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Abstract: Rare earth minerals (REMs) contain rare earth elements (REEs) that are important in modern
technologies due to their unique magnetic, phosphorescent, and catalytic properties. However, REMs
are not only non-renewable resources but also non-uniformly distributed on the Earth’s crust, so
the processing of REE-bearing secondary resources via recycling is one potential route to ensure
the long-term sustainability of REE supply. Flotation—a method that separates materials based on
differences in their surface wettability—is a process applied for both mineral processing and recycling
of REEs, especially when the particles are fine and/or a high-purity product is required. In this
review, studies about rare earth flotation from 2012 to 2021 were systematically reviewed using the
PRISMA guideline. It was found that most REM flotation research works focused on finding better
collectors and depressants while, for recycling, studies on advanced flotation techniques like froth
flotation, ion flotation, solvent sublation, electroflotation, and adsorbing colloid flotation with an
emphasis on the recovery of dissolved REEs from aqueous solutions dominated.

Keywords: collector; dissolved ion; flotation; rare earth; recycling

1. Introduction

Rare earth elements (REEs)—a group composed of 15 lanthanides, scandium, and
yttrium—are essential in numerous modern technologies because of their unique magnetic,
phosphorescent, and catalytic properties. The bulk of REEs produced worldwide are used
as catalysts (75%), while the rest are consumed by various industries, including ceramics
and glass manufacturing (6%), polishing agents (5%), metallurgical applications and alloys
(4%), and others (e.g., computer memory, DVDs, rechargeable batteries, super magnets,
mobile phones, LED lighting, superconductors, fluorescent materials, phosphate-binding
agents, solar panels, magnetic resonance imaging (MRI) agents) (10%) [1–3].

Although REEs occur in nature only in trace quantities, they are often concentrated
in 250 minerals called rare earth minerals (REMs), which are classified into carbonates,
phosphates, silicates, and oxides [1,4]. Despite this large number of REMs, however, there
are only a few economically viable sources of REEs, including bastnaesite ((La, Ce, Y)CO3F),
monazite ((La, Ce, Nd)PO4), and xenotime (YPO4), which occur in various geological ore
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deposits like (i) carbonatites, (ii) peralkaline igneous systems, (iii) magmatic magnetite-
hematite bodies, (iv) iron oxide copper–gold (IOCG) deposits, (v) ion-adsorption clay
deposits, and (vi) monazite-xenotime-bearing placer deposits [5,6].

In carbonatite deposits, the primary REMs are bastnaesite, parisite, synchysite, an-
cylite, and monazite, while the predominant gangue minerals are carbonate minerals (e.g.,
calcite, dolomite, ankerite, siderite), which may coexist with aegirine-augite, barite, flu-
orite, fluorapatite, hematite, magnetite, phlogopite, quartz, and/or oxide copper–gold
strontianite. The world’s largest carbonatite deposit, which is found in China, is called
the Bayan Obo iron-carbonatite deposit. In comparison, peralkaline igneous rock deposits
make up a large group of rock types generally characterized as deficient in silicon dioxide
(SiO2) relative to Na2O, K2O, and calcium oxide (CaO). Important REMs in this deposit
include apatite, eudialyte, loparite, gittinsite, xenotime, gadolinite, monazite, bastnaesite,
kainosite, mosandrite, britholite, allanite, and zircon associated with peralkaline intrusion.
Meanwhile, REMs in magmatic magnetite-hematite body deposits are hosted by magnetite
and hematite, most of which could be recovered as a by-product during iron ore min-
ing. Iron oxide copper–gold deposits are similar to magmatic magnetite-hematite bodies
because they are formed under magmatic–hydrothermal conditions. These iron-bearing
deposits host not only copper and gold but also REMs, which are associated both with
iron oxides and small carbonatites [7]. Aside from magmatic intrusive bodies, REEs can be
naturally concentrated via prolonged leaching, weathering, adsorption/ion exchange, and
precipitation processes, which lead to preferential accumulation of REEs like those found in
ion-adsorption clay deposits and monazite-xenotime-bearing placer deposits. The largest
deposit of the former is found in China, while the latter type of deposit is also classified as
a heavy-mineral sand and is an important source of monazite and xenotime [5,6].

