent variables.

y = a + ∑n
i=1 bixi + ε (3)

where ε represents the error, a is an intercept, bi is a regression coefficient, and xi is a predic-
tor variable. More details on the principles of MLR regression can be found elsewhere [33].

2.5.5. Partial Least Squares Regression

PLSR is a well-known multivariate regression technique for calibrating the NIR
data [44]. The method takes into account the structure of both dependent and independent
variables. While similar to MLR, the PLSR model can predict linear relations between
dependent and independent variables; it identifies regression coefficients differently than
MLR. In PLSR, the dependent and independent variables will project into latent structures
in an iterative process. The latent structure with the highest variability for the dependent
variable is extracted and explained by a latent structure of the independent variable to
identify the best predictive model. More details on the principles of PLSR regression are
provided elsewhere [44].

2.6. Performance Assessment of the Models and Statistical Analyses

The performance of models was evaluated with the use of correlation coefficient (R),
root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage
error (MAPE), as shown below:

R =
1

n− 1

n

∑
i=1

(Mi −
.

M) (Ei −
.

E)
SM SE

(4)

RMSE =

√√√√√ n
∑

i=1
(Ei −Mi)

2

n
(5)

MAE =
n

∑
i=1

| Ei −Mi |
n

(6)

MAPE =
1
n

n

∑
i=1

∣∣∣∣Ei −Mi
Ei

∣∣∣∣× 100 (7)

where n is the number of data instances, Mi measured values, Ei predicted values, M
mean measured values, Ė mean predicted value, SM measured target values sum, and
SE predicted target values sum. The R was analyzed to assess the reliability of model
prediction [45].

3. Results

The pH and MC of the apples were measured to be 3.40 ± 0.05 (mean ± standard
deviation) and 87.82 ± 1.43% (w.b.), respectively.

Figure 1 shows the mean NIR spectra of apple samples at different maturity stages. It
is apparent that the reflectance values are higher in the red region (630 nm) for the maturity
stage 3. One can note a transition occurring at about 610 nm. Such observation is reasonable
as the color of the apples turns redder as the samples mature. In the meantime, the apples
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from the maturity stage 1 (less matured samples) have a stronger peak around the green
region (550 nm).
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Figure 1. Mean spectra of different maturity stages.

The feature selection algorithms ranked features according to their contribution to the
prediction of the target variables. Figure 2a shows the 11 best corresponding features for
MC and pH. Among them, a total of 11 features (10 wavelengths + 1 maturity stage) were
identified as optimum features for the simultaneous detection of MC and pH for all of our
subsequent analyses. These features include 466.86, 468.89, 472.94, 666.43, 689.93, 692.07,
694.22, 696.36, 702.80, 1028.06 nm, and “Maturity stages”.

The 11 features identified were used as inputs in the ANN, with an input layer fed by
11 features, two hidden layers, and one output layer. The first and second hidden layers
had 10 and 70 neurons, resulting in an overall ANN structure of 11-10-70-2 (Figure 2b).

Table 1 shows the performance of the various predictive model for the testing set. The
performance of the MC predictors was promising, with R-values in the range of 0.844–0.868,
with the best performance achieved under ANN. However, the developed model proved to
be unreliable in predicting the pH value, with R-values ranging from 0.190 to 0.383. Despite
this, the ANN model still delivered the best performance.

Table 1. Performance results of the machine learning algorithms.

Model Outputs R RMSE MAE MAPE

ANN *
pH 0.383 0.044 0.035 0.010

MC 0.868 0.756 0.578 0.007

DT **
pH 0.307 0.046 0.036 0.011

MC 0.844 0.812 0.605 0.007

KNN ***
pH 0.373 0.044 0.035 0.010

MC 0.847 0.801 0.627 0.007

MLR
pH 0.190 0.049 0.038 0.011

MC 0.857 0.777 0.580 0.007

PLSR
pH 0.231 0.047 0.038 0.011

MC 0.864 0.759 0.574 0.007
* The layers and number of neurons for the ANN model are 11-10-70-2, the Epoch value is 500, and the activation
function is tanh-tanh for each output parameter. ** Numbers of pH and moisture content splits are 2 and 5,
respectively. *** The k value is 10 for both pH and moisture content.
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The scatter plots representing the relationship between the actual and predicted values
of each output parameter under various models are presented in Figures 3 and 4. In these
scatter plots, the dark blue regions represent the 95% confidence intervals, estimating the
range within which the mean difference between predicted and actual values is likely to
fall. The light blue regions, on the other hand, represent the 95% prediction intervals. These
intervals estimate the likely range of individual observations for specific predicted values,
considering both the average difference and the natural variability of the observations.
These confidence and prediction intervals help assess the reliability of the developed
model’s predictions and the degree of variability one might expect [46].
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It is worth mentioning the optimum MLR models as a function of selected features is
provided below:

pH = 3.475 + (82.329 × “466.86”) + (−119.253 × “468.89”) + (36.684 × “472.94”) + (0.526 × “666.43”) +
(27.218 × “689.93”) + (−56.847 × “692.07”) + (11.960 × “694.22”) + (24.708 × “696.36”) + (−6.780 × “702.8”) +

(−0.674 × “1028.06”) + (0.006 ×Maturity)

MC = 90.062 + (−370.644 × “466.86”) + (505.097 × “468.89”) + (−135.043 × “472.94”) +
(−21.357 × “666.43”) + (569.784 × “689.93”) + (−1572.724 × “692.07”) + (1444.348 × “694.22”) +

(−360.270 × “696.36”) + (−66.760 × “702.8”) + (7.371 × “1028.06”) + (−1.181 ×Maturity)

4. Discussion

This study explored the capability of HSI imaging in the VIS-NIR range to predict
apples’ pH and MC in a non-destructive manner. Considering large data size is one of the
main challenges in analyzing HSI data, data reduction techniques are recommended to
capture the most informative trends for model development. Feature selection algorithms
were utilized to select ten optimum wavelength features in addition to the maturity stage
for developing calibration models. Statistical and machine learning techniques such as
PLSR, MLR, kNN, DT, and ANN models were used to develop predictive models.

The maturity stage inherently influences the MC and pH of the apple, thus, it is
expected to play a vital role in the developed predictive model. Moreover, our analy-
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sis highlighted the importance of five wavelengths (694.22, 689.93, 689.93, 696.36, and
692.07 nm) in predicting the apple MC. These wavelengths are associated with the func-
tional groups that are important in determining water, sugar, and cellulose. The selected
spectral bands for MC prediction were found to be concentrated between 666–702 nm,
which is consistent with previous studies [13,47] that have identified these wavelengths
as being informative for moisture content. Similarly, for pH prediction, the optimal wave-
lengths (694.22, 692.07, 466.86, 468.89, and 472.89 nm) were identified through feature
selection. The spectral bands in this range are associated with functional groups such as
carboxylic acids and amino acids that are important in determining pH. Specifically, the
wavelengths between 464–499 nm and between 683–694 nm contained significant informa-
tion for pH prediction. Overall, these results suggest that the selected features are closely
related to the chemical composition of apples, and their inclusion in the predictive models
can improve the accuracy of moisture content and pH predictions.

Among the models above, ANN provided the best performance with the prediction of
MC and pH with R-values of 0.868 and 0.383, respectively. The obtained results have three
main contributions in HSI-based apple quality monitoring: (1) ANN could outperform the
commonly used PLSR predictive model in analyzing data, (2) VIS-NIR HSI is a promising
non-destructive tool for predicting Pink Lady apples MC, but it lacks the desired accuracy
for predicting the pH content, (3) integrating the findings of the present work with other
relevant works, one can consider VIS-NIR HSI system as a single tool to predict apple
firmness, SSC [33], phenolic content, antioxidant activity, ascorbic acid [4] and MC content.

Indeed, this study has highlighted some limitations in the prediction accuracy of
pH values using the five applied machine-learning methods for the Pink Lady apples.
The performance shortfall can be attributed to several factors, among which the relatively
narrow data range observed for pH levels in the apple samples is a significant contrib-
utor. Moreover, the penetration depth of the utilized wavelength range into the apple
tissue, specific to the studied variety, may have been limited. This likely resulted in a less
comprehensive set of spectral data for accurate pH prediction, underscoring the impact of
wavelength selection on the efficacy of HSI applications. In addition to these aspects, the
suitability of the employed machine learning algorithms must be scrutinized. While these
algorithms have shown effectiveness across a multitude of tasks, they may not be optimally
tailored to predict pH levels derived from HSI data. It is plausible that more advanced
machine learning models will better navigate the intricacy and variability of hyperspectral
data, offering enhanced performance.

