
Citation: Muhamad, F.N.J.; Ab

Hamid, S.H.; Subramaniam, H.;

Abdul Rashid, R.; Fahmi, F.

Fault-Prone Software Requirements

Specification Detection Using

Ensemble Learning for Edge/Cloud

Applications. Appl. Sci. 2023, 13, 8368.

https://doi.org/10.3390/

app13148368

Academic Editor: Paolino Di Felice

Received: 19 May 2023

Revised: 14 June 2023

Accepted: 19 June 2023

Published: 19 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Fault-Prone Software Requirements Specification Detection
Using Ensemble Learning for Edge/Cloud Applications
Fatin Nur Jannah Muhamad 1 , Siti Hafizah Ab Hamid 1,*, Hema Subramaniam 1,* , Razailin Abdul Rashid 1

and Faisal Fahmi 2

1 Department of Software Engineering, Faculty of Computer Science & Information Technology,
Universiti Malaya, Kuala Lumpur 50603, Malaysia; hijannahmuhamad@gmail.com (F.N.J.M.);
razailin.work@gmail.com (R.A.R.)

2 Departemen Ilmu Informasi dan Perpustakaan, Fakultas Ilmu Sosial & Ilmu Politik, Universitas Airlangga,
Kampus B. Jl. Dharmawangsa Dalam, Surabaya 60286, Jawa Timur, Indonesia; faisalfahmi@fisip.unair.ac.id

* Correspondence: sitihafizah@um.edu.my (S.H.A.H.); hema@um.edu.my (H.S.)

Abstract: Ambiguous software requirements are a significant contributor to software project failure.
Ambiguity in software requirements is characterized by the presence of multiple possible interpreta-
tions. As requirements documents often rely on natural language, ambiguity is a frequent challenge
in industrial software construction, with the potential to result in software that fails to meet customer
needs and generates issues for developers. Ambiguities arise from grammatical errors, inappropriate
language use, multiple meanings, or a lack of detail. Previous studies have suggested the use of
supervised machine learning for ambiguity detection, but limitations in addressing all ambiguity
types and a lack of accuracy remain. In this paper, we introduce the fault-prone software requirements
specification detection model (FPDM), which involves the ambiguity classification model (ACM). The
ACM model identifies and selects the optimal algorithm to classify ambiguity in software require-
ments by employing the deep learning technique, while the FPDM model utilizes Boosting ensemble
learning algorithms to detect fault-prone software requirements specifications. The ACM model
achieved an accuracy of 0.9907, while the FPDM model achieved an accuracy of 0.9750. To validate
the results, a case study was conducted to detect fault-prone software requirements specifications for
30 edge/cloud applications, as edge/cloud-based applications are becoming crucial and significant
in the current digital world.

Keywords: requirement engineering; software requirements specification; natural language process-
ing; ambiguity; fault-prone detection; boosting and edge/cloud applications

1. Introduction

Cloud computing has experienced a surge in popularity in recent years as an increas-
ingly preferred option for deploying software systems [1]. However, to ensure that these
software systems meet the requirements, a clear and well-defined software requirements
specification (SRS) that outlines the functional and non-functional requirements of the
system is required. In recent years, software developers and requirement engineers have
faced challenges of low efficiency and poor performance in IT projects due to poorly written
requirements, resulting in 82% of reworked applications being attributed to requirement
errors. Consequently, companies will allocate more than 41.5% of their new project devel-
opment resources towards addressing superfluous or poorly described requirements [2].
Around 87.7% of software requirements documentation is created using natural language,
which results in ambiguity and leads to different interpretations, causing rework, higher
maintenance expenses, and delays in software projects [3]. Due to the inherent nature of
NL and the involvement of multiple stakeholders, requirements are prone to redundancy,
inconsistency, and ambiguity, often referred to as software faults [4]. Addressing ambiguity

Appl. Sci. 2023, 13, 8368. https://doi.org/10.3390/app13148368 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148368
https://doi.org/10.3390/app13148368
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0000-3248-3236
https://orcid.org/0000-0002-0663-5678
https://doi.org/10.3390/app13148368
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148368?type=check_update&version=2

Appl. Sci. 2023, 13, 8368 2 of 33

in software requirements helps developers understand and interpret the desired functional-
ity clearly, which reduces misunderstandings and errors during development. Researchers
frequently highlight the existence of different types of linguistic ambiguity, such as lexical,
syntactic, semantic, syntax, and pragmatic. However, the existing proposed techniques fail
to sufficiently tackle all forms of linguistic ambiguity, resulting in inadequate accuracy in
detecting specific types of ambiguity.

Previous studies have introduced different approaches for detecting linguistic ambi-
guity in software requirements. The ambiguity detector works as an algorithm to classify
ambiguities but is limited to lexical, syntactic, or syntax ambiguity [5], while Sabriye and
Zainon [6] also implemented the same ambiguity detector but only for syntactic and syntax
ambiguity in SRS documents. Hence, Rani and Aggarwal [7] improved this approach
by adding referential ambiguity detection and lexical, syntactic, syntax, and pragmatic
ambiguity detection, but their approach did not cover semantic ambiguity. Bajwa et al. [8]
proposed NL2OCL, which translates natural language software constraints into formal
constraints. Ferrari et al. [9] proposed a natural language processing approach based on
Wikipedia crawling and word embedding to detect domain-specific ambiguities. Osman
and Zaharin [10] proposed Ambi-Detect, which detects ambiguity in Malay SRS documents
using Random Forest to classify the ambiguous and unambiguous software requirements;
however, Malay SRS is only a small dataset. The ChatGPT system, which was developed by
OpenAI and utilizes the GPT-4 architecture, is capable of identifying ambiguous software
requirements. However, ChatGPT does not take into account other essential components
of the SRS, such as the title, description, and intended users.

In this paper, we focus on detecting whether the SRS is prone to fault or a clean SRS by
proposing the fault-prone SRS detection model that involves the ambiguity classification
model. The ambiguity classification model classifies software requirements based on five
major linguistic ambiguities (lexical, syntactic, semantic, syntax, and pragmatic ambiguity)
using deep learning techniques. Hence, the fault-prone software requirements specification
model exploited the boosting algorithms, which are Adaptive Boosting, Gradient Boosting,
and Extreme Gradient Boosting, to improve the model’s accuracy to detect the fault-prone
SRS based on the titles, descriptions, presence of users, and classified ambiguous software
requirements of the SRS. The dataset highlighted the edge/cloud application SRS and
covered a wide range of topics to assure the model was trained adequately. Hence, to aid
the detection of fault-prone SRS, we propose the fault-prone severity scale in our case study,
which is derived from key components of the SRS, including the title, description, intended
users, and software requirements. The scale categorizes ambiguity as low, moderate, or
high, based on a calculated score. The research instrument used is quantitative research
by carrying out quasi experimental research by labeling the data based on the type of
ambiguity or clean requirements. The contributions of this paper are as follows:

• Development of a fault-prone software requirements specification detection model
to ensure high accuracy in detecting the fault-prone SRS by utilizing the ambiguity
classification model on ambiguous software requirements, title, description, and
intended users of the SRS.

• Analysis of the fault-prone SRS of edge/cloud applications to reduce and identify po-
tential issues early in the development process, allowing developers to make necessary
changes and adjustments to ensure the application meets the needs of its users.

The remainder of the paper is structured as follows: Section 2 outlines the research
background; Section 3 gives an overview of related topics; Section 4 presents the proposed
models to detect the ambiguity of software requirements in SRS; Section 5 illustrates the
case study in this research; and Section 6 discloses the conclusion and future plans of
this research.

Appl. Sci. 2023, 13, 8368 3 of 33

2. Research Background
2.1. Software Requirements Specification

A software requirements specification is a document that outlines the functional re-
quirements (FR), non-functional requirements (NFR), and constraints for a software system.
FR describes the system’s functionality, while NFR describes the system’s properties and
constraints [11]. The creation of SRS documents during the early stages of software devel-
opment serves as a key reference for all stakeholders involved in the project, including
developers, testers, and project managers. Wrong or missing requirements lead to wrong or
incomplete products, regardless of how good the subsequent phases are [12]. According to
a study by James Martin, 50% of all requirement defects stem from poorly written, unclear,
ambiguous, or inaccurate requirements, while the other 50% are caused by inadequate
specifications, such as incomplete or missing requirements. However, despite these statis-
tics, a staggering 70% of organizations fail to take practical measures to enhance their
requirements’ quality [2]. (Figure 1)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 34

2. Research Background
2.1. Software Requirements Specification

A software requirements specification is a document that outlines the functional re-
quirements (FR), non-functional requirements (NFR), and constraints for a software sys-
tem. FR describes the system’s functionality, while NFR describes the system’s properties
and constraints [11]. The creation of SRS documents during the early stages of software
development serves as a key reference for all stakeholders involved in the project, includ-
ing developers, testers, and project managers. Wrong or missing requirements lead to
wrong or incomplete products, regardless of how good the subsequent phases are [12].
According to a study by James Martin, 50% of all requirement defects stem from poorly
written, unclear, ambiguous, or inaccurate requirements, while the other 50% are caused
by inadequate specifications, such as incomplete or missing requirements. However, de-
spite these statistics, a staggering 70% of organizations fail to take practical measures to
enhance their requirements’ quality [2]. (Figure 1)

Figure 1. Software Requirements Specification.

2.2. Fault-Prone Software Requirements Specification
A fault is an unappealing or undesirable aspect, especially in a piece of work. Soft-

ware faults are errors, flaws, or the failure of computer programs. In requirement engi-
neering, a fault is a manifestation of missing, incorrect, or ambiguous information [13].
Fault-prone in requirement engineering indicates the extent to which a requirement is
prone to faults, thereby causing software failure. Fault-prone SRS can have a significant
impact on software project construction that can extend to subsequent phases of the re-
quirement engineering process. Conversely, a clean SRS means that most of the require-
ments are reliable and understood by stakeholders, project teams, developers, and users.
Other than considering software requirements in detecting fault-prone SRS, considering
the title, description, and intended users is essential, as these factors provide vital infor-
mation about the software system.

According to the IEEE Standard for Software Requirements Specifications [14], the
title and description of an SRS should provide a clear and concise overview of the software
system and its main functionalities. Studies show that the quality of SRS documents, in-
cluding the title and description, significantly impacts the fault-proneness of the software

Figure 1. Software Requirements Specification.

2.2. Fault-Prone Software Requirements Specification

A fault is an unappealing or undesirable aspect, especially in a piece of work. Software
faults are errors, flaws, or the failure of computer programs. In requirement engineering,
a fault is a manifestation of missing, incorrect, or ambiguous information [13]. Fault-
prone in requirement engineering indicates the extent to which a requirement is prone to
faults, thereby causing software failure. Fault-prone SRS can have a significant impact
on software project construction that can extend to subsequent phases of the requirement
engineering process. Conversely, a clean SRS means that most of the requirements are reliable
and understood by stakeholders, project teams, developers, and users. Other than considering
software requirements in detecting fault-prone SRS, considering the title, description, and
intended users is essential, as these factors provide vital information about the software system.

According to the IEEE Standard for Software Requirements Specifications [14], the
title and description of an SRS should provide a clear and concise overview of the software
system and its main functionalities. Studies show that the quality of SRS documents,
including the title and description, significantly impacts the fault-proneness of the software
system [15]. If the title and description suggest the system has a high degree of complexity
or involves multiple subsystems, this may indicate that the system is more prone to faults

Appl. Sci. 2023, 13, 8368 4 of 33

and requires thorough testing. Conversely, if the title and description are clear and concise
and the system is relatively simple, this may indicate that the system is less prone to
faults and may require less testing. The standard also recommends that the SRS include
information on the intended users and the expected behavior of the system. A study by
Aggarwal et al. [16] found that the intended user plays a crucial role in determining the quality
of the software system. Table 1 depicts the factors contributing to the fault-prone SRS.

Table 1. Other factors contribute to fault-prone SRS other than software requirements.

Factor Title Description Intended Users Explanation

Title ProDash

ProDash is a software application
that helps project managers track
and manage projects. The system
will provide a centralized platform
for project managers to monitor
project progress, assign tasks, and
collaborate with team members. The
dashboard will display real-time
project data and analytics, allowing
managers to make informed
decisions about project timelines and
resource allocation.

• Project managers
• Team leaders

Executives The system will be
particularly useful for teams
working on complex projects
with multiple stakeholders
and dependencies.

A vague or confusing title leads
to miscommunication and
misunderstandings among
stakeholders. The title of a
project is an essential
component of its overall
description and should be clear
and concise. The project title
should accurately reflect the
purpose of the project and
provide a clear indication of
what the project aims to
accomplish. Having a clear title
helps people who are involved
understand the project’s
purpose and focus.

Description Virtual Event
Management System

A software application designed to
help businesses and individuals
plan, organize, and manage events
of all types and sizes. The system
provides a range of tools for creating
and managing events, including
event scheduling, budget
management, vendor and attendee
management, and task tracking. The
system enables event planners to
create and manage event calendars.
The system is intended to streamline
the event planning process and
provide real-time analytics and
reporting.

• Event planners
• Marketing

professionals
• Businesses looking to

host virtual events.

The system is particularly
useful for those who want to
engage with a large audience
remotely, such as in-person
event organizers who want to
transition to virtual events
due to COVID-19.

The system serves different
purposes and is designed for
different types of events. Based
on the title, we expect it to be
specifically designed to help
organizations host and manage
virtual events, providing
features such as online
registration, virtual venue
setup, and live streaming
capabilities. Plus, there is an
emphasis due to COVID-19.

Intended Users Veritas Student Portal

Veritas Student Portal is a web-based
platform that serves as the primary
online resource for students, faculty,
staff, and prospective students. The
website provides a range of
information and services, including
course catalogs, event calendars,
news and announcements, academic
and financial aid resources, and
access to online learning platforms.

• Students
• Faculty and Staff
• Prospective Students
• Alumni
• Public

Intended users for the Veritas
Student Portal suddenly
expanded to include alumni
and the public, it would be
important to update the SRS
accordingly. This is because the
needs and requirements of
alumni and the public may
differ significantly from those
of students, faculty, and staff.
The clear presence of users in
the SRS is important because it
helps software developers and
stakeholders to understand the
specific needs and requirements
of each user group.