In 2021, the total global reserve of REEs was estimated at 120 million tons (Mt),
reported as rare earth oxide (REO) equivalent content [2]. China accounted for the largest
slice of this reserve at around 44 Mt (37%), followed by Vietnam, Brazil, and Russia at 18%
each. Meanwhile, the production of REEs in 2020 was around 240,000 t REO equivalent,
which was dominated by China (58%) and the USA (16%) [2].

The mining methods applied for REMs are dependent on the type of deposit; that
is, hard rock mining techniques are used for carbonatite, peralkaline-igneous, magmatic
magnetite-hematite and IOCG deposits, while, for clay and placer deposits, in-situ leaching
and placer mining are used, respectively [8]. Beneficiation processes—gravity separation,
magnetic/electrical separation, and flotation—are usually applied to separate REMs from
their associated gangue minerals and concentrate them in the final product. At larger
particle sizes, gravity and magnetic separation techniques have been reported as effective
ways of concentrating REMs. Park et al. [9], for example, used multi-stage wet high-
intensity magnetic (WHIM) separation to upgrade a low-grade peralkaline igneous REE
deposit from Mongolia with a particle size distribution between 75 µm and 106 µm and
reported a recovery of 80% and enrichment ratio of 5.5.

For finer particle size distribution (<75 µm) and high purity requirements, however,
more advanced techniques like flotation—a method that separates target materials either
by promoting or suppressing their attachment to bubbles [10–12]—are required to concen-
trate REMs and REE-bearing materials [1,13–16]. Because of advancements in flotation
technologies in recent years, like agglomeration-flotation [17,18], carrier flotation [19], and
nano-bubble flotation [20], the size range limit where flotation operates has been lowered
from 50–75 µm to 5–20 µm. For example, Hornn and coworkers [21–23] highlighted the
improved flotation efficiency of ultrafine chalcopyrite (<10 µm) after agglomeration using
kerosene as a bridging agent. Once sufficiently concentrated, REEs in REMs are typically
extracted via hydrometallurgy, which involves multiple iterations of leaching, solvent
extraction, ion exchange, and precipitation [14,24].

Similar to other critical elements like lithium, nickel, and cobalt, however, REEs are
non-renewable resources that would eventually be depleted if their sustainable utiliza-
tion and management were not considered. By assuming that the current REE reserve
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of primary resources and production remain constant, while consumption increases at
an annual rate of 5% [25], the global REE reserve is forecasted to be depleted within
127 years (i.e., by 2148). This means that the processing of secondary resources (e.g.,
wastes), especially end-of-life products and electronic wastes (E-wastes), via recycling—
also called urban mining—is a potential way of reducing supply risks and prolonging
the limited REE reserves. Binnemans et al. [26], for example, estimated that there are
5600–10,700 t of recoverable REEs from end-of-life products like magnets, nickel metal
hydride batteries, and phosphors.

This systematic review was carried out to summarize significant findings about REE
processing and recycling from 2012 to 2021. Specifically, research works on REE recovery
by flotation from primary and secondary resources were reviewed using the PRISMA
guidelines. The contents of this work are divided into five sections: (i) introduction,
(ii) review methodology, (iii) rare earth flotation from primary resources, (iv) rare earth
flotation from secondary resources, and (v) conclusions.

2. Review Methodology

The literature was systematically reviewed using the research question “What is the
state of conventional technologies and research studies related to REE recovery from pri-
mary and secondary resources using flotation for the last 10 years (2012–2021)?” and the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [27]. The guideline recommended by Andrews [28] for peer-reviewed journal iden-
tification was followed, and the keywords “flotation”, “rare earth”, and the names of
17 REEs [3] and 84 REMs [29] were used, as summarized in Table S1 [28].

Web of Science and Scopus were selected as the databases for this systematic review,
and the publication dates were limited to between 2012 and 2021. Based on these initial
criteria, a total of 1251 articles were obtained after removing duplicates (Figure S1). In the
screening step, titles, highlights, abstracts, and keywords were checked to remove studies
not focusing on “rare earth”. This step removed 920 papers, and the remaining 331 papers
were further evaluated in the eligibility step. In this step, full-text articles were checked,
and, based on the systematic selection criteria [30], 127 papers qualified for the review.
The selected papers were categorized into two main sections: (i) “rare earth flotation from
primary resources” (101 papers), and (ii) “rare earth flotation from secondary resources”
(26 papers).