The results of other relevant works should be concisely discussed to compare the perfor-
mance of apple MC and pH predictive models with those of other fruits. Rahman et al. [12]
used NIR HSI (1000–1550 nm) and the PLSR model to investigate the non-destructive
estimation of MC and pH in intact tomatoes. The R-values for MC and pH prediction were
between 0.710 to 0.810 and 0.370 to 0.710, respectively. Although the fruit types were differ-
ent, the higher reliability in predicting MC is in agreement with our observation for apples.
Dong and Guo [17] utilized NIR HSI in the range of 900–1700 nm together with successive
projection algorithm and least squares support vector machine to predict Fuji apple’s MC
and pH and reported R-values of 0.984 and 0.882, respectively. Their better performance
compared to our results can be mainly attributed to the different spectral ranges they uti-
lized. It is well-known that instruments working in the NIR range are more expensive than
VIS-NIR as they utilize InGaAs instead of silicon detectors. Alternatively, different apple
cultivars and modeling tools may also account for the discrepancy between the results. In a
separate study, Wang et al. [48] utilized VIS-NIR transmittance spectroscopy to estimate
pH in Fuji apples, achieving R-values ranging from 0.63 to 0.69. Once again, variations in
apple types and different data-capturing techniques could potentially explain their superior
performance. Overall, comparing our results with those of other relevant works highlights
the potential of non-destructive techniques for predicting fruit quality parameters and the
importance of considering various factors such as fruit type, spectral range, and modeling
approaches when interpreting and comparing the results of different studies.
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5. Future Work

This study provides a foundation for future exploration into enhancing the prediction
accuracy of machine learning models using VIS-NIR HSI for apple quality assessment. It
identifies numerous promising avenues for future research.

Broadening the sample size is a key opportunity for improving the models’ robustness
and generalizability. More comprehensive data could enhance the accuracy of the machine
learning algorithms in recognizing and predicting patterns. Along with this, expanding the
application of these predictive models to different apple varieties could be insightful, given
the characteristic variation across cultivars. Further, advancements can be made in feature
selection techniques. The exploration of methods such as genetic algorithms or principal
component analysis might reveal more meaningful predictors within HSI data. The ex-
amination of state-of-the-art machine learning models and ensemble learning approaches,
which employ multiple models for predictions, also promises potential improvements.

Another potential area for improvement lies in further fine-tuning the model hyperpa-
rameters. Optimization techniques, including grid search or random search, could be used
to enhance predictive performance. Simultaneously, the wavelength range used in HSI can
be expanded. A broader or different range of wavelengths could capture more spectral
information, thereby better representing the properties of interest, such as pH levels. Ad-
vanced data augmentation techniques, like generative adversarial networks (GANs), also
hold promise [49,50]. While traditional methods have served their purpose, GANs could
enrich the dataset by generating synthetic yet realistic spectral data, proving particularly
valuable in scenarios with limited original data or larger, more complex datasets. Another
targeted focus for future research could be a holistic evaluation of various quality metrics
of apples, such as MC, pH, firmness, SSC, starch, and acidity. In addition, to expedite the
adoption of HSI technology within the fruit industry, it is crucial to conduct field tests that
ascertain the practical performance of the developed technology.

6. Conclusions

The present work explored the feasibility of simultaneous detection of apple MC and
pH using VIS-NIR HSI. Five different machine-learning models were employed to analyze
HSI data. The correlation coefficients were identified as 0.868 and 0.383 for ANN, 0.844 and
0.307 for DT, 0.847 and 0.373 for KNN, 0.857 and 0.190 for MLR, and 0.864 and 0.231 for
PLSR when predicting MC and pH, respectively. Hence, the predictions of the former and
latter apple parameters were promising and poor, respectively. The superior performance
of the ANN algorithms in analyzing VIS-NIR HSI data suggests that the well-known and
commonly used PLSR approach is inferior to using ANN as a state-of-the-art intelligent
algorithm. This exploration sets the stage for further research and developments in the field.
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