2.3. Ambiguity in Software Requirements Specification

Ambiguity is a common problem in natural language that arises due to a variety of
factors, such as grammatical errors, word choice, a lack of detail, and multiple meanings.
This study is primarily focused on language ambiguity within the context of software
requirements engineering. Understanding the various types of ambiguity that arise in the
SRS is crucial to minimizing errors and improving the overall quality of the SRS. A study
conducted by Sandhu and Sikka identified five different types of natural language SRS
ambiguity. These include lexical ambiguity, syntactic or structural ambiguity, semantic
or scope ambiguity, pragmatic ambiguity, and syntax ambiguity. Understanding these
different types of ambiguity is essential to effectively communicating requirements and
ensuring that the SRS is free from ambiguity, thereby reducing the potential for errors and
misunderstandings [6]. Table 2 shows examples of ambiguous software requirements that
lead to incorrect development.

Appl. Sci. 2023, 13, 8368 5 of 33

Table 2. Examples of ambiguous software requirements that lead to incorrect development.

Ambiguous
Software

Requirement

Detected
Ambiguity

Program Code/
User Interface Explanation Recommended Software

Requirement

The system shall be
able to easily
navigate to the main
features of the app.

Syntactic

Based on ambiguous software requirement:
class ClickCounter:
Example usage:
counter = ClickCounter()
button1 = Button(text=“Feature 1”,
command=lambda: counter.count_click())

Based on clear software requirement:
class ClickCounter:
def __init__(self):
self.clicks = 0
def count_click(self):
self.clicks += 1
if self.clicks > 3:
raise ValueError(“Exceeded maximum number of
clicks”)
Example usage:
counter = ClickCounter()
button1 = Button(text=“Feature 1”,
command=lambda: counter.count_click())

The ambiguous software
requirement lacks specific
details about how navigation
should be achieved and does
not provide any information
about the number of taps or
clicks required to reach the
main features, or the specific
navigation methods to be
used. People may interpret
this to mean that navigation
should be achieved through
gestures, voice commands, or
other methods. Additionally,
it does not provide any
specific criteria for what
constitutes “easy” navigation.
This lack of clarity can result
in different interpretations
and expectations for the final
product.

The system shall be able
to easily navigate to the
main features of the app
using not more than three
taps or clicks.

The system shall
display the company
crane logo on the
home page.

Lexical

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 34

2.3. Ambiguity in Software Requirements Specification
Ambiguity is a common problem in natural language that arises due to a variety of

factors, such as grammatical errors, word choice, a lack of detail, and multiple meanings.
This study is primarily focused on language ambiguity within the context of software re-
quirements engineering. Understanding the various types of ambiguity that arise in the
SRS is crucial to minimizing errors and improving the overall quality of the SRS. A study
conducted by Sandhu and Sikka identified five different types of natural language SRS
ambiguity. These include lexical ambiguity, syntactic or structural ambiguity, semantic or
scope ambiguity, pragmatic ambiguity, and syntax ambiguity. Understanding these dif-
ferent types of ambiguity is essential to effectively communicating requirements and en-
suring that the SRS is free from ambiguity, thereby reducing the potential for errors and
misunderstandings [6]. Table 2 shows examples of ambiguous software requirements that lead
to incorrect development.

Table 2. Examples of ambiguous software requirements that lead to incorrect development.

Ambiguous Soft-
ware Requirement

Detected
Ambiguity

Program Code/
User Interface Explanation

Recommended Software
Requirement

The system shall be
able to easily navi-
gate to the main fea-
tures of the app.

Syntactic

Based on ambiguous software requirement:
class ClickCounter:
Example usage:
counter = ClickCounter()
button1 = Button(text=“Feature 1”, com-
mand=lambda: counter.count_click())

Based on clear software requirement:
class ClickCounter:
def __init__(self):
self.clicks = 0
def count_click(self):
self.clicks += 1
if self.clicks > 3:
raise ValueError(“Exceeded maximum number
of clicks”)
Example usage:
counter = ClickCounter()
button1 = Button(text=“Feature 1”, com-
mand=lambda: counter.count_click())

The ambiguous software require-
ment lacks specific details about
how navigation should be achieved
and does not provide any infor-
mation about the number of taps or
clicks required to reach the main
features, or the specific navigation
methods to be used. People may in-
terpret this to mean that navigation
should be achieved through ges-
tures, voice commands, or other
methods. Additionally, it does not
provide any specific criteria for
what constitutes “easy” navigation.
This lack of clarity can result in dif-
ferent interpretations and expecta-
tions for the final product.

The system shall be able to
easily navigate to the main
features of the app using not
more than three taps or
clicks.

The system shall dis-
play the company
crane logo on the
home page.

Lexical

This ambiguous software require-
ment is not specific. This is because
“Crane” refers to a bird with long
legs and a long neck. Additionally,
“Crane” also refers to a large ma-
chine used for lifting and moving
heavy objects.

The system shall display the
company crane (bird) logo
on the home page.

This ambiguous software
requirement is not specific.
This is because “Crane” refers
to a bird with long legs and a
long neck. Additionally,
“Crane” also refers to a large
machine used for lifting and
moving heavy objects.

The system shall display
the company crane (bird)
logo on the home page.

2.4. Fault-Prone Severity Scale

The proposed fault-prone severity scale aids in the detection of fault-prone SRS. The
scale is based on a calculated weighted score derived from key components of the SRS
document, including the title, description, intended users, and software requirements. The
purpose of this scale is to identify and categorize the level of ambiguity present in the
SRS document, with the goal of improving the reliability of the software system being
developed. Each component is evaluated and assigned a score based on the level of
ambiguity present. For instance, the title and description are evaluated based on the level
of detail provided and the clarity of the language used. The intended user component is
evaluated based on the presence and specificity of the user information provided, while
the software requirements are evaluated based on the presence of ambiguous words in the
software requirements. This scale categorizes the level of ambiguity present as either low,
moderate, or high, with high levels of ambiguity indicating a higher likelihood of faults
and errors in the software system being developed. A detailed discussion regarding the
proposed fault-prone severity scale is presented in Section 5.

Appl. Sci. 2023, 13, 8368 6 of 33

3. Related Studies

Nigam et al. [5] proposed an ambiguity detector tool for assessing requirements speci-
fications by identifying lexical, syntactic, and semantic ambiguities in the requirements.
The input of the ambiguity detector is requirements specifications and the corpus. Then, the
requirements are processed with a Stanford POS tagger and an algorithm is implemented
for detecting each ambiguous sentence. Four SRS documents with different numbers of
lines were evaluated to determine the existence of ambiguities in each document. The per-
centages of the detected ambiguities are shown for each ambiguity. Sabriye and Zainon [6]
also implemented the same ambiguity detector for syntactic and syntax ambiguity in SRS
documents. The researchers developed a prototype tool to evaluate the proposed approach.
However, the study extracts a very limited dataset for the development of the tool, and
only displays the detected ambiguity without saving the changes made on the detected
ambiguity. Rani and Aggarwal [7] improved this approach by adding referential ambiguity
detection. Thus, the researchers tend to present lexical, syntactic, syntax, and pragmatic
ambiguity detection in their work; however, only seven requirements were evaluated as
a dataset. Nonetheless, all these studies do not perform any performance evaluation for
the proposed approach to identify the accuracy of the performed algorithm in detecting
ambiguities.

In 2017, Ferrari et al. [9] proposed a natural language processing (NLP) approach to
detect domain-specific ambiguities in computer science terminology. The method involves
crawling Wikipedia to extract both computer science (CS) and domain-specific documents
and pre-process them. Next, the most frequently occurring nouns in CS documents are
ranked, and a modified form of each noun is injected into domain-specific documents. The
word2vec method is used to train word embeddings on a corpus of CS and domain-specific
documents. Finally, the similarity of embeddings for CS nouns and the modified variants
in domain papers is compared, which estimates the variance in meaning of CS nouns when
used in different domains. This approach focuses solely on nouns and shows promising
results in preliminary studies on five domains. Further validation of this method is needed
to avoid misunderstandings when modifying documents and engaging with specialists in
relevant disciplines.

Bäumer and Geierhos [17] described a method for constructing a software system
that integrates existing expert tools and controls them using automated compensation
algorithms to help end-users create unambiguous and complete requirements specifications.
The complete text analysis pipeline is built ad hoc and, hence, is adapted to the specific
conditions of a requirements description based on ambiguity indicators. The purpose
of this method is to detect ambiguity and incompleteness in natural language software
requirements and automatically correct them. This approach not only covers pragmatic
ambiguity but also incompleteness, lexical, and syntactic ambiguities. The evaluation
result of the indicator quality for incompleteness is 0.73 for accuracy, 0.70 for recall, 0.83 for
precision, and 0.72 for F-Score. For referential ambiguity, it scored 0.82 for accuracy, 0.710
for recall, 0.93 for precision, and 0.75 for F-Score. For syntactic ambiguity, it scored 0.80 for
accuracy, 0.71 for recall, 0.87 for precision, and 0.74 for F-Score. However, the pragmatic
ambiguity covered in this approach is limited to referential ambiguity.

Osama and Aref [18] proposed DARA, a method for detecting and resolving ambiguity
in SRS. The lexical, referential, coordination, scope, and vague domains are the focus of
the tool. DARA also used the provided approach by Ayan et al., 2012 [5] in the ambiguity
detection design. As a result, the authors highlighted the indicators for detecting each
ambiguity handled using a rule-based approach. A total of 36 sets with a different number
of requirements in various SRS domains were gathered from various sources. DARA
examines the number of detected sentences, number of resolved sentences, and time spent
for each SRS that undergoes ambiguity detection in addition to calculating the percentages
for each ambiguity found as indicators. The results of utilizing DARA on these 36 case
studies reveal that potential ambiguities occur frequently, accounting for almost 60% of the
total number of requirements sentences (lexical ambiguity 37%, referential ambiguity 9%,

Appl. Sci. 2023, 13, 8368 7 of 33

coordination ambiguity 13%, scope ambiguity 25%, and vague 16%). DARA resolves 67%
of ambiguity in the total number of required sentences. However, the performance of the
proposed approach was not evaluated.

Osman and Zaharin [10] proposed an automated approach, Ambi-Detect, for detecting
ambiguities in Malay SRS documents, which consist of 180 manually labeled requirements,
and used supervised machine learning methods, such as Random Forest, to classify the
ambiguous and unambiguous software requirements. The classification result achieved
an accuracy score of 89.67%, precision score of 0.90, recall score of 0.88, and F-Measure
of 0.89, which is reasonably acceptable and may improve the productivity of formulating
SRS. The proposed automated approach is a valuable tool for improving the quality of SRS
documents and reducing the potential for misunderstandings and errors in Malay SRS.
Nevertheless, this study uses a small dataset that affects the accuracy of the performance,
thus making the classification arguable. Hence, the researchers have not stated which
classification of ambiguity is covered in the research. However, further research is needed
to evaluate the approach on a larger dataset.

4. Proposed Fault-Prone Software Requirements Specification Detection Model

The study aims to detect fault prone software requirements specifications (SRS) due
to the ambiguous requirements based on classified language ambiguity, the clarity of the
title, description, and the presence of intended users. The development of the fault-prone
software requirements specification detection model (FPDM) comprises the ambiguity
classification model, as depicted in Figure 2. We used Python as the main language to
develop the predictive model. Our machine for model development was a Vivo book Asus
Laptop with a 3.20 GHz AMD Ryzen and 16 GB RAM from Pro System Machine Sdn. Bhd.
Kuala Lumpur, Malaysia. The operating system used was Windows 11 with 21H2 version,
which ran on 5800H with Radeon Graphics. The model covered five types of linguistic
ambiguity: lexical ambiguity, syntactic ambiguity, semantic ambiguity, syntax ambiguity,
and pragmatic ambiguity.

4.1. Ambiguous Classification Model
4.1.1. Phase 1: Data Collection

The first phase in constructing ACM is data collection. This dataset covers a wide
spectrum of topics to ensure the model is trained thoroughly. The process involves extract-
ing the requirements (including functional requirements and non-functional requirements).
This is a self-collected dataset on online search engine sources, and we managed to collect
100 sets of SRS. One of the sources of the collected SRS is from the existing research by
Osama and Aref [18] that presents 36 SRS. The collected requirements are then stored in
csv format.

4.1.2. Phase 2: Data Processing

After collecting the data, we cleaned the data by applying Python code to remove
stop words, non-alphanumeric characters, duplicated requirements, and word stemming,
and transformed each word to lowercase. Data cleaning is crucial to ensuring that the
requirements are readable and easy to process. We have 7061 software requirements based
on 100 SRS (Figure 3).

• Sentence splitter: The sentence splitter function isolates each sentence from the input
text and turns the sentence into individual sentences.

• Tokenizer: The tokenizer function takes each sentence as input and breaks the sentence
down into tokens, such as words, numbers, and punctuation.

• NLTK Part of speech Tagging (POS tagger): The parts of speech (POS) tagger function
is the process of marking up words in text format for a specific segment of a speech
depending on the definition and context.

• Syntactic parser: The syntactic parser function converts sequences of words into
structures that reveal how the parts of a sentence are interconnected.

Appl. Sci. 2023, 13, 8368 8 of 33Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 34

Figure 2. Ambiguity Classification Model [6,18].

Figure 2. Ambiguity Classification Model [6,18].

Appl. Sci. 2023, 13, 8368 9 of 33

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 34

4.1. Ambiguous Classification Model
4.1.1. Phase 1: Data Collection

The first phase in constructing ACM is data collection. This dataset covers a wide
spectrum of topics to ensure the model is trained thoroughly. The process involves ex-
tracting the requirements (including functional requirements and non-functional require-
ments). This is a self-collected dataset on online search engine sources, and we managed
to collect 100 sets of SRS. One of the sources of the collected SRS is from the existing re-
search by Osama and Aref [18] that presents 36 SRS. The collected requirements are then
stored in csv format.

4.1.2. Phase 2: Data Processing
After collecting the data, we cleaned the data by applying Python code to remove

stop words, non-alphanumeric characters, duplicated requirements, and word stemming,
and transformed each word to lowercase. Data cleaning is crucial to ensuring that the
requirements are readable and easy to process. We have 7061 software requirements
based on 100 SRS (Figure 3).
• Sentence splitter: The sentence splitter function isolates each sentence from the input

text and turns the sentence into individual sentences.
• Tokenizer: The tokenizer function takes each sentence as input and breaks the sen-

tence down into tokens, such as words, numbers, and punctuation.
• NLTK Part of speech Tagging (POS tagger): The parts of speech (POS) tagger function

is the process of marking up words in text format for a specific segment of a speech
depending on the definition and context.