3. Rare Earth Flotation from Primary Resources

The separation of REMs via flotation involves the following: (i) the addition of a
collector and pH modifiers to make the REMs more hydrophobic and suitable for bubble
attachment, (ii) the stabilization of bubbles using frothers, and (iii) the depression of gangue
minerals by inhibiting unnecessary collector adsorption (Figure 1).
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3.1. Flotation Reagents
3.1.1. Collectors

Between 2012 and 2021, three collector types—carboxylates, hydroxamates, and
phosphates/phosphonates—were frequently reported. The typical chemical structures of
these three classes of collectors are illustrated in Figure S2.

Carboxylate Collectors

Carboxylates, also known as oxhydryl collectors, are conventional collectors in REM
flotation because they are cheaper than the other collector types [31]. The mechanism of
carboxylate attachment on REMs can be classified as physisorption and/or chemisorption.
Espiritu et al. [32] proposed that sodium oleate adsorbs on REMs via physisorption when the
pulp pH is lower than the point of zero charge (PZC). In contrast, chemisorption was observed
to dominate when the pulp pH was higher than the PZC and was attributed to interactions
between the negatively charged surface of the REMs and anionic oleate ions [32,33].

The main disadvantage of carboxylates noted from previous works is their generally
low selectivity for REMs because they also tend to adsorb to gangue minerals like calcite,
fluorite, dolomite, barite, and quartz [34–38]. To enhance the REM grade when carboxylate
is used, depressants are needed to inhibit collector adsorption to gangue minerals [39]
(more details will be provided in the later subsection on depressants).

Sodium oleate is the most frequently used carboxylate collector in REM flotation,
especially for bastnaesite, monazite, and xenotime (Table 1). The best pH for this collector
is around 6–10, where REO recovery of 95% could be obtained when single REMs were
evaluated [32,33,40,41]. Unfortunately, this high recovery decreased substantially in the
presence of gangue minerals, as highlighted by Espiritu and Waters [34], who obtained
only 32% recovery with monazite–dolomite mixtures.

To improve recovery in real REMs, depressants—xanthan gum, lignin sulfonate,
sodium silicate, and sodium silicate mixed with starch—are used. Flotation of REMs from
low-grade sources using sodium oleate as a collector and sodium silicate as a depressant
has reported 40–80% recoveries and obtained 0.3–0.5% grade of products [36,42–45].

For REM flotation using fatty acids as collectors, the optimum pH is around 7–11.5. The
effects of temperature on REM flotation with fatty acids were evaluated by Satur et al. [46],
and they reported negligible improvement in flotation recovery even after increasing the
temperature to 40 ◦C, due to the low selectivity of this collector at a high temperature. It
was also found that, among the fatty acids, Sylfat FA2 was better than Aero 704 at pH 7 to
11.5. Meanwhile, oleic acid, an unsaturated fatty acid, was effectively applied as a collector
in REMs with associated silicates and iron-bearing minerals [47].
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Table 1. A summary of recent studies on REM flotation using carboxylate collectors.

Collectors Samples pH Depressants Recovery [%] Grade [%] References

Sodium oleate

Bastnaesite 6–8 – 95 – [32,33]
9 – 95 – [40,41]

Bastnaesite and calcite 8 Xanthan gum 72.5 – [48]
Bastnaesite, calcite, and barite 9–10 Lignin sulfonate 86–90 11–33.4 [39]
Bastnaesite, monazite, stetindite, brannerite,
florencite, stillwellite, hematite, and quartz 9 Sodium silicate and starch 63 2.3 [49]
Monazite 7 – 95 – [32,33]
Monazite and dolomite 7 – 32 – [34]
Monazite, hematite, and quartz 9 Sodium silicate and starch 61 6.3 [50,51]

Xenotime, zircon, schorl, staurolite, and ilmenite 9 Sodium silicate 71–96 36.3–51.1 [52]
Ammonium lignosulfonate 33–52 52.3–59.6 [52]