• Syntactic parser: The syntactic parser function converts sequences of words into
structures that reveal how the parts of a sentence are interconnected.

Figure 3. Data cleaning and pre-processing.

4.1.3. Data Labelling
The next process involves data labeling, which aims to categorize the gathered re-

quirements into six groups, namely lexical ambiguity, syntactic ambiguity, semantic am-
biguity, syntax ambiguity, pragmatic ambiguity, and clean. To expedite this process and
eliminate the need for human labeling, Python scripts were developed utilizing algo-
rithms to identify and differentiate between the various types of ambiguities. The POS
tagger was employed to assign grammatical information to each word in the sentence,

Figure 3. Data cleaning and pre-processing.

4.1.3. Data Labelling

The next process involves data labeling, which aims to categorize the gathered require-
ments into six groups, namely lexical ambiguity, syntactic ambiguity, semantic ambiguity,
syntax ambiguity, pragmatic ambiguity, and clean. To expedite this process and elimi-
nate the need for human labeling, Python scripts were developed utilizing algorithms to
identify and differentiate between the various types of ambiguities. The POS tagger was
employed to assign grammatical information to each word in the sentence, while Osama
and Aref [18] highlighted ambiguous words were used to identify each type of ambiguous
requirement, as illustrated in Table 3. Furthermore, the passive voice formulas and POS
equivalents, based on the research by Sabriye and Zainon [6], were employed to determine
ambiguous requirements. The lexical database WordNet was also utilized to facilitate
ambiguity detection in software requirements. WordNet offers a comprehensive inventory
of words and semantic relationships, enabling us to identify potential sources of ambiguity
in requirement statements by analyzing constituent terms and associated synonyms and
senses. By leveraging WordNet’s extensive coverage of the English language lexicon, we
developed a robust approach to automatically detect and classify different types of ambigu-
ities in software requirements. This process resulted in 7061 extracted requirements, with
3041 labeled as ambiguous requirements and 4020 labeled as clean requirements, as pre-
sented in Table 4.

Table 3. Possible Ambiguity Indicator.

Ambiguity Possible Ambiguity Indicators

Lexical

Lexical ambiguity indicators: Access, address, application, archive, array, bandwidth, binary,
cache, compiler, compression, configuration, console, data, directory, disk, domain, driver,
encryption, file, firewall, folder, gateway, interface, kernel, library, link, load, logic, macro,
malware, memory, metadata, migration, monitor, object, optimization, packet, path, pixel,
protocol, query, registry, resource, router, script, security, server, etc.

Syntactic Syntactic ambiguity indicators: And, or, but, so, yet, nor, for, if, although, because, since,
unless, until, while, even though, then, as, whenever, wherever, whereas, as if, as long as, etc.

Semantic
Semantic ambiguity indicators: All, every, many, several, any, some, few, a lot of, much, little,
enough, most, none, half, whole, both, either, neither each, more, less, plenty of, a number of,
a great deal of, a bit of, a few, a majority of, etc.

Syntax Checks the absence of a full stop at the end of a condemnation, indicated by the “./.” tag, or
the use of passive voice for each software requirement.

Pragmatic
Pragmatic ambiguity indicators: I, me, you, he, him, she, her, it, we, us, they, them, mine,
yours, his, hers, its, ours, theirs, myself, yourself, himself, herself, itself, ourselves,
yourselves, themselves, this, that, these, those, somebody, someone, something, etc.

Appl. Sci. 2023, 13, 8368 10 of 33

Table 4. Number of tweets in the dataset.

Software Requirements Labelled Dataset

Lexical Ambiguity 474
Syntactic Ambiguity 615
Semantic Ambiguity 614

Syntax Ambiguity 504
Pragmatic Ambiguity 834

Clean 4020

Total 7061

4.1.4. Phase 3: Ambiguity Classification

ACM uses deep learning algorithms to ensure high accuracy in detecting and classify-
ing different types of ambiguities or clean requirements. To develop the ACM, we started
with a pre-processed Ambiguous Requirements Dataset containing 7061 software require-
ments, which was then split into training and testing sets at an 80/20 ratio. We utilized
two deep learning algorithms, Convolutional Neural Network (CNN), and a combination
of CNN, Recurrent Neural Networks (RNNs), and Long Short-Term Memory networks
(LSTMs). We also employed three word embedding techniques: GloVe, Word2Vec, and
FastText, to convert words into vector representations. GloVe uses global co-occurrence
statistics to capture semantic relationships between words, identifying ambiguities from
multiple meanings [19]. Word2Vec provides vector representations of text, capturing se-
mantic meaning for NLP tasks [20], while FastText extends Word2Vec with a shallow neural
network, capturing context for a fine-grained understanding of text [21]. We stacked the al-
gorithms as Word2Vec_CNN, GloVe_CNN, FastText_CNN, Word2Vec_CNN_RNN_LSTM,
GloVe_CNN_RNN_LSTM, and FastText_CNN_RNN_LSTM. Table 5 shows presents the
details on each layer for each experiment for the proposed model.

Table 5. Details on each layer in the proposed model for each experiment.

Algorithm Main Layer Neural Network Layer Output
Size

Kernel
Size

Max-Pool
Size

Activation Function

Word2Vec_CNN Input layer Word2Vec Embedding 300 None None None
Layer

Hidden CNN Layer 1 300 3 50 ReLU
layer CNN Layer 2 300 2 10 ReLU
Fully Dense Layer 1 300 None None ReLU
connected layer Dense Layer 2 (output layer) 6 None None None

GloVe_CNN Input layer GloVe Embedding layer 300 None None None
Hidden CNN Layer 1 300 3 50 ReLU
layer CNN Layer 2 300 2 10 ReLU
Fully Dense Layer 1 300 None None ReLu
connected layer Dense Layer 2 (output layer) 6 None None None

FastText_CNN Input layer FastText Embedding 300 None None None
Layer

Hidden CNN Layer 1 300 3 50 ReLU
layer CNN Layer 2 300 2 10 ReLU
Fully Dense Layer 1 300 None None ReLU
connected layer Dense Layer 2 (output layer) 6 None None Softmax

Word2Vec_CNN_
RNN_LSTM

Input layer Word2Vec Embedding Layer 300 None None None
Hidden CNN Layer 1 300 3 50 ReLU
layer CNN Layer 2 300 2 10 ReLU

RNN Layer 1 300 None None Sigmoid
LSTM Layer 1 256 ReLU

Fully Dense Layer 1 300 None None ReLU
connected layer Dense Layer 2 (output layer) 6 None None None

Appl. Sci. 2023, 13, 8368 11 of 33

Table 5. Cont.

Algorithm Main Layer Neural Network Layer Output
Size

Kernel
Size

Max-Pool
Size

Activation Function

GloVe_CNN_
RNN_LSTM

Input layer

Hidden layer

Fully connected
layer

GloVe Embedding Layer

CNN Layer 1
CNN Layer 2
RNN Layer 1
LSTM Layer 1
Dense Layer 1
Dense Layer 2 (output layer)

300

300
300
300
128
300
6

None

3
3
2

None
None

None

50
10

None

None
None

None

ReLu
ReLu
ReLu

ReLu
Softmax

FastText_CNN_
RNN_LSTM

Input layer

Hidden layer

Fully connected
layer

FastText Embedding Layer

CNN Layer 1
CNN Layer 2
RNN Layer 1
LSTM Layer 1
Dense Layer 1
Dense Layer 2 (output layer)

300

300
300
300
128
300
6

None

3
3
2

None
None

None

50
10

None

None
None

None

ReLu
ReLu
ReLu

ReLu
Softmax

Using the prepared datasets for the ACM, we present the training results of the
algorithms for the ACM in Table 6, based on its performance in the ambiguity classification
of software requirements. To calculate the ambiguity for each requirement in the ACM,
each requirement was separated into a single word based on the type of ambiguity. The
table presents the evaluation metrics, including accuracy, recall, precision, and F-measure
for each model. Figure 4 illustrates the accuracy of the algorithms. Based on the results,
the GloVe_CNN_RNN_LSTM model achieved the highest score of 0.9907 for accuracy.
The F-measure score, which shows the balance of precision and recall, 0.9664 and 0.9598
respectively, was also high, indicating the model’s ability to balance the classification of
ambiguities. Therefore, the GloVe_CNN_RNN_LSTM model is considered the highest-
performing model and will be chosen for the next stage of the project.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 34

Using the prepared datasets for the ACM, we present the training results of the algo-
rithms for the ACM in Table 6, based on its performance in the ambiguity classification of
software requirements. To calculate the ambiguity for each requirement in the ACM, each
requirement was separated into a single word based on the type of ambiguity. The table
presents the evaluation metrics, including accuracy, recall, precision, and F-measure for
each model. Figure 4 illustrates the accuracy of the algorithms. Based on the results, the
GloVe_CNN_RNN_LSTM model achieved the highest score of 0.9907 for accuracy. The
F-measure score, which shows the balance of precision and recall, 0.9664 and 0.9598 re-
spectively, was also high, indicating the model’s ability to balance the classification of
ambiguities. Therefore, the GloVe_CNN_RNN_LSTM model is considered the highest-
performing model and will be chosen for the next stage of the project.

Figure 4. Accuracy of algorithms in creating ACM.

Table 6. Training results for each algorithm in ACM.

Algorithm Precision Recall F-Measure
FastText_CNN 0.9366 0.7636 0.8413
GloVe_CNN 0.9641 0.9553 0.9597

Word2Vec_CNN 0.9561 0.9156 0.9356
FastText_CNN_RNN_LSTM 0.5712 0.5713 0.5712
GloVe_CNN_RNN_LSTM 0.9664 0.9533 0.9598

Word2Vec_CNN_RNN_LSTM 0.9594 0.9509 0.9551

The proposed GloVe_CNN_RNN_LSTM algorithm utilizes a sequential neural net-
work architecture comprising an embedding layer with parameters such as max features
and embedding size. A dropout layer is also applied to remove some context from the
input dataset. Conv1D and MaxPooling layers are then added to the architecture to extract
higher-level features and expedite the process. Additionally, RNN and LSTM layers are
employed to capture long-term dependencies between word sequences and grasp the con-
text of the input sentence. To enhance the efficiency of the hybrid model, dropout and
dense layers are added in the final stages. Two activation functions, namely Relu in Conv-
1D and Softmax in dense layers, are used. The suggested model is compiled with the op-
timizer Adam.

Table 7 shows the performance of the GloVe_CNN_RNN_LSTM algorithm for each
class of ambiguity in the software requirements. The algorithm achieved a high precision

Figure 4. Accuracy of algorithms in creating ACM.

Appl. Sci. 2023, 13, 8368 12 of 33

Table 6. Training results for each algorithm in ACM.

Algorithm Precision Recall F-Measure

FastText_CNN 0.9366 0.7636 0.8413
GloVe_CNN 0.9641 0.9553 0.9597

Word2Vec_CNN 0.9561 0.9156 0.9356
FastText_CNN_RNN_LSTM 0.5712 0.5713 0.5712
GloVe_CNN_RNN_LSTM 0.9664 0.9533 0.9598

Word2Vec_CNN_RNN_LSTM 0.9594 0.9509 0.9551

The proposed GloVe_CNN_RNN_LSTM algorithm utilizes a sequential neural net-
work architecture comprising an embedding layer with parameters such as max features
and embedding size. A dropout layer is also applied to remove some context from the
input dataset. Conv1D and MaxPooling layers are then added to the architecture to extract
higher-level features and expedite the process. Additionally, RNN and LSTM layers are
employed to capture long-term dependencies between word sequences and grasp the
context of the input sentence. To enhance the efficiency of the hybrid model, dropout
and dense layers are added in the final stages. Two activation functions, namely Relu in
Conv-1D and Softmax in dense layers, are used. The suggested model is compiled with the
optimizer Adam.

Table 7 shows the performance of the GloVe_CNN_RNN_LSTM algorithm for each
class of ambiguity in the software requirements. The algorithm achieved a high precision
score of 0.9860, 0.9826, and 0.9739 for pragmatic, lexical, and syntactic ambiguities, respec-
tively. The recall score, which measures the true positive rate of the correctly classified
instances, was also high for all ambiguity classes, ranging from 0.9621 to 0.0.9848. The
f-measure, which is the harmonic mean of precision and recall, was also high for all classes,
with a minimum value of 0.9628 for semantic ambiguity and a maximum value of 0.9854 for
pragmatic ambiguity. These results indicate that the GloVe_CNN_RNN_LSTM algorithm
is effective in classifying different types of ambiguity in software requirements, with a high
level of accuracy, recall, and f-measure for each ambiguity class. Therefore, we utilized this
algorithm as the basis for developing a reliable and effective ambiguity classification model
for software requirements.

Table 7. Performance for each ambiguity class in ACM.

Algorithm Ambiguity Precision Recall F-Measure

GloVe_CNN_RNN_LSTM Lexical 0.9826 0.9811 0.9819
Syntactic 0.9739 0.9745 0.9742
Semantic 0.9634 0.9621 0.9628

Syntax 0.9674 0.9660 0.9667
Pragmatic 0.9860 0.9848 0.9854

An accuracy of 0.9907 is considered reliable as it combines advanced techniques such
as GloVe embeddings, CNN, RNN, LSTM, and expert validation. These techniques enable
the algorithm to effectively classify and detect ambiguity in software requirements by
capturing patterns and nuances in the data. The involvement of subject matter experts
adds credibility to the accuracy score, ensuring alignment with their domain knowledge.

4.1.5. Phase 4: Ground Truth

This process ensures that the model accurately classifies software requirements and
helps identify potential sources of ambiguity in software projects. To achieve accuracy,
we collected another 10 SRS, which corresponded to 254 requirements that were available
online. We invited subject matter experts to validate and evaluate our initial approach
of detecting an ambiguous requirement. Five respondents (e.g., working as system an-
alysts and/or having a background in computer science with requirement engineering
knowledge) were selected. Two of the respondents had at least five years of experience,
and three respondents had two to three years of experience in requirements engineering.
In total, 254 software requirements were divided among the five experts. The experts
were provided with a questionnaire with 50 or 54 requirements, focusing on labeling the

Appl. Sci. 2023, 13, 8368 13 of 33

ambiguous or clear requirements based on knowledge and understanding. Additionally,
we provided a brief description of each type of ambiguity to assist the experts in making
their determinations. The experts were given 14 days to provide feedback, allowing them
to review the requirements at their convenience and accurately identify any ambiguous or
clear requirements. Based on the result from the questionnaire:

• One respondent provided the same result as the one generated by the ACM.
• Three respondents did not agree with 5 out of 50 software requirements that were

detected as ambiguous, but the experts identified the software requirement as clear.
• One respondent did not agree with 6 out of 50 software requirements that were

detected as ambiguous, but he identified the software requirement as clear.
• On average, across all five experts, only 8.27% of the responses concerning ambiguous

and clean requirements did not match the results provided by ACM.

Based on the success of the results from the ambiguity classification model, we pro-
ceeded with our experiments for the fault-prone software requirements specification detec-
tion model.

4.2. Fault-Prone Software Requirements Specification Detection Model

For FPDM development, we experimented with different boosting ensemble learning
algorithms for the model, including adaptive boosting (AdaBoost), gradient boosting
(GBM), and extreme gradient boosting (XGBoost), and selected the best algorithm as the
classifier for the model. The boosting algorithm was one of the many elements used in
machine learning for the creation of a predictive model that utilized the data frame prepared
in Python. Consequently, the data frame fed into different machine learning elements that
utilized the boosting approach to build the predictive models. Boosting is one of many
machine learning elements used to construct a predictive model that makes use of the
Python data frame. To ensure unbiased data distribution, the training and testing sets use
the 80/20 percent splitting technique before randomly picking the data and evenly dividing
them according to class.

4.2.1. Phase 1: Data Collection

The creation of the fault-prone software requirements specification dataset facilitates
the development of the fault-prone software requirements specification detection model.
The dataset comprises 200 software requirements specifications (SRS) that are publicly
accessible online. This includes SRS title, SRS description, SRS intended users, and SRS
requirements for each SRS.

4.2.2. Phase 2: Data Processing

Before the dataset is utilized for training the FPDM, the data undergo a process
of cleaning and pre-processing utilizing the same method employed in the ambiguity
classification model. This involves the elimination of redundant information, formatting
of the text, and ensuring the uniformity of data across all documents. To determine the
quality of the SRS, several criteria were employed.

• SRS Title: The SRS title was evaluated to ensure that the title provides a clear idea of
the system that will be implemented.

• SRS Description: The frequency of words present in the SRS description was analyzed
by counting each word from the SRS title in the SRS description. To ensure consistency,
the titles were converted into root word before calculating the frequency of words.
The Computer Science Academic Vocabulary List (CSAVL) was excluded to ensure
that the SRS description is related to the SRS title and is clear. A clear SRS description
must contain more than three words related to the SRS title. For example, if the SRS
title is Hotel Reservation System, the words “hotel” and “reserve” are checked, and
the word “system” is excluded as “system” is part of the CSAVL.

Appl. Sci. 2023, 13, 8368 14 of 33

• SRS intended users: We checked the presence of intended users of the system in the
SRS.

• SRS requirements: Using custom Python scripting, we classified the requirements in
each SRS based on the five types of ambiguity generated by the ACM.

Furthermore, subject matter experts comprising six respondents with experience
in leading and managing software projects, system analysts, and/or a background in
computer science with requirement engineering knowledge were invited to evaluate the
SRS. Among the respondents, two had more than 10 years of experience, and four had 2
to 3 years of experience in requirement engineering. The experts were provided with a
questionnaire containing 100 SRS documents, and the task was to label fault-prone SRS
based on knowledge and understanding. A brief description of fault-prone and clean SRS
criteria was also provided to aid the experts in the evaluation. The experts were given 20
days to provide feedback, allowing them to review it at their convenience (Figure 5).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 34

Figure 5. Fault-prone Software Requirements Specification Detection Model.

4.2.3. Phase 3: Fault-Prone Software Requirements Specification Detection
The development of FPDM included statistical feature extraction from the fault-

prone software requirements specification dataset. Table 8 shows the list of features that
were extracted for each SRS. To prevent overfitting and maintain accuracy in the detection
model, we restricted the number of features to 25 because the number of features is im-
portant in building an accurate detection model; too many features might lead to overfit-
ting and increase the complexity of the detection model [22], ultimately reducing the
model’s accuracy. Reducing the number of features is also important to improve inter-
pretability [23]. The statistical features employed in our model are in the format of double-
precision floating point.

Table 8. Extracted statistical-based emotion features based on the ambiguous requirements.

Label Features Category Ref.
F1 Clear title for each SRS Boolean Proposed
F2 Frequency of title word in description for each SRS Numerical Proposed
F3 Clear description for each SRS Boolean Proposed
F4 Description word count for each SRS Numerical Proposed
F5 Presence of SRS intended users for each SRS Boolean Proposed

Figure 5. Fault-prone Software Requirements Specification Detection Model.

4.2.3. Phase 3: Fault-Prone Software Requirements Specification Detection

The development of FPDM included statistical feature extraction from the fault-prone
software requirements specification dataset. Table 8 shows the list of features that were
extracted for each SRS. To prevent overfitting and maintain accuracy in the detection model,

Appl. Sci. 2023, 13, 8368 15 of 33

we restricted the number of features to 25 because the number of features is important in
building an accurate detection model; too many features might lead to overfitting and increase
the complexity of the detection model [22], ultimately reducing the model’s accuracy. Reducing
the number of features is also important to improve interpretability [23]. The statistical features
employed in our model are in the format of double-precision floating point.

Table 8. Extracted statistical-based emotion features based on the ambiguous requirements.

Label Features Category Ref.

F1 Clear title for each SRS Boolean Proposed

F2 Frequency of title word in description
for each SRS Numerical Proposed

F3 Clear description for each SRS Boolean Proposed

F4 Description word count for each SRS Numerical Proposed

F5 Presence of SRS intended users for
each SRS Boolean Proposed

F6 Total of software requirements for
each SRS Numerical [10]

F7 Number of clear software
requirements for each SRS Numerical Proposed

F8 Number of ambiguous software
requirements for each SRS Numerical Proposed

F9 Number of lexical ambiguity
requirements for each SRS Numerical Proposed

F10 Number of syntactic ambiguity
requirements for each SRS Numerical Proposed

F11 Number of semantic ambiguity
requirements for each SRS Numerical Proposed

F12 Number of syntax ambiguity
requirements for each SRS Numerical Proposed

F13 Number of pragmatic ambiguity
requirements for each SRS Numerical Proposed

F14 Percentage of lexical ambiguity
requirements for each SRS Numerical [5,7,18]

F15 Percentage of syntactic ambiguity
requirements for each SRS Numerical [5–7,18]

F16 Percentage of semantic ambiguity
requirements for each SRS Numerical [7]

F17 Percentage of syntax ambiguity
requirements for each SRS Numerical [5,6,18]

F18 Percentage of pragmatic ambiguity
requirements for each SRS Numerical [7,18]

F19 Percentage of clear software
requirements for each SRS Numerical Proposed

F20 Probability value of lexical ambiguity
software requirements for each SRS Numerical Proposed

F21
Probability value of syntactic
ambiguity software requirements for
each SRS

Numerical Proposed

F22
Probability value of semantic
ambiguity software requirements for
each SRS

Numerical Proposed

F23 Probability value of syntax ambiguity
software requirements for each SRS Numerical Proposed

F24
Probability value of pragmatic
ambiguity software requirements for
each SRS

Numerical Proposed

F25 Probability value of clear software
requirements for each SRS Numerical Proposed

Appl. Sci. 2023, 13, 8368 16 of 33

We grouped the set of 25 features that evaluate the quality of software requirements
specifications (SRS) into five categories. The first set of features (F1–F4) evaluates the clarity
and completeness of the SRS title and description. F1 is a Boolean feature that indicates
whether the SRS title is clear and understandable. F2 calculates the frequency of title words
in the SRS description. F3 is a Boolean feature that evaluates whether the SRS title contains
three or more title words. F4 calculates the total word count of the SRS description. The
second set of features (F5–F7) evaluates the identification and completeness of intended
users and requirements. F5 is a Boolean feature that indicates whether the intended
users of the system are identified in the SRS. F6 calculates the total number of software
requirements for each SRS, while F7 calculates the number of clear requirements for each
SRS. The third set of features (F8–F13) evaluates the types and frequency of ambiguity in
the SRS requirements. F8 calculates the total number of ambiguous requirements for each
SRS. F9–F13 are features that calculate the number of each type of ambiguity for each SRS.
Specifically, lexical ambiguity (F9), syntactic ambiguity (F10), semantic ambiguity (F11),
syntax ambiguity (F12), and pragmatic ambiguity (F13).

The fourth set of features (F14–F18) calculates the percentage of each type of am-
biguous requirement for each SRS. Specifically, the percentage of lexical ambiguity (F14),
syntactic ambiguity (F15), semantic ambiguity (F16), syntax ambiguity (F17), and pragmatic
ambiguity (F18). F19 calculates the percentage of clear requirements for each SRS. Finally,
the fifth set of features (F20–F24) calculates the probability value of each type of ambiguity
requirement for each SRS. F25 calculates the probability value for clear requirements for
each SRS. These features are calculated using Equations (1) and (2), which, respectively,
show the formulas to determine the percentage and probability value of each ambiguity
class for each SRS. Overall, these features provide a comprehensive evaluation of the quality
of SRS, which is crucial for ensuring the success of software development projects. Equation
(1) shows the formula to determine the percentage of each type of ambiguity for each SRS,
as shown in Equation (1).

Percentage o f lexical ambiguity =
Total number o f lexical ambiguity

Total number o f so f tware requirements f or each SRS
× 100% (1)

Equation (2) shows the formula to calculate the probability value of each type of
ambiguity for each SRS as shown in Equation (2).

Probability value o f lexical ambiguity =
Total number o f lexical ambiguity

Total number o f so f tware requirements f or each SRS
(2)

In this study, we utilized the recursive feature elimination with the cross validation
(RFECV) method to perform feature selection using a feature importance approach. The
variable importance function is employed to calculate the feature importance score, which
enables the ranking of features based on the significance in decision making. Feature selec-
tion is an important process to reduce computational costs and enhance model performance
by minimizing the number of input variables. To this end, Hazim et al. [24] suggest several
statistical-based features for opinion spam detection, among which two are selected for
our study. Similarly, Seri et al. [25] propose 20 statistical-based features, but only seven
features are chosen to fit the environment of our study. Specifically, out of the initial 25
features extracted from the dataset, only 12 were selected for the study. Figures 6 and 7
below illustrates the feature importance and correlation matrix.

Appl. Sci. 2023, 13, 8368 17 of 33

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 34

Equation (2) shows the formula to calculate the probability value of each type of ambiguity
for each SRS as shown in Equation (2).

𝑃𝑃𝑃𝑃𝑜𝑜𝑎𝑎𝑃𝑃𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑎𝑎 𝑣𝑣𝑃𝑃𝑙𝑙𝑎𝑎𝑃𝑃 𝑜𝑜𝑜𝑜 𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝑙𝑙 𝑃𝑃𝑎𝑎𝑎𝑎𝑙𝑙𝑃𝑃𝑎𝑎𝑙𝑙𝑃𝑃𝑎𝑎 =
𝑇𝑇𝑜𝑜𝑃𝑃𝑃𝑃𝑙𝑙 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑃𝑃𝑃𝑃𝑙𝑙 𝑃𝑃𝑎𝑎𝑎𝑎𝑙𝑙𝑃𝑃𝑎𝑎𝑙𝑙𝑃𝑃𝑎𝑎

𝑇𝑇𝑜𝑜𝑃𝑃𝑃𝑃𝑙𝑙 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑠𝑠𝑜𝑜𝑜𝑜𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑟𝑟𝑎𝑎𝑙𝑙𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠 𝑜𝑜𝑜𝑜𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃ℎ 𝑆𝑆𝑆𝑆𝑆𝑆 (2)

In this study, we utilized the recursive feature elimination with the cross validation
(RFECV) method to perform feature selection using a feature importance approach. The
variable importance function is employed to calculate the feature importance score, which
enables the ranking of features based on the significance in decision making. Feature se-
lection is an important process to reduce computational costs and enhance model perfor-
mance by minimizing the number of input variables. To this end, Hazim et al. [24] suggest
several statistical-based features for opinion spam detection, among which two are se-
lected for our study. Similarly, Seri et al. [25] propose 20 statistical-based features, but
only seven features are chosen to fit the environment of our study. Specifically, out of the
initial 25 features extracted from the dataset, only 12 were selected for the study. Figures
6 and 7 below illustrates the feature importance and correlation matrix.

Figure 6. Feature Importance. Figure 6. Feature Importance.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 34

Figure 7. Correlation Matrix.

After implementing AdaBoost, GBM, and XGBoost as the classifiers for the FPDM,
we conducted a comparative analysis of the performance. Figure 8 shows the accuracy of
each algorithm and it was found that the XGBoost with the proposed features achieved
the highest accuracy compared to the others. Table 9 shows the results of the evaluation,
including the recall, precision, and f-measure of each model. In this study, the perfor-
mance of a boosting algorithm was evaluated with and without the proposed features for
detecting fault-prone SRS. The evaluation aimed to determine the best model for identi-
fying fault-prone SRS. The FPDM achieved a recall score of 1.000, using XGBoost with
proposed features. The recall score implied that XGBoost worked well in detecting the
fault-prone SRS by achieving the highest positive rate. In terms of the F-measure score,
XGBoost with the proposed features projected an evaluation score of 0.9851, which indi-
cated the ability of the model to balance the positivity rate and false-positive rate. For the
precision score, XGBoost with selected existing and proposed features achieved the high-
est score of 0.9706. Based on these results, the XGBoost model with the proposed features
is recommended for identifying fault-prone SRS.

Figure 7. Correlation Matrix.

Appl. Sci. 2023, 13, 8368 18 of 33

After implementing AdaBoost, GBM, and XGBoost as the classifiers for the FPDM,
we conducted a comparative analysis of the performance. Figure 8 shows the accuracy of
each algorithm and it was found that the XGBoost with the proposed features achieved
the highest accuracy compared to the others. Table 9 shows the results of the evaluation,
including the recall, precision, and f-measure of each model. In this study, the performance
of a boosting algorithm was evaluated with and without the proposed features for detecting
fault-prone SRS. The evaluation aimed to determine the best model for identifying fault-
prone SRS. The FPDM achieved a recall score of 1.000, using XGBoost with proposed
features. The recall score implied that XGBoost worked well in detecting the fault-prone
SRS by achieving the highest positive rate. In terms of the F-measure score, XGBoost with
the proposed features projected an evaluation score of 0.9851, which indicated the ability
of the model to balance the positivity rate and false-positive rate. For the precision score,
XGBoost with selected existing and proposed features achieved the highest score of 0.9706.
Based on these results, the XGBoost model with the proposed features is recommended for
identifying fault-prone SRS.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 34

Figure 8. Accuracy of algorithms on the creation of FPDM.