Allanite and quartz – – – – [53]
Fergusonite, quartz, and galena 5–7 – – – [54]
Heavy mineral sands; containing monazite, ilmenite,
rutile, zircon, leucoxene, garnet, and pyroxene 10 Cyquest4000 20–32 43–66 [55]

Pre-concentrates of iron oxide–silicate-rich tailings 9 Sodium silicate and starch 12 1.9 [56]
Kaolin by-products containing monazite 10 Sodium silicate 80.2 0.54 [42]
Fine coal refuse 9 – – 0.47 [44]
Fire clay seam coal source, calcite, dolomite, illite,
kaolinite, pyrite, quartz, and rutile – – – 0.05–0.1 [45]

Tailings from Kankberg mine 8 Sodium silicate 40–55 0.28–0.3 [43]

Sodium oleate; mixed with
sorbitan monooleate Fergusonite, zircon, quartz, and feldspar 5 Sodium metasilicate, oxalic

acid, and citric acid 96 – [57]

Fatty acid Phosphate flotation tailing containing REMs – – 64 0.04 [58]

Fatty acid (i.e., oleic acid) Monazite, hematite, and quartz 7 Sodium silicate 66–96 32.9–62.8 [59]
Starch 72–82 32.9–37.7 [59]

Fatty acid (i.e., sylfat FA2) Xenotime monazite, silicate minerals, and hematite 10–12

Sodium metasilicate 73 1.7 [46]
Sodium lignin sulfonate 81 2.0 [46]

Sodium fluoride 91 1.6 [46]
Soluble starch 84 2.1 [46]

Fatty acid; mixed with fuel oil Phosphatic clay 9 Sodium silicate 88 0.4 [60]
Alaskan coal samples 7 – – – [61]

Fatty acid (i.e., Aero704); mixed
with sulfosuccinamate
(i.e., Aero845)

Bastnaesite, parisite, synchysite-Y, gittinsite,
britholite, elpidite, zircon, pyrochlor, K-feldspar,
albite, quartz, arfevdsonite, echemannite, calcite,
fluorite, rutile, hematite, and chlorite

9 Sodium silicate and starch 52–54 1.1–1.2 [62]
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Hydroxamate Collectors

Hydroxamates are a group of chelating collectors popular in REM flotation because
of their high selectivity [34,36,63]. The adsorption of hydroxamate-type collectors on
mineral surfaces can occur via chemisorption and/or surface reactions (Figure S3). In
chemisorption, hydroxamate interacts with the mineral surfaces without the movement
of surface atoms [31,32,64–67]. This type of adsorption was proposed when hydroxam-
ate concentration was low and monolayer adsorption predominated. Meanwhile, sur-
face reactions—combinations of chemisorption and multilayer physisorption—are dom-
inant at high concentrations of hydroxamate and involve (i) hydrolysis of metal atoms,
(ii) formation of hydroxyl-complexes, and (iii) re-adsorption to or precipitation on the
mineral surface [34,65,68].

There are many types of hydroxamate collectors used for REM flotation (Table 2), and
the most common and frequently used are octanohydroxamic acid, benzohydroxamic acid,
salicylhydroxamic acid, H205, Aero 6493, and AEROFLOAT 6494.

Wanhala et al. [65] studied the adsorption mechanism of octanohydroxamic acid
on bastnaesite and proposed that, at low concentrations, monodentate adsorption was
dominant while, at higher collector concentrations, the mechanism shifts to bidentate
adsorption. These authors also observed that the binding enthalpies of octanohydroxamic
acid interacting with La- and Ce-bastnaesite surfaces were stronger than on calcite. Moreover,
the selectivity of hydroxamate was enhanced by maintaining a low collector concentration that
limited hydroxamate adsorption to gangue minerals. The optimum pH for pure bastnaesite
flotation using hydroxamate collectors is around pH 8–9, with 67–75% recovery [31,32,69–71].
Similarly, the optimum pH for pure monazite flotation using hydroxamate collectors is
around 7–9, with 61–95% recovery [32,70,72]. It should be noted that when common gangue
minerals are present, a lower grade and recovery were obtained.