Table 9. Training results for each algorithm in FPDM.

Algorithm Precision Recall F-Measure
AdaBoost (without proposed features) 0.7000 1.000 0.8235

GBM (without proposed features) 0.8700 0.8900 0.8300
XGBoost (without proposed features) 0.9300 0.9100 0.9200

AdaBoost (with proposed features) 0.6667 1.000 0.8000
GBM (with proposed features) 0.9693 0.9752 0.9714

XGBoost (with proposed features) 0.9706 1.000 0.9851

Based on the experimental results presented in Table 10, we presented the compari-
son of different boosting algorithms in terms of the performance in detecting fault-prone
or clean software requirements specifications (SRS) both with and without the proposed
features. XGBoost with the proposed features demonstrated the highest accuracy out of
all algorithms. The XGBoost algorithm with the proposed features achieved a precision of
0.9800 for fault-prone SRS and 1.000 for clean SRS, recall of 0.1000 for fault-prone SRS and
0.9700 clean SRS, and F-measure of 0.9500 for fault-prone SRS and 0.9900 for clean SRS,
which are higher than the corresponding values obtained by other algorithms. The use of
the proposed features led to an overall improvement in accuracy for all algorithms. These
findings suggest that XGBoost is the best boosting algorithm for detecting fault-prone
SRS, especially when combined with the proposed features.

Table 10. Performance for detecting fault-prone SRS.

Algorithm SRS Precision Recall F-Measure
AdaBoost (without proposed fea-

tures) Fault-prone 0.9200 0.9700 0.9400

 Clean 0.9200 0.8000 0.8600
GBM (without proposed features) Fault-prone 0.8000 0.8600 0.8300

 Clean 0.9400 0.9200 0.9300
XGBoost (without proposed fea-

tures) Fault-prone 0.9500 0.9700 0.9600

 Clean 0.9200 0.8500 0.8800

Figure 8. Accuracy of algorithms on the creation of FPDM.

Table 9. Training results for each algorithm in FPDM.

Algorithm Precision Recall F-Measure

AdaBoost (without proposed features) 0.7000 1.000 0.8235
GBM (without proposed features) 0.8700 0.8900 0.8300

XGBoost (without proposed features) 0.9300 0.9100 0.9200
AdaBoost (with proposed features) 0.6667 1.000 0.8000

GBM (with proposed features) 0.9693 0.9752 0.9714
XGBoost (with proposed features) 0.9706 1.000 0.9851

Based on the experimental results presented in Table 10, we presented the comparison
of different boosting algorithms in terms of the performance in detecting fault-prone or
clean software requirements specifications (SRS) both with and without the proposed
features. XGBoost with the proposed features demonstrated the highest accuracy out of
all algorithms. The XGBoost algorithm with the proposed features achieved a precision
of 0.9800 for fault-prone SRS and 1.000 for clean SRS, recall of 0.1000 for fault-prone SRS
and 0.9700 clean SRS, and F-measure of 0.9500 for fault-prone SRS and 0.9900 for clean SRS,
which are higher than the corresponding values obtained by other algorithms. The use of
the proposed features led to an overall improvement in accuracy for all algorithms. These

Appl. Sci. 2023, 13, 8368 19 of 33

findings suggest that XGBoost is the best boosting algorithm for detecting fault-prone SRS,
especially when combined with the proposed features.

Table 10. Performance for detecting fault-prone SRS.

Algorithm SRS Precision Recall F-Measure

AdaBoost (without proposed features) Fault-prone 0.9200 0.9700 0.9400
Clean 0.9200 0.8000 0.8600

GBM (without proposed features) Fault-prone 0.8000 0.8600 0.8300
Clean 0.9400 0.9200 0.9300

XGBoost (without proposed features) Fault-prone 0.9500 0.9700 0.9600
Clean 0.9200 0.8500 0.8800

AdaBoost (with proposed features) Fault-prone 0.9100 0.8300 0.8700
Clean 0.9500 0.9700 0.9600

GBM (with proposed features) Fault-prone 1.0000 0.7500 0.8600
Clean 0.8900 1.0000 0.9400

XGBoost (with proposed features) Fault-prone 0.9800 1.0000 0.9500
Clean 1.000 0.9700 0.9900

5. Case Study: Detecting Fault-Prone Software Requirements Specification for
Edge/Cloud Application
5.1. The Evolution of Edge/Cloud Computing

Cloud computing has evolved significantly since the concept emerged in the 1990s.
In the 2000s, the use of cloud computing continued to grow with the introduction of new
services, such as IaaS and PaaS. In the 2010s, edge computing gained traction with the rise
of IoT devices and the need for faster data processing at the edge [26]. Fog computing and
open-source platforms for edge computing also emerged during this time. Hybrid cloud
solutions and containerization with Kubernetes became key technologies for managing
cloud applications in the late 2010s. In 2020, the COVID-19 pandemic led to a surge in
demand for cloud services, and serverless computing became more widely adopted [27].
In 2021, AI and ML technologies in cloud services continued to grow, and edge computing
saw increased adoption. In 2022, cloud providers focused on making their services more
accessible to smaller businesses and individuals while also increasing cloud-based security
solutions. Finally, in 2023, quantum computing technologies and blockchain technology are
expected to have an impact on cloud computing, with cloud providers offering quantum
computing services and blockchain-as-a-service solutions. Figure 9 illustrates the evolution
of edge/cloud computing.

Appl. Sci. 2023, 13, 8368 20 of 33Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 34

Figure 9. Evolution of Edge and Cloud Computing.

5.2. Edge/Cloud Application Software Requirements Specification
Cloud and edge computing are relatively new paradigms for software development,

and, as such, the methods for developing software in these environments are still evolv-
ing. The challenges of developing software for cloud and edge computing are that the
architecture is often complex and distributed, and there are rapid changes in requirements
due to the dynamic nature of these environments, resulting in the difficulty of creating a
comprehensive and accurate SRS document. It is a fact that cloud environments are sto-
chastic and dynamic, so it is complex to manage cloud requirements in a systematic and
repeatable way, especially when requirements rapidly change in a non-predictive manner
[28]. The software requirements specification remains a vital document for cloud compu-
ting application development because it specifies the requirements of the cloud compu-
ting application, which are essential for the application to function optimally in the cloud
environment.

Figure 9. Evolution of Edge and Cloud Computing.

5.2. Edge/Cloud Application Software Requirements Specification

Cloud and edge computing are relatively new paradigms for software development,
and, as such, the methods for developing software in these environments are still evolv-
ing. The challenges of developing software for cloud and edge computing are that the
architecture is often complex and distributed, and there are rapid changes in requirements
due to the dynamic nature of these environments, resulting in the difficulty of creating
a comprehensive and accurate SRS document. It is a fact that cloud environments are
stochastic and dynamic, so it is complex to manage cloud requirements in a systematic
and repeatable way, especially when requirements rapidly change in a non-predictive
manner [28]. The software requirements specification remains a vital document for cloud
computing application development because it specifies the requirements of the cloud
computing application, which are essential for the application to function optimally in the
cloud environment.

Appl. Sci. 2023, 13, 8368 21 of 33

5.3. Analysis of Fault-Prone Edge/Cloud Application Software Requirements Specification

In this case study, we collected 30 SRS documents from various sources, and analyzed
them to determine whether the SRS is fault-prone or a clean SRS (Table 11). The SRS
documents were related to reservation, management, healthcare, booking, education, and
other industries, all of which are based on edge/cloud applications. These documents
included the SRS title, description, intended users, and both functional and non-functional
requirements. To ensure the quality of these SRS documents, we used a fault-prone software
requirements specification model to identify any potential ambiguities in the requirements
and identify fault-prone SRS. Overall, this approach allowed us to gain valuable insights
into the unique challenges of designing and developing edge/cloud applications across
a wide range of industries. By carefully analyzing the SRS, we were able to identify key
patterns and trends that inform future development efforts and drive innovation in this
rapidly evolving field (Figure 9).

Table 11. Edge/Cloud Applications Project.

Established
Year

SRS Project
Title Project Introduction

2017 Istio—Connect Secure Control and Observe
Services

Connect Secure Control and Observe Services: Istio is an open-source
service mesh platform that provides a way to connect, secure, control,
and observe microservices. It provides a powerful set of tools for
managing traffic, enforcing policies, and monitoring performance, with
built-in support for service-level agreements (SLAs) and other features.

2016 OpenFaaS—Serverless Functions Made Simple

Serverless Functions Made Simple: OpenFaaS is an open-source
serverless framework that allows developers to deploy their code as
functions to the cloud or on-premises infrastructure. It provides a
simple and scalable way to run functions in any language or runtime,
with built-in support for Docker containers.

2016 CareKit CareKit is an open-source framework for developing health and
wellness applications for iOS.

2015 MedStack

MedStack is a cloud-based platform for developing and deploying
healthcare applications. It provides a secure and compliant
environment for developers to build and test their applications, with
built-in support for HIPAA and other regulatory requirements.

2015 User Profiling in social media

User profiling in social media refers to the process of analyzing user
data from social media platforms to gain insights into user behavior,
preferences, and interests. It can be used for targeted advertising,
personalized recommendations, and other applications.

2014 Terraform—Infrastructure as Code

Terraform is an open-source tool for building, changing, and versioning
infrastructure safely and efficiently. It uses a declarative configuration
language to describe infrastructure as code, allowing users to automate
the provisioning and management of cloud resources.

2014 CloudMedX
CloudMedX is a cloud-based platform for healthcare data analytics. It
uses machine learning and natural language processing to analyze
clinical data and generate insights for healthcare providers and payers.

2014 Kubernetes—Automated Container
Management

Kubernetes is an open-source platform for automated container
management. It provides a powerful set of tools for deploying, scaling,
and managing containerized applications, with built-in support for
load balancing, service discovery, and other features.

2013 Docker

Docker is an open-source platform for developing, shipping, and
running applications in containers. It provides a lightweight and
portable way to package and deploy applications, allowing developers
to build once and run anywhere.

2013 Roomzilla
Roomzilla is a cloud-based platform for managing conference rooms
and other shared spaces. It provides a user-friendly interface for
scheduling and availability management.

2013 Appointlet
Appointlet is a cloud-based platform for scheduling appointments and
meetings. It provides a customizable booking page and integrations
with popular calendar tools.

2012 Prometheus—Monitoring and Alerting

Prometheus is an open-source monitoring and alerting system that
collects metrics from different sources, stores them in a time-series
database, and provides a powerful query language for analyzing and
visualizing them. It also has built-in support for alerting and
notifications.

2012 Reservio
Reservio is a cloud-based platform for managing appointments and
bookings for businesses of all sizes. It provides a user-friendly interface
for scheduling, payment processing, and customer management.

Appl. Sci. 2023, 13, 8368 22 of 33

Table 11. Cont.

Established
Year

SRS Project
Title Project Introduction

2012 RoomKey

A cloud-based hotel property management system (PMS) that allows
hoteliers to manage their properties and reservations from a centralized
platform. The system includes features such as reservation
management, online booking, housekeeping, front desk management,
payment processing, and reporting.

2011 Cloud Foundry

Cloud Foundry is an open-source platform for building, deploying,
and managing cloud-native applications. It provides a scalable and
resilient environment for running applications, with built-in support
for continuous integration and delivery (CI/CD) pipelines.

2011 BookingSync BookingSync is a cloud-based platform for managing vacation rentals,
holiday homes, and other short-term rentals.

2011 ClassDojo

ClassDojo is a cloud-based platform for communication and
collaboration between teachers, students, and parents. It provides a
suite of tools for managing classroom activities, sharing assignments,
and providing feedback

2010 OpenStack

OpenStack is an open-source cloud computing platform that provides a
set of tools for building and managing private and public clouds. It
provides a scalable and flexible infrastructure for running virtual
machines, containers, and other cloud-native applications.

2010 HotelTonight
HotelTonight is a cloud-based platform for last-minute hotel bookings.
It provides a user-friendly interface for searching and booking hotels,
with discounts and special offers.

2009 BookingsPlus

BookingsPlus is a cloud-based platform for managing bookings and
reservations for events, facilities, and other resources. It provides a
user-friendly interface for booking and payment processing, with
built-in support for scheduling and availability management.

2009 Schoology
Schoology is a cloud-based platform for K-12 and higher education
institutions. It provides a suite of tools for course management, student
engagement, and assessment.

2008 Bookeo

Bookeo is a cloud-based platform for managing bookings and
reservations for tours, classes, and other activities. It provides a
user-friendly interface for scheduling, payment processing, and
customer management.

2008 Cloud Based Hotel Management System

A cloud-based hotel management system is a software platform for
managing hotel operations, such as reservations, bookings, payments,
and customer service. It provides real-time visibility into hotel
activities, with built-in analytics and reporting. It can be used by hotels
of all sizes and types.

2007 Cloud based File Sharing System

A cloud-based file sharing system is a software platform for storing
and sharing files in the cloud. It provides secure and convenient access
to files from any device, with built-in collaboration and version control
features. It can be used by individuals, teams, and organizations of all
sizes.

2006 Amazon EC2

Amazon Elastic Compute Cloud (EC2) is a web service that provides
scalable computing capacity in the cloud. It allows users to launch and
manage virtual machines, called instances, on Amazon’s infrastructure,
providing flexibility and cost savings for a variety of use cases.

2006 Appointy
Appointy is a cloud-based platform for managing appointments and
bookings for businesses of all sizes. It provides a user-friendly interface
for scheduling, payment processing, and customer management.

2004 OpenMRS

OpenMRS is an open-source electronic medical record system that
provides a way to manage patient data in healthcare settings. It is
designed to be flexible and customizable, allowing healthcare
providers to adapt it to their specific needs.

2002 Cloud based Inventory Management System

A cloud-based inventory management system is a software platform
for managing inventory and supply chain operations. It provides
real-time visibility into inventory levels, orders, and shipments, with
built-in analytics and reporting. It can be used by businesses of all sizes
and industries.

1999 Cloud Based Library Management System

A cloud-based library management system is a software platform for
managing library operations, such as cataloging, circulation, and
patron management. It provides a user-friendly interface for searching
and checking out books, with built-in analytics and reporting. It can be
used by libraries of all sizes and types.

1997 Athena Health Athena Health is a cloud-based platform for electronic health records,
revenue cycle management, and practice management.

Appl. Sci. 2023, 13, 8368 23 of 33

In this study, we utilized two models to evaluate the quality of the software require-
ments specifications (SRS) for edge/cloud applications: the ambiguity classification model
(ACM) and the fault-prone software requirements specification detection model (FPDM).
The ACM model was used to classify any potential ambiguities in the software requirements
for each SRS, which leads to errors or misinterpretations during the development process.
The ACM model flags any ambiguous requirements in the SRS, such as lexical, syntactic,
semantic, syntax and pragmatic ambiguities. After applying the ACM model to the SRS
dataset, the fault-prone software requirements specification detection model (FPDM) was
then used to evaluate the fault-proneness of the SRS documents. The FPDM evaluates the
SRS documents based on the title, descriptions, and presence of intended users of the SRS.
Additionally, the result based on the ACM for detected ambiguous software requirements
was included. This approach allows us to ensure that the SRS documents are of high quality
and free of potential faults or ambiguities, ultimately leading to a more successful and
efficient development process.

Based on the results of our analysis using the fault-prone software requirements speci-
fication model, we determined that out of the 30 SRS documents collected for this study, 20
were classified as fault-prone due to the presence of ambiguities, which could potentially
result in errors or misinterpretations during the development process. Conversely, our anal-
ysis using the FPDM found that 10 of the 30 SRS documents had a low number of detected
ambiguities. These documents had clear titles and descriptions, included information on
intended users, and had well-defined functional and non-functional requirements. Based
on this, we consider these 10 documents to be relatively free from any major ambiguities or
faults. This assessment of the quality of the SRS documents revealed a significant degree of
variation, with some documents being clearly and concisely written, while others contained
inconsistencies that could impede the development process.

A panel of subject matter experts was assembled for the evaluation of the SRS doc-
uments. The panel consisted of six respondents who are experienced in leading and
managing software projects, or system analysts with a computer science background and
expertise in requirement engineering. Two of the experts had over 10 years of experience,
while the remaining four had two to three years of experience in requirement engineering.
The experts were presented with a questionnaire that included 30 SRS documents with
edge/cloud applications and were tasked with assessing the clarity of the title, adequacy
of the system description, suitability of the intended users, and identifying fault-prone SRS
based on knowledge and expertise. A brief description of fault-prone and clean SRS criteria
was also provided to aid the experts in evaluation. We created a “Labeling tracker” to help
the experts to keep track of their progress on labeling the SRS. Additionally, the experts
were given 14 days to provide feedback, allowing them to review it at their convenience.

Based on the FPDM and expert evaluation, the classification of the 30 SRS documents
was determined (Table 12). However, only two SRS documents did not match. Specifically,
while the FPDM detected one SRS document as “fault-prone”, the same document was
labeled as “clean” by the human experts. Hence, for another document, the FPDM detected
one SRS document as “clean”, the same document was labeled as “fault-prone” by the
human experts. This discrepancy suggests that the FPDM may have a higher sensitivity
to identifying potential ambiguities in the requirements compared to human experts.
Considering multiple approaches is essential to assess SRS quality to ensure a more accurate
and reliable evaluation. Hence, Figure 10 illustrates the comparison of fault-prone and
clean SRS based on the year they were established.

Appl. Sci. 2023, 13, 8368 24 of 33

Table 12. Comparison of SRS Classification.

Title

SRS Classification

EqualExpert
Evaluation

Fault-Prone SRS Detection
Model

OpenFaaS—Serverless Functions Made Simple Clean Clean Yes

Terraform—Infrastructure as Code Clean Clean Yes

Prometheus—Monitoring and Alerting Clean Clean Yes

Docker Clean Clean Yes

Amazon EC2 Clean Clean Yes

MedStack Clean Clean Yes

User Profiling in social media Clean Clean Yes

CloudMedX Clean Clean Yes

BookingsPlus Clean Clean Yes

Kubernetes—Automated Container
Management Fault-prone Fault-prone Yes

Istio—Connect Secure Control and Observe
Services Fault-prone Fault-prone Yes

Cloud Foundry Fault-prone Fault-prone Yes

OpenStack Fault-prone Fault-prone Yes

OpenMRS Fault-prone Fault-prone Yes

CareKit Fault-prone Fault-prone Yes

Athena Health Fault-prone Fault-prone Yes

BookingSync Fault-prone Fault-prone Yes

Roomzilla Fault-prone Fault-prone Yes

Appointy Fault-prone Fault-prone Yes

Appointlet Fault-prone Fault-prone Yes

Bookeo Fault-prone Fault-prone Yes

Schoology Fault-prone Fault-prone Yes

ClassDojo Fault-prone Fault-prone Yes

HotelTonight Fault-prone Fault-prone Yes

Cloud based Inventory Management System Fault-prone Fault-prone Yes

Cloud based File Sharing System Fault-prone Fault-prone Yes

Cloud Based Hotel Management System Fault-prone Fault-prone Yes

Cloud Based Library Management System Fault-prone Fault-prone Yes

Reservio Clean Fault-prone No

RoomKey Fault-prone Clean No

Appl. Sci. 2023, 13, 8368 25 of 33

Appl. Sci. 2023, 13, x FOR PEER REVIEW 26 of 34

ClassDojo Fault-prone Fault-prone Yes
HotelTonight Fault-prone Fault-prone Yes
Cloud based Inventory Management System Fault-prone Fault-prone Yes
Cloud based File Sharing System Fault-prone Fault-prone Yes
Cloud Based Hotel Management System Fault-prone Fault-prone Yes
Cloud Based Library Management System Fault-prone Fault-prone Yes
Reservio Clean Fault-prone No
RoomKey Fault-prone Clean No

Figure 10. Comparison of fault-prone and clean SRS based on year established.

To achieve this, we utilized three formulas: the linear mapping function for software
requirements, ambiguity density index (ADI), and the fault-prone SRS score.
1. Linear Mapping Function for Software Requirements: A mathematical formula used

to calculate a score based on a given ratio of clear requirements to ambiguous re-
quirements. The formula uses the concept of exponential decay, where the score de-
creases as the ratio of clear to ambiguous requirements decreases. The score ranges
from 0 to 10, with 10 being the highest score and indicating a high ratio of clear re-
quirements to ambiguous requirements. If the score is high, it means that there are
more clear requirements compared to ambiguous requirements. A higher score indi-
cates more clarity and less ambiguity in the requirements.

2. Ambiguity Density Index (ADI): ADI formula quantifies the level of ambiguity in the
SRS by measuring the ratio of the number of occurrences of ambiguous words in each
SRS to the total number of words in the SRS. A lower ADI value indicates a lower
level of ambiguity in the SRS, meaning that the specification is clearer and easier to
understand. However, a high ADI value indicates a high level of ambiguity, and ar-
eas of the SRS may require further clarification or refinement to ensure a clear and
unambiguous specification.

3. Fault-prone SRS Score: The fault-prone SRS Score considers various factors such as
the clarity of the title and description, the presence of intended users, the ratio of clear
requirements to ambiguous requirements and the usage of ambiguous words to as-
sign a score that reflects the overall fault-proneness of the SRS. These factors are as-
signed a weight based on the perceived importance in the development of a high-
quality SRS.
To clarify, while a higher ADI value generally indicates a higher level of ambiguity

it does not necessarily mean that the SRS tends to be fault-prone. Other factors, such as

Figure 10. Comparison of fault-prone and clean SRS based on year established.

To achieve this, we utilized three formulas: the linear mapping function for software
requirements, ambiguity density index (ADI), and the fault-prone SRS score.

1. Linear Mapping Function for Software Requirements: A mathematical formula used
to calculate a score based on a given ratio of clear requirements to ambiguous require-
ments. The formula uses the concept of exponential decay, where the score decreases
as the ratio of clear to ambiguous requirements decreases. The score ranges from 0 to
10, with 10 being the highest score and indicating a high ratio of clear requirements
to ambiguous requirements. If the score is high, it means that there are more clear
requirements compared to ambiguous requirements. A higher score indicates more
clarity and less ambiguity in the requirements.

2. Ambiguity Density Index (ADI): ADI formula quantifies the level of ambiguity in
the SRS by measuring the ratio of the number of occurrences of ambiguous words
in each SRS to the total number of words in the SRS. A lower ADI value indicates
a lower level of ambiguity in the SRS, meaning that the specification is clearer and
easier to understand. However, a high ADI value indicates a high level of ambiguity,
and areas of the SRS may require further clarification or refinement to ensure a clear
and unambiguous specification.

3. Fault-prone SRS Score: The fault-prone SRS Score considers various factors such as
the clarity of the title and description, the presence of intended users, the ratio of
clear requirements to ambiguous requirements and the usage of ambiguous words
to assign a score that reflects the overall fault-proneness of the SRS. These factors
are assigned a weight based on the perceived importance in the development of a
high-quality SRS.

To clarify, while a higher ADI value generally indicates a higher level of ambiguity it
does not necessarily mean that the SRS tends to be fault-prone. Other factors, such as the
clarity of the title and description and the presence of intended users, are also capable of
impacting the fault-prone score. The fault-prone SRS score is typically used to prioritize
testing and quality assurance efforts with SRSs that have a higher score, indicating a lower
likelihood of defects or failures in the resulting software product. Figure 11 illustrates the
comparison of fault-prone SRS score and ADI for each SRS.

By utilizing these three formulas, we were able to produce a fault-prone severity scale,
which serves as a reliable measure of the level of ambiguity and potential for errors in

Appl. Sci. 2023, 13, 8368 26 of 33

the SRS for our case study. Equation (3) shows the formula linear mapping function for
software requirements (LMF).

Linear Mapping Function f or So f tware Requirements (LMF) = 10 ∗
(

1 − e(−x)
)

(3)

where x =
Clear requirements

Ambiguous requirements

Equation (4) shows the formula ambiguity density index (ADI).

Ambiguity Density Index (ADI) =
Number o f occurrences o f ambiguous words in each SRS

Total number o f words in each SRS
(4)

Equation (5) shows the formula fault-prone SRS score as shown in Equation (5).

Fault − prone SRS Score = 10 − [(So f tware requirements ∗ w1) + (ADI ∗ w2) + (Title ∗ w3)+

(Description ∗ w4) + (Intended Users ∗ w5)] (5)

Table 13 depicts the distribution of weightage for each factor. A weight of 0.5 was
assigned to the software requirements, indicating its importance in determining the clear
and ambiguous software requirements in the SRS. A weight of 0.2 was assigned to the ADI,
indicating its importance in determining the overall level of ambiguity in the SRS. The
clarity of the title and description was assigned a weight of 0.1, reflecting the importance of
conveying a clear and concise message to the reader. Finally, the presence of intended users
was assigned a weight of 0.1, reflecting the importance of specifying the target audience of
the software. With that in mind, the clarity of the title and description was assessed using
a score of 0 or 1, where 1 indicates complete clarity and 0 indicates complete ambiguity.
Similarly, the presence of intended users in the SRS scored 0 or 1, where 1 indicates the
extent to which the document specifies the target audience of the software and 0 indicates
none of the intended users are stated in the SRS documents or the intended users stated are
not related to the system. We introduced the fault-prone severity scale to determine the
degree of ambiguity present in each SRS (Table 14).

Table 13. Weightage distribution.

Factor Weightage Distribution

Software Requirements 0.5
ADI 0.2

Clear SRS Title 0.1
Clear SRS Description 0.1

Presence of Intended Users 0.1

Table 14. Fault-prone Score SRS.

Title

Ratio
Clear to
Ambigu-

ous

Software
Require-

ments
(LMF)

w1 Total
Words

Count
Ambigu-

ous
Words

ADI w2 Title w3 Desc w4 User w5 Fault-Prone
SRS Score

OpenFaaS—
Serverless
Functions
Made Simple

20:3 9.987316012 0.5 419 85 0.2028639618 0.2 1 0.1 1 0.1 1 0.1 4.665769201

BookingsPlus 21:9 9.027042529 0.5 339 77 0.2271386431 0.2 1 0.1 1 0.1 1 0.1 5.141051007

Prometheus—
Monitoring
and Alerting

15:6 9.179150014 0.5 298 25 0.08389261745 0.2 1 0.1 0 0.1 1 0.1 5.19364647

Appl. Sci. 2023, 13, 8368 27 of 33

Table 14. Cont.