Another notable feature of monazite flotation using hydroxamate was described by
Zhang and Honaker [72,73]. These authors observed the high affinity of monazite to float at
pH 9, likely due to hydrolyzed species (e.g., Ce(OH)2+, Ce(OH)2+, La(OH)2+, and La(OH)2+,
which increased the active sites on monazite. However, the flotation response of monazite
was very similar to its associated gangue minerals like apatite, ilmenite, quartz, rutile, and
zircon when octanohydroxamic acid was used [74].
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Table 2. A summary of recent studies on REM flotation using hydroxamate collectors.

Collectors Samples pH Depressants Recovery [%] Grade [%] References

Octanohydroxamic acid

Bastnaesite 8–9 – 67 – [71]
Bastnaesite and calcite 9 – 90 36.4 [75]
Bastnaesite and fluorite 9 EDTA 80–88 68 [76]
Bastnaesite and parisite 10 Sodium silicate 65 – [77]
Bastnaesite, calcite, and barite 9–10 Lignin sulfonate 28–85 23–33 [39]

Monazite 9 – 95 – [72]
7 – 80 – [78]

Monazite and calcite 9
– 90 – [79]

Sodium silicate 80 – [80]
Sodium hexametaphosphate 62 – [80]

Monazite, apatite, ilmenite, quartz, rutile, and zircon 8–10 – > 90 – [74]

Xenotime, zircon, schorl, staurolite, and ilmenite 9 Sodium silicate 86–93 35.1–49.8 [52]
Ammonium lignosulfonate 79–88 34.8–50.1 [52]

Ancylite, strontianite, and calcite 8 – 85 – [81]
9 – 76–79 10.7–10.9 [82]

Benzohydroxamic acid

Bastnaesite 9 – 68–75 – [32,70]
Bastnaesite and calcite 9 – 57 22.5 [83]
Bastnaesite and quartz 9 Sodium silicate 68 – [84]

Monazite 9 – 61 – [70]
8 – 68 – [32]

Monazite and dolomite 7 – 37 – [34]
Allanite and quartz 4 – 20 – [53]
Bastnaesite, synchysite, allanite, monazite,
fergusonite, feldspar, quartz, and others 9 – 25–30 – [85]

Niobec REE ore 9 Sodium silicate 61–80 25–34 [86]

Salicylhydroxamic acid

Bastnaesite 8 – 72 – [69]
Bastnaesite and calcite 9 – 67 33.4 [83]
Bastnaesite, barite, and calcite 7–9 – > 80 – [87]
Bastnaesite, feldspar, calcite, quartz, fluorite,
and biotite – Sodium silicate 67–73 8.3–8.8 [88]

Tailings from Bayan Obo mine 8 Sodium silicate – – [89]

3-hydroxy-2-naphthyl
hydroxamic acid (H205)

Bastnaesite, calcite, and fluorite 8–9 Oxalic acid 80–82 42.7–43.1 [90]
9 Sodium silicate 70–82 16–20 [91]

Bastnaesite, fluorite, apatite, hematite, and quartz 7–10 – > 80 – [92]
Bastnaesite and (sulfide, silicate, and
carbonate) minerals – Sodium silicate 55–63 13.0–14.5 [93]

Aero-6493 Bastnaesite and monazite 7–9 – 60–90 – [94]
Bastnaesite, monazite, calcite, dolomite, and quartz 9 – 62–66 60.7 [95]
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Table 2. Cont.

Collectors Samples pH Depressants Recovery [%] Grade [%] References

AEROFLOAT 6494

Monazite 7 – 91–95 – [59,96]
Monazite, quartz, and hematite 7 Sodium silicate and starch 93 1.0 [96]
Bastnaesite, monazite, stetindite, brannerite,
florencite, stillwellite hematite, and quartz 7 Sodium silicate and starch 60 2.0 [49]
Bastnaesite, parisite, synchysite-Y, gittinsite,
britholite, elpidite, zircon, pyrochlor, K-feldspar,
albite, quartz, arfevdsonite, echemannite, calcite,
fluorite, rutile, hematite, and chlorite

9 Sodium silicate and starch 51–53 0.3 [62]

Decanedioic hydroxamic
acid (DDHA) Bastnaesite and calcite 8 – 86 86.2 [97]

N-[3-(dodecylamino)] hydroxamic
acid (DAHA) Bastnaesite and calcite 8 – 99 – [98]