Title

Ratio
Clear to
Ambigu-

ous

Software
Require-

ments
(LMF)

w1 Total
Words

Count
Ambigu-

ous
Words

ADI w2 Title w3 Desc w4 User w5 Fault-Prone
SRS Score

Terraform—
Infrastructure
as Code

16:8 8.646647168 0.5 395 94 0.2379746835 0.2 1 0.1 1 0.1 1 0.1 5.329081479

Amazon
Elastic
Compute
Cloud

16:9 8.313618527 0.5 389 45 0.1156812339 0.2 1 0.1 1 0.1 1 0.1 5.52005449

Docker 11:7 7.919548176 0.5 243 44 0.1810699588 0.2 1 0.1 0 0.1 1 0.1 5.80401192

MedStack 27:18 7.768698399 0.5 670 116 0.1731343284 0.2 1 0.1 0 0.1 1 0.1 5.881023935

User
Profiling In
Social Media

8:7 6.801809782 0.5 397 32 0.08060453401 0.2 1 0.1 1 0.1 1 0.1 6.282974202

CloudMedX 21:19 6.704410389 0.5 373 58 0.1554959786 0.2 0 0.1 1 0.1 1 0.1 6.41669561

Reservio:
Appoint-
ment
Scheduling
Software

19:20 6.132589765 0.5 604 81 0.1341059603 0.2 1 0.1 1 0.1 1 0.1 6.606883925

Kubernetes—
Automated
Container
Management

8:10 5.506710359 0.5 298 138 0.4630872483 0.2 1 0.1 1 0.1 1 0.1 6.854027371

OpenStack 8:10 5.506710359 0.5 438 183 0.4178082192 0.2 1 0.1 0 0.1 1 0.1 6.963083177

Istio—
Connect,
Secure,
Control, and
Observe
Services

11:16 4.97419775 0.5 454 146 0.3215859031 0.2 1 0.1 1 0.1 1 0.1 7.148583945

Cloud
Foundry 7:11 4.705941823 0.5 324 150 0.462962963 0.2 1 0.1 0 0.1 1 0.1 7.354436496

Athena
Health 8:15 4.131581992 0.5 337 100 0.296735905 0.2 1 0.1 1 0.1 1 0.1 7.574861823

Cloud-based
Hotel
Management
System

8:16 3.934693403 0.5 556 215 0.3866906475 0.2 1 0.1 1 0.1 1 0.1 7.655315169

Schoology 11:25 3.559635789 0.5 739 187 0.2530446549 0.2 1 0.1 0 0.1 1 0.1 7.969573174

BookingSync:
Vacation
Rental
Software

8:22 3.051088053 0.5 410 136 0.3317073171 0.2 1 0.1 1 0.1 1 0.1 8.10811451

ClassDojo 5:14 3.002275023 0.5 413 118 0.2857142857 0.2 1 0.1 1 0.1 1 0.1 8.141719632

RoomKey 3:10 2.591817793 0.5 393 251 0.6386768448 0.2 1 0.1 1 0.1 1 0.1 8.276355734

HotelTonight 6:21 2.487373841 0.5 315 96 0.3047619048 0.2 1 0.1 1 0.1 1 0.1 8.395360699

Appointy 4:15 2.343269285 0.5 390 101 0.258974359 0.2 1 0.1 1 0.1 1 0.1 8.476570486

Cloud-based
Inventory
Management
System

5:22 2.030792177 0.5 642 257 0.4003115265 0.2 1 0.1 1 0.1 1 0.1 8.604541606

Appointlet 5:21 2.117973089 0.5 508 313 0.6161417323 0.2 1 0.1 0 0.1 1 0.1 8.617785109

CareKit 6:26 2.06260534 0.5 545 130 0.2385321101 0.2 1 0.1 1 0.1 1 0.1 8.620990908

Cloud-based
Library
Management
System

4:18 1.990846357 0.5 470 160 0.3404255319 0.2 1 0.1 1 0.1 1 0.1 8.636491715

Bookeo 4:24 1.538003887 0.5 480 176 0.3666666667 0.2 1 0.1 1 0.1 1 0.1 8.857664723

Appl. Sci. 2023, 13, 8368 28 of 33

Table 14. Cont.

Title

Ratio
Clear to
Ambigu-

ous

Software
Require-

ments
(LMF)

w1 Total
Words

Count
Ambigu-

ous
Words

ADI w2 Title w3 Desc w4 User w5 Fault-Prone
SRS Score

Roomzilla:
Smart
Workplace
Management
System

4:24 1.538003887 0.5 572 167 0.291958042 0.2 1 0.1 1 0.1 1 0.1 8.872606448

Cloud-based
File Sharing
System

3:19 1.46150218 0.5 544 207 0.3805147059 0.2 1 0.1 1 0.1 1 0.1 8.893145969

OpenMRS 0:19 0 0.5 531 159 0.2994350282 0.2 1 0.1 0 0.1 1 0.1 9.740112994

Appl. Sci. 2023, 13, x FOR PEER REVIEW 29 of 34

Cloud-based
File Sharing Sys-
tem

3:19 1.46150218 0.5 544 207 0.3805147059 0.2 1 0.1 1 0.1 1 0.1 8.893145969

OpenMRS 0:19 0 0.5 531 159 0.2994350282 0.2 1 0.1 0 0.1 1 0.1 9.740112994

Figure 11. Comparison of ADI and Fault-prone SRS Score for each SRS.

The fault-prone severity scale is a categorization of the level of ambiguity in a soft-
ware requirements specification (SRS) based on the fault-prone SRS score. The scale is
divided into three categories: low ambiguity, moderate ambiguity, and high ambiguity,
as illustrated in Figure 12.

Figure 12. Fault-prone Severity Scale Distribution.

The fault-prone severity scale is utilized to assess the level of faults present in indi-
vidual SRS components. This is typically carried out by evaluating the degree to which a
requirement is clear and unambiguous versus how much room there is for interpretation
or misinterpretation, clarity of the title and description, and the presence of intended users
in the SRS. To determine the level of fault-prone for each SRS, we apply a scale that ranges
from low to high ambiguity. The SRS components that are deemed to have a low fault-
prone score are clear and unambiguous with no room for interpretation. The SRS compo-
nents that are deemed to have a moderate fault-prone score are reasonably clear, but there
may be some ambiguity or vagueness that requires further clarification. Finally, the SRS
that is deemed to have a high fault-prone score is unclear and ambiguous, with a high
likelihood of misunderstanding or misinterpretation. One study proposed a method of
predicting traffic congestion severity levels based on the analysis of Twitter messages,
categorizing them into three levels, i.e., L (low), M (medium), and H (high) [29]. The ratio
distribution of 5:2:3 for the fault-prone severity scale reflects the relative frequency or pro-
portion of the severity levels within the scale. Regarding the distribution ratio of 5:2:3,
most of the software requirements and other key components in the SRS are expected to
have a low level of ambiguity, while a smaller proportion falls into the moderate and high
severity levels. On a serious note, if a fault-prone SRS score is more than 4.9, it means that
half of the key components of the SRS, including the title, description, presence of in-
tended user, and software requirements, are having issues.

Figure 11. Comparison of ADI and Fault-prone SRS Score for each SRS.

The fault-prone severity scale is a categorization of the level of ambiguity in a software
requirements specification (SRS) based on the fault-prone SRS score. The scale is divided
into three categories: low ambiguity, moderate ambiguity, and high ambiguity, as illustrated
in Figure 12.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 29 of 34

Cloud-based
File Sharing Sys-
tem

3:19 1.46150218 0.5 544 207 0.3805147059 0.2 1 0.1 1 0.1 1 0.1 8.893145969

OpenMRS 0:19 0 0.5 531 159 0.2994350282 0.2 1 0.1 0 0.1 1 0.1 9.740112994

Figure 11. Comparison of ADI and Fault-prone SRS Score for each SRS.

The fault-prone severity scale is a categorization of the level of ambiguity in a soft-
ware requirements specification (SRS) based on the fault-prone SRS score. The scale is
divided into three categories: low ambiguity, moderate ambiguity, and high ambiguity,
as illustrated in Figure 12.

Figure 12. Fault-prone Severity Scale Distribution.

The fault-prone severity scale is utilized to assess the level of faults present in indi-
vidual SRS components. This is typically carried out by evaluating the degree to which a
requirement is clear and unambiguous versus how much room there is for interpretation
or misinterpretation, clarity of the title and description, and the presence of intended users
in the SRS. To determine the level of fault-prone for each SRS, we apply a scale that ranges
from low to high ambiguity. The SRS components that are deemed to have a low fault-
prone score are clear and unambiguous with no room for interpretation. The SRS compo-
nents that are deemed to have a moderate fault-prone score are reasonably clear, but there
may be some ambiguity or vagueness that requires further clarification. Finally, the SRS
that is deemed to have a high fault-prone score is unclear and ambiguous, with a high
likelihood of misunderstanding or misinterpretation. One study proposed a method of
predicting traffic congestion severity levels based on the analysis of Twitter messages,
categorizing them into three levels, i.e., L (low), M (medium), and H (high) [29]. The ratio
distribution of 5:2:3 for the fault-prone severity scale reflects the relative frequency or pro-
portion of the severity levels within the scale. Regarding the distribution ratio of 5:2:3,
most of the software requirements and other key components in the SRS are expected to
have a low level of ambiguity, while a smaller proportion falls into the moderate and high
severity levels. On a serious note, if a fault-prone SRS score is more than 4.9, it means that
half of the key components of the SRS, including the title, description, presence of in-
tended user, and software requirements, are having issues.

Figure 12. Fault-prone Severity Scale Distribution.

The fault-prone severity scale is utilized to assess the level of faults present in indi-
vidual SRS components. This is typically carried out by evaluating the degree to which a
requirement is clear and unambiguous versus how much room there is for interpretation
or misinterpretation, clarity of the title and description, and the presence of intended users
in the SRS. To determine the level of fault-prone for each SRS, we apply a scale that ranges
from low to high ambiguity. The SRS components that are deemed to have a low fault-prone
score are clear and unambiguous with no room for interpretation. The SRS components
that are deemed to have a moderate fault-prone score are reasonably clear, but there may
be some ambiguity or vagueness that requires further clarification. Finally, the SRS that is
deemed to have a high fault-prone score is unclear and ambiguous, with a high likelihood
of misunderstanding or misinterpretation. One study proposed a method of predicting
traffic congestion severity levels based on the analysis of Twitter messages, categorizing
them into three levels, i.e., L (low), M (medium), and H (high) [29]. The ratio distribution

Appl. Sci. 2023, 13, 8368 29 of 33

of 5:2:3 for the fault-prone severity scale reflects the relative frequency or proportion of
the severity levels within the scale. Regarding the distribution ratio of 5:2:3, most of the
software requirements and other key components in the SRS are expected to have a low
level of ambiguity, while a smaller proportion falls into the moderate and high severity
levels. On a serious note, if a fault-prone SRS score is more than 4.9, it means that half of
the key components of the SRS, including the title, description, presence of intended user,
and software requirements, are having issues.

• Low level: For the low severity level, which is defined as scores between 0.1 and 4.9, a
ratio of 5 indicates that this level is expected to be the most common and indicates that
there is relatively low ambiguity present. This means that most of the requirements
and other SRS key components are clear and unambiguous, and no further action is
necessary.

• Moderate Level: The moderate severity level, which is defined as scores between 5.0
and 6.9, has a ratio of 2. This level indicates that there is some ambiguity present in
the software requirements and other SRS key components, which may require further
investigation or clarification.

• High Level: A high severity level, which is defined as scores between 7.0 and 10.0,
has a ratio of 3. This level indicates that there is a significant amount of ambiguity present,
which is capable of leading to significant issues if not addressed. Therefore, more attention
is needed to resolve the ambiguity at this level compared to the moderate level.

Table 15 and Figure 13 show a list of cloud and edge applications with their respective
fault-prone SRS scores and fault-prone severity scales. The fault-prone SRS score ranges
from 4.665769201 (low) to 9.740112994 (high). OpenFaaS, with a score of 4.665769201, has
the lowest score on the list, while OpenMRS, with a score of 9.740112994, has the highest
score. Most of the applications fall within the moderate range, with a score between 5
and 7.999999999. In terms of year, the list shows that the applications range from 1997 to
2017. It is interesting to note that the applications with the highest scores are generally
from earlier years, with Athena Health being the oldest on the list. This may be due to
the fact that these applications were developed at a time when cloud technology was less
mature and less well understood, increasing the potential for errors in the SRS. Some of
the technologies with the highest fault-prone SRS scores and high fault-prone severity
levels include OpenMRS, the Cloud-based file sharing system, Roomzilla Bookeo, and the
Cloud-based library management system. Referring to Figure 13, there are several reasons
why later projects in edge/cloud applications with high fault-prone SRS scores are due to
possible complexities and rapid development.

Table 15. Fault-prone Severity Scale.

Title Fault-Prone SRS Score Fault-Prone Severity Scale

OpenFaaS—Serverless Functions Made Simple 4.665769201 Low

BookingsPlus 5.141051007 Moderate

Prometheus—Monitoring and Alerting 5.19364647 Moderate

Terraform—Infrastructure as Code 5.329081479 Moderate

Amazon Elastic Compute Cloud 5.52005449 Moderate

Docker 5.80401192 Moderate

MedStack 5.881023935 Moderate

User Profiling In Social Media 6.282974202 Moderate

CloudMedX 6.41669561 Moderate

Reservio: Appointment Scheduling Software 6.606883925 Moderate

Kubernetes—Automated Container Management 6.854027371 Moderate

OpenStack 6.963083177 Moderate

Istio—Connect, Secure, Control, and Observe
Services 7.148583945 High

Appl. Sci. 2023, 13, 8368 30 of 33

Table 15. Cont.

Title Fault-Prone SRS Score Fault-Prone Severity Scale

Cloud Foundry 7.354436496 High

Athena Health 7.574861823 High

Cloud-based Hotel Management System 7.655315169 High

Schoology 7.969573174 High

BookingSync: Vacation Rental Software 8.10811451 High

ClassDojo 8.141719632 High

RoomKey 8.276355734 High

HotelTonight 8.395360699 High

Appointy 8.476570486 High

Cloud-based Inventory Management System 8.604541606 High

Appointlet 8.617785109 High

CareKit 8.620990908 High

Cloud-based Library Management System 8.636491715 High

Bookeo 8.857664723 High

Roomzilla: Smart Workplace Management System 8.872606448 High

Cloud-based File Sharing System 8.893145969 High

OpenMRS 9.740112994 High

Appl. Sci. 2023, 13, x FOR PEER REVIEW 31 of 34

RoomKey 8.276355734 High
HotelTonight 8.395360699 High
Appointy 8.476570486 High
Cloud-based Inventory Management System 8.604541606 High
Appointlet 8.617785109 High
CareKit 8.620990908 High
Cloud-based Library Management System 8.636491715 High
Bookeo 8.857664723 High
Roomzilla: Smart Workplace Management System 8.872606448 High
Cloud-based File Sharing System 8.893145969 High
OpenMRS 9.740112994 High

Figure 13. Comparison of Fault-prone SRS Score with SRS title and Year established.

Edge/cloud applications are becoming increasingly complex as they involve distrib-
uted systems, multiple devices, and heterogeneous networks, which makes it challenging
to define precise and unambiguous requirements. Many edge/cloud applications are de-
veloped rapidly to meet fast-changing market demands; hence, the SRS may be hastily
written, leading to errors and inaccuracies that can increase the fault-proneness of the
software. Cloud computing is very complex to administrate because of the dynamism im-
posed by the context, stochastic requirements depending on business changes, heteroge-
neous consumers from different places and jurisdictions, distributed systems, and remote
management [28]. Considering the unique requirements of edge computing when devel-
oping software systems, it is important that the software requirements specification (SRS)
of the system plays a major role in ensuring that the software system is designed and
developed to meet the unique requirements of the edge computing environment. Our
analysis indicates that the fault-prone software requirements specification model (FPDM)
is a dependable method for detecting fault-prone SRS in edge/cloud application develop-
ment. The early detection and resolution of these fault-prone areas using the FPDM en-
hances the reliability and overall quality of the resulting application.

Figure 13. Comparison of Fault-prone SRS Score with SRS title and Year established.