N-[3-(octylamino)] hydroxamic
acid (OAHA) Bastnaesite and calcite 8 – 95 – [98]

N-[3-(hexylamino)] hydroxamic
acid (HAHA) Bastnaesite and calcite 8 – 93 – [98]

N-[(3-hydroxyamino)-propoxy]-N-
octyl dithiocarbamate Bastnaesite, calcite, and quartz 8 – 97 – [99]

Octylmalondihydroxamic acid Bastnaesite and calcite 9 – 90 69.3 [75]

Octylamino-bis-
(isobutanohydroxamic acid)
(OIBHA)

Bastnaesite and fluorite 7 Sodium fluorosilicate 92 70.1 [100]

Octylamino-bis-
(butanohydroxamic acid)
(OBHA)

Bastnaesite, barite, and calcite 7 – 89 68.1 [101]

3-carboxy-2-naphthylhydroxamic
acid; mixed with C5-C9
hydroxamic acid

Bastnaesite, monazite, hematite, magnetite, iron
silicate, and pyrite 9

Sodium silicate and “sodium
carbonate; mixed with

fine mud”
50 51.9 [102]

1-hydro-2-naphthyl hydroxamic
acid (LF8#)

Bastnaesite, monazite, fluorite,
barite, and silicate minerals 9 Sodium silicate 75 45–50 [103]

Benzylhydroxamic; mixed with
naphthalenic hydroxamate (LF-P81) Thor lake deposit 9 Sodium silicate – 11.4 [104]

Hydroxamate (AC-3) Kaolin by-products containing monazite 10 Sodium silicate 88 0.3 [42]

Hydroxamic acid Preconcentrates of iron oxide–silicate-rich tailings 9 Sodium silicate and starch 91–93 1.3 [56]
Bastnaesite, monazite, niobite, and iron-bearing
minerals 8 – 74 – [105]
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Organo-Phosphoric Acid Collectors

Table 3 summarizes the studies applying organo-phosphoric acids as collectors. The
adsorption mechanism of this collector type is similar to carboxylates and hydroxamates,
and their optimum pH is around 4–9. The (ROPO3H-) and (ROPO3

2−) are the dominant
species of phosphate collectors [32,106], which interact with REEs (e.g., Ce, La) on REMs
via monolayer chemisorption. Surface precipitation of REE phosphate complexes was also
reported at high collector concentrations, along with the presence of Ce3+, CeF2+, CeF2+,
and CeCO3+ [106–109]. Lauryl phosphate and Flotino 1682 are the two most frequently
studied organo-phosphoric acid collectors.

Table 3. A summary of recent studies on REM flotation using organo-phosphoric acid collectors.

Collectors Samples pH Depressants Recovery [%] Grade [%] References

Phophoric acid ester
(Flotinor 1682)

Bastnaesite 4–9 – > 95 – [32]
Monazite 4–9 – > 95 – [32]
Monazite and dolomite 7 – 31 – [34]

Flotinor SM15 Bastnaesite and quartz 9 Sodium
silicate > 90 – [84]

Flotinor 1682; mixed
with A845 REMs 7 Citric acid – 6 [110]

Lauryl phosphate
Bastnaesite 4–5 – 89–91 – [31,106]

Bastnaesite, calcite, and quartz 4–7 – 90 – [111]
5 – 80 52 [112]

2-ethylhexyl phosphate Bastnaesite, calcite, and quartz 5 – 75 95 [112]
Di(2-ethylhexyl)
phosphate Bastnaesite 8 – 96 – [113]

Dibutyl phosphate Bastnaesite 8 – 37 – [113]
Tributyl phosphate Bastnaesite 8 – 22 – [113]
1-Hydroxydodecylidene-
1,1-diphosphonic Bastnaesite and calcite 8 – 96 – [114]

Styrene phosphonic acid
Synthetic (Ce,La)2O3,
synthetic calcium fluorite,
synthetic fluorapatite

5 – 90 72 [115]

Others

A combination of kerosene and fatty acid as alternative collectors was investigated by
Fang et al. [116] and Zhou et al. [117], which obtained 60% recovery in pure bastnaesite
flotation at pH 6 (Table S2). Xu et al. [118,119] used octanohydroxamic acid and sodium
oleate and reported 94–97% recovery in bastnaesite flotation with fluorite and calcite.