Edge/cloud applications are becoming increasingly complex as they involve dis-
tributed systems, multiple devices, and heterogeneous networks, which makes it challeng-
ing to define precise and unambiguous requirements. Many edge/cloud applications are
developed rapidly to meet fast-changing market demands; hence, the SRS may be hastily
written, leading to errors and inaccuracies that can increase the fault-proneness of the soft-
ware. Cloud computing is very complex to administrate because of the dynamism imposed
by the context, stochastic requirements depending on business changes, heterogeneous
consumers from different places and jurisdictions, distributed systems, and remote man-
agement [28]. Considering the unique requirements of edge computing when developing

Appl. Sci. 2023, 13, 8368 31 of 33

software systems, it is important that the software requirements specification (SRS) of the
system plays a major role in ensuring that the software system is designed and developed to
meet the unique requirements of the edge computing environment. Our analysis indicates
that the fault-prone software requirements specification model (FPDM) is a dependable
method for detecting fault-prone SRS in edge/cloud application development. The early
detection and resolution of these fault-prone areas using the FPDM enhances the reliability
and overall quality of the resulting application.

6. Conclusions

This paper presents a fault-prone software requirements specification detection model
that aims to detect fault-prone software requirements specifications (SRS). The model com-
prises two parts: the ambiguity classification model (ACM) and the fault-prone software
requirements specification detection model (FPDM). The ACM utilizes different deep learn-
ing algorithms. Then, the best performance algorithm is selected to classify each software
requirement as either ambiguous or clean. The ACM is capable of classifying and detecting
the presence of ambiguous requirements in the software requirements specification (SRS),
covering a range of ambiguities, including lexical, syntactic, semantic, syntax, and prag-
matic ambiguities. The FPDM then uses the key components of SRS—clarity of title and
description, presence of intended users, and classified ambiguous requirements—to detect
fault-prone SRS. The ACM achieved an accuracy of 0.9907, while the FPDM achieved an
accuracy of 0.9750. This study also explored the use of statistical-based features to improve
the performance of the FPDM, with a restriction on the number of features to prevent
overfitting and maintain accuracy. Subject matter experts were also invited to evaluate the
SRS documents for fault-proneness. The implementation of a boosting model was found to
enhance the model’s accuracy in detecting fault-prone SRS for edge/cloud applications.

Developing edge/cloud applications is becoming more challenging due to their dis-
tributed nature, heterogeneous networks, and fast-changing market demands. This com-
plexity leads to hastily written and ambiguous software requirements, increasing the
fault-proneness of the resulting software. Cloud computing’s dynamism and distributed
nature further exacerbate these challenges. Considering the distinctive software require-
ments of edge computing, the SRS plays a critical role in ensuring software systems are
developed to meet these demands. Utilizing the FPDM, faults in the SRS were detected and
resolved early, enhancing the reliability and quality of the application. In our case study,
we developed a fault-prone severity scale to assess the level of ambiguity and potential
for errors in the software requirements specification (SRS). To achieve this, we used three
formulas, namely the linear mapping function for software requirements, the ambiguity
density index (ADI), and the fault-prone SRS score. The utilization of these three formulas
allowed us to generate a reliable measure of the severity of faults in the SRS.

The continuous advancements in technology and the implementation of boosting
algorithms reduced the need for human intervention in the development of predictive
models. However, despite the potential of these algorithms to identify and reaffirm the
fault-proneness of software requirements specifications (SRS), human intervention is still
necessary to interpret the clarity and ambiguity of SRS components. The findings of this
study show that boosting algorithms and human expertise improve the accuracy and
effectiveness of fault-prone detection models in identifying and distinguishing between
ambiguous and clear software requirements and the clarity of other SRS components.
Further research is necessary to explore the implementation of boosting algorithms in the
development of predictive models to enhance the identification of clean and fault-prone
SRS documents.

Author Contributions: F.N.J.M. served as the main author and took a leading role in all aspects of
the project, including research, development, and analysis, S.H.A.H. as a co-author significantly
contributed by providing numerous ideas and expertise specifically related to fault-prone detection,
utilizing boosting techniques consistently throughout the project, H.S. provided valuable support in
conducting an extensive literature review, ensuring a solid theoretical foundation for the research,

Appl. Sci. 2023, 13, 8368 32 of 33

R.A.R. played a crucial role in gathering and organizing the dataset used for the project’s analysis, F.F.
made important contributions by offering insightful ideas and suggestions throughout the duration
of the project. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by University of Malaya Research Grant (ST014-2022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Written informed consent has been obtained from the expert(s) to
publish this paper.

Data Availability Statement: The dataset supporting the reported results of this research study has
been made available for public access. It can be found at the following location: https://www.kaggle.
com/datasets/corpus4panwo/fault-prone-srs-dataset.

Acknowledgments: We gratefully thank the Graduate Excellence Programme (GrEP) of Majlis
Amanah Rakyat for awarding the scholarship to support the studies and this research is funded by
University of Malaya Research Grant (ST014-2022) Corpus Development for Anxiety Disorder Profile
Detection Model on Twitter Communication using Fear and Worry Emotion Analytics project.

Conflicts of Interest: The authors declare that there are no conflict of interest regarding the publica-
tion of this manuscript.

References
1. Sivarajah, S.; Irani, M.A.; Weerakkody, C.; Akter, R.L.E. Critical analysis of Big Data challenges and analytical methods. J. Bus.

Res. 2017, 70, 263–286. [CrossRef]
2. Mitchel. Leveraging Natural Language Processing in Requirements Analysis. QRA Corp. 16 February 2021. Available online:

https://qracorp.com/nlp-requirements-analysis/ (accessed on 14 March 2022).
3. Sabriye, A.O.J.; Zainon, W.M.N.W. A framework for detecting ambiguity in software requirement specification. In Proceedings of

the 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan, 17–18 May 2017. [CrossRef]
4. Singh, M.; Walia, G.S. Automating Key Phrase Extraction from Fault Logs to Support Post-Inspection Repair of Software

Requirements. In Proceedings of the India Software Engineering Conference, Bhubaneswar, India, 25–27 February 2021. [CrossRef]
5. Nigam, A.; Arya, N.; Nigam, B.; Jain, D. Tool for Automatic Discovery of Ambiguity in Requirements. Int. J. Comput. Sci. Issues

2012, 9, 350.
6. Sabriye, A.O.J.; Zainon, W.M.N.W. An approach for detecting syntax and syntactic ambiguity in software requirement specification.

J. Theor. Appl. Inf. Technol. 2018, 96, 2275–2284.
7. Rani, A.; Aggarwal, G. Algorithm for Automatic Detection of Ambiguities from Software Requirements. Int. J. Innov. Technol.

Explor. Eng. (IJITEE) 2019, 8, 878–882. [CrossRef]
8. IBajwa, S.; Lee, M.; Bordbar, B. Resolving Syntactic Ambiguities in Natural Language Specification of Constraints; Springer eBooks:

Berlin/Heidelberg, Germany, 2012; pp. 178–187. [CrossRef]
9. Ferrari, A.; Donati, B.; Gnesi, S. Detecting Domain-Specific Ambiguities: An NLP Approach Based on Wikipedia Crawling and

Word Embeddings. In Proceedings of the 2017 IEEE 25th International Requirements Engineering Conference Workshops (REW),
Lisbon, Portugal, 4–8 September 2017. [CrossRef]

10. Osman, M.H.; Zaharin, M.F. Ambi Detect: An Ambiguous Software Requirements Specification Detection Tool. Turk. J. Comput.
Math. Educ. 2021, 12, 2023–2028. [CrossRef]

11. Kurtanovic, Z.; Maalej, W. Automatically Classifying Functional and Non-functional Requirements Using Supervised Machine
Learning. In Proceedings of the IEEE International Conference on Requirements Engineering, Lisbon, Portugal, 4–8 September 2017.
[CrossRef]

12. Alshazly, A.A.; Elfatatry, A.; Abougabal, M.S. Detecting defects in software requirements specification. Alex. Eng. J. 2014,
53, 513–527. [CrossRef]

13. Singh, M. Automated Validation of Requirement Reviews: A Machine Learning Approach. In Proceedings of the IEEE Interna-
tional Conference on Requirements Engineering, Banff, AB, Canada, 20–24 August 2018. [CrossRef]

14. IEEE Std 830-1998; IEEE Recommended Practice for Software Requirements Specifications. IEEE: New York, NY, USA, 1998.
15. Ali, S.; Khan, N.A.; Alshayeb, M.; Alghamdi, A. An Empirical Study of the Impact of SRS Quality on the Fault Proneness of

Software Systems. In Proceedings of the 9th International Conference on Software Engineering and Service Science, Beijing,
China, 23–25 November 2018; pp. 279–283.

16. Aggarwal, A.; Singh, S.; Kaur, N. A Study of Software Requirement Specification. Int. J. Comput. Appl. 2015, 126, 1–6.
17. Bäumer, F.S.; Geierhos, M. Flexible Ambiguity Resolution and Incompleteness Detection in Requirements Descriptions via an

Indicator-Based Configuration of Text Analysis Pipelines. In Proceedings of the Annual Hawaii International Conference on
System Sciences, Hilton Waikoloa Village, HI, USA, 3–6 January 2018. [CrossRef]

18. Osama, S.; Aref, M. Detecting and resolving ambiguity approach in requirement specification: Implementation, results and
evaluation. Int. J. Intell. Comput. Inf. Sci. 2018, 18, 27–36. [CrossRef]

https://www.kaggle.com/datasets/corpus4panwo/fault-prone-srs-dataset
https://www.kaggle.com/datasets/corpus4panwo/fault-prone-srs-dataset
https://doi.org/10.1016/j.jbusres.2016.08.001
https://qracorp.com/nlp-requirements-analysis/
https://doi.org/10.1109/icitech.2017.8080002
https://doi.org/10.1145/3452383.3452386
https://doi.org/10.35940/ijitee.i1141.0789s19
https://doi.org/10.1007/978-3-642-28604-9_15
https://doi.org/10.1109/rew.2017.20
https://doi.org/10.17762/turcomat.v12i3.1066
https://doi.org/10.1109/re.2017.82
https://doi.org/10.1016/j.aej.2014.06.001
https://doi.org/10.1109/re.2018.00062
https://doi.org/10.24251/hicss.2018.720
https://doi.org/10.21608/ijicis.2018.15909

Appl. Sci. 2023, 13, 8368 33 of 33

19. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global Vectors for Word Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014. [CrossRef]

20. Mikolov, T.; Chen, K.; Corrado, G.S.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013,
arXiv:1301.3781.

21. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching Word Vectors with Subword Information. Trans. Assoc. Comput.
Linguist. 2017, 5, 135–146. [CrossRef]

22. Firdaus, A.; Anuar, N.B.; Razak, M.A.A.; Sangaiah, A.K. Bio-inspired computational paradigm for feature investigation and
malware detection: Interactive analytics. Multimed. Tools Appl. 2018, 77, 17519–17555. [CrossRef]

23. Virgolin, M.; Alderliesten, T.; Bosman, P.A.N. On explaining machine learning models by evolving crucial and compact features.
Swarm Evol. Comput. 2019, 53, 100640. [CrossRef]

24. Hazim, M.; Anuar, N.B.; Razak, M.F.A.; Abdullah, N.A. Detecting Opinion Spams through Supervised Boosting Approach.
PLoS ONE 2018, 13, e0198884.

25. Razak, C.S.A.; Hamid, S.H.A.; Meon, H.; Hema, A.; Subramaniam, P.; Anuar, N.B. Two-step model for emotion detection on
twitter users: A Covid-19 case study in Malaysia. Malays. J. Comput. Sci. 2021, 34, 374–388. [CrossRef]

26. Ranger, S. What Is Cloud Computing? Everything You Need to Know About the Cloud Explained. ZDNET. 25 February 2022.
Available online: https://www.zdnet.com/article/what-is-cloud-computing-everything-you-need-to-know-about-the-cloud/
(accessed on 18 May 2023).

27. Aggarwal, G. How The Pandemic Has Accelerated Cloud Adoption. Forbes. 15 January 2021. Available online: https://www.
forbes.com/sites/forbestechcouncil/2021/01/15/how-the-pandemic-has-accelerated-cloud-adoption/?sh=3ca3ba626621 (ac-
cessed on 18 May 2023).

28. Zalazar, A.S.; Ballejos, L.C.; Rodriguez, S. Analyzing Requirements Engineering for Cloud Computing. In Requirements Engineering
for Service and Cloud Computing; Ramachandran, M., Mahmood, Z., Eds.; Springer: Cham, Switzerland, 2017. [CrossRef]

29. Wongcharoen, S.; Senivongse, T. Twitter analysis of road traffic congestion severity estimation. In Proceedings of the 2016 13th
International Joint Conference on Computer Science and Software Engineering (JCSSE), Khon Kaen, Thailand, 13–15 July 2016;
pp. 1–6. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1007/s11042-017-4586-0
https://doi.org/10.1016/j.swevo.2019.100640
https://doi.org/10.22452/mjcs.vol34no4.4
https://www.zdnet.com/article/what-is-cloud-computing-everything-you-need-to-know-about-the-cloud/
https://www.forbes.com/sites/forbestechcouncil/2021/01/15/how-the-pandemic-has-accelerated-cloud-adoption/?sh=3ca3ba626621
https://www.forbes.com/sites/forbestechcouncil/2021/01/15/how-the-pandemic-has-accelerated-cloud-adoption/?sh=3ca3ba626621
https://doi.org/10.1007/978-3-319-51310-2_3
https://doi.org/10.1109/JCSSE.2016.7748850

	Introduction
	Research Background
	Software Requirements Specification
	Fault-Prone Software Requirements Specification
	Ambiguity in Software Requirements Specification
	Fault-Prone Severity Scale

	Related Studies
	Proposed Fault-Prone Software Requirements Specification Detection Model
	Ambiguous Classification Model
	Phase 1: Data Collection
	Phase 2: Data Processing
	Data Labelling
	Phase 3: Ambiguity Classification
	Phase 4: Ground Truth

	Fault-Prone Software Requirements Specification Detection Model
	Phase 1: Data Collection
	Phase 2: Data Processing
	Phase 3: Fault-Prone Software Requirements Specification Detection

	Case Study: Detecting Fault-Prone Software Requirements Specification for Edge/Cloud Application
	The Evolution of Edge/Cloud Computing
	Edge/Cloud Application Software Requirements Specification
	Analysis of Fault-Prone Edge/Cloud Application Software Requirements Specification

	Conclusions
	References