Ionic liquids as novel collectors were investigated by Azizi et al. [95] and Li et al. [120],
which obtained 65–90% recovery. Other collectors like sodium dodecyl sulphate, Flotigam
EDA, R845N, and fuel oil have also been investigated [50,121,122], and these works reported
recoveries of 75–98%.

3.1.2. Frothers

In flotation, frothers are used to stabilize bubbles to make them strong enough to
carry hydrophobic particles to the surface of the flotation pulp. Compared with other
flotation reagents, studies on the effects of frothers on REM flotation remain limited. The
most widely used frother in REM flotation studies is methyl isobutyl carbinol (MIBC),
while other frothers like F150, EM-312, and Aerofroth-88 are utilized in industrial-scale
processes [34,93,122].

3.1.3. Depressants

Depressants are needed because common gangue minerals found in REM deposits
like carbonates, silicates, and iron-bearing minerals have similar adsorption affinities to
collectors as REM during flotation [62,96,123,124].
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Zhang and Anderson [52] and Boulanger et al. [86] successfully depressed silicate
minerals (e.g., zircon, schorl, staurolite) and carbonates (at 75 ◦C) using sodium silicate.
The depression mechanism proposed by these authors was the physical adsorption of
negatively charged silicate to positively charged alkaline hydroxylated complexes, which
led to hydrophilic film formation on silicate and carbonate minerals. In addition, combining
sodium silicate and starch was suggested by Abaka-Wood et al. [49–51,56,96], which
lowered sodium silicate consumption without affecting efficiency. Oxalic acid could also
depress quartz, dolomite, and calcite at around pH 3.8–7.2 due to the formation of Mg/Ca
oxalate precipitates on gangue mineral surfaces that inhibit collector adsorption [123].

Other depressants have also been investigated, but their mechanisms of depression
were not reported. Ammonium lignosulfonate could depress iron-bearing minerals (il-
menite) [52], while sodium fluorosilicate [100] and/or EDTA [76] suppressed fluorite
floatability. Meanwhile, sodium hexametaphosphate [80] and/or xanthan gum [48] were
found to depress calcite and sodium metasilicate, preventing the flotation of quartz and
feldspar [57]. Finally, Satur et al. [46] reported the depression of iron-bearing minerals by
sodium lignin sulfonate.

3.2. Roles of Dissolved Ions in Rare Earth Mineral Flotation

Coexisting dissolved ions and their complexes are also important factors in REM
flotation. They can be categorized based on their origin as (i) inherently from REMs and
associated minerals, and (ii) artificially from flotation reagents.

REM deposits contain slightly soluble common associated gangue minerals (e.g.,
calcite, fluorite, barite, and dolomite) and highly soluble salt gangue minerals (e.g., stron-
tianite, celestite) [40,41,66,70,107]. When in contact with water, these gangue minerals
partly dissolve and release ionic species (e.g., Ca2+, Ba2+, Mg2+, Sr2+, CO3

2−, SO4
2−) into

the flotation pulp [3,33,38,69,70,125]. These ions in solution could form various complexes
(e.g., CaOH+, BaOH+, MgOH+, SrOH+, Ca(OH)2, Ba(OH)2, Mg(OH)2, CaCO3, BaCO3,
MgCO3, and BaSO4) that adsorb and/or precipitate on the surface of REMs [40,41,69,79].
Their adsorption and/or precipitation generally inhibit collector adsorption on REMs,
which complicates the separation of REMs from associated gangue minerals (Figure 2a).
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Figure 2. Schematic illustrations of (a) effects of Ca2+ inhibition, and (b) effects of Pb2+ activation of
bastnaesite.

Furthermore, Ca2+, Ba2+, and Mg2+ may react with anionic collectors, especially
with carboxylate, which lower collector concentration in the flotation pulp and reduce
REM floatability. One workaround to suppress this reaction is the use of citric acid and
EDTA, both of which limit the availability of interfering cations to react with carboxylate by
forming calcium–citric acid complex (CaCit−) and calcium–EDTA complex (CaEdta2−) [80].

Other coexisting cations like La3+, Pb2+, Al3+, and Fe3+ may improve the flotation
efficiency of REMs, as noted by many researchers [43,71,78,85,104,126–129]. These cations
are artificially added into the flotation pulp to make the surface of REMs more positively
charged (e.g., PbOH+ adsorption) and improve collector adsorption. This technique works
especially well for light rare earth elements (LREEs) (Figure 2b).



Appl. Sci. 2023, 13, 8364 11 of 21

4. Rare Earth Flotation from Secondary Resources

REEs in secondary resources are generally found in two forms: solid and liquid. Con-
ventional froth flotation is a promising approach for solid REE-bearing wastes
(e.g., phosphors), but more advanced flotation techniques are required for liquid wastes
(e.g., industrial wastewater). There are four unique flotation technologies—ion flotation
(Figure 3a), solvent sublation (Figure 3b), electroflotation (Figure 3c), and absorbing colloid
flotation (Figure 3d)—recently developed for recovering REEs from industrial wastewater
even at low concentrations.
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4.1. Froth Flotation

As described earlier, froth flotation (Figure 1) is a classical method to separate solid
particles based on their different surface wettability. To date, the only solid waste amenable to
flotation is phosphor, which comes from waste fluorescent lamps. Phosphors in fluorescent
lamps can be classified into three groups: (i) red phosphors ((Y0.95Eu0.05)2O3), (ii) green
phosphors ((Ce0.67Tb0.33)MgAl11O19), and (iii) blue phosphors ((Ba0.9Eu0.1)Mg2Al16O27) [130].

Yu et al. [130] carried out the successful separation of phosphors and glass from waste
fluorescence lamps using reverse flotation. In contrast to conventional direct flotation, re-
verse flotation removes impurities in the froth product while target REEs-bearing materials
are recovered in the tailings. Yu et al. [130] used dodecyl ammonium acetate (DDA) as
a collector—usually called “surfactant” in resources recycling—to physically adsorb on
glass particles while alkaline starch was utilized as a depressant for waste phosphors. The
results showed that glass particles had high floatability and were recovered in the froth
products while phosphors were mostly retained in the pulp. Among the three phosphors,
red phosphors had the lowest floatability, followed by blue phosphors and green phosphors.
The highest purity of TREO was obtained at pH 9, and the purity and recovery of model
samples were 27.0% and 71.4%, respectively, while, in real wastes, the purity was slightly
lower at 26.0% but with a slightly higher recovery of 73.3%.
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4.2. Ion Flotation

For the REEs in the form of ions in liquid wastes like industrial wastewater, advanced
flotation can be applied. Ion flotation (Figure 3a)—sometimes called “foam flotation” and
“ion foam flotation (IFF)”—is the most widely used flotation method for REE recycling
from wastewater in the last ten years. Similar to direct flotation, surfactants are used;
however, adsorption in ion flotation occurs on the REE ions rather than the particle surface.
The liquid–gas adsorption between the “sublate”, REE ions with adsorbed surfactants,
and bubbles occurs. The bubbles then bring the sublate up to the water surface, foam is
generated, and REE ions are recovered as “foamate products” [131].

Compared with the purification methods in hydrometallurgy like chemical precipita-
tion, ion exchange, and solvent extraction, ion flotation is more environmentally friendly
because of the low toxicity and amounts of chemical reagents used [132,133]. Also, other
advantages of this technique include simplicity, low operational costs, rapid reactions,
flexibility, low energy consumption, and applicability for substances of different physico-
chemical properties [133–135].

Justeau et al. [132] found that Ce ions could be recovered using ion flotation without
any surfactants but using F-Hexane gas to generate microbubbles. However, the majority
of ion flotation studies used sodium dodecyl sulfate (NaDDS) as the surfactant (Table 4).
Previous studies have shown that this technique could recover low-concentration REEs (10–6

to 10–3 M) with efficiencies of 57–98% [133–140]. Aside from NaDDS, other surfactants like
monorhamnolipid [131,140], AKYPO RO 90 VG [141], and cetylpyridinium chloride (CPC) [142]
have also been used. Although frothers are typically not used in ion flotation, several authors
have reported improved efficiency when using frothers like ethyl alcohol (EtOH) [131,142].

Table 4. A summary of recent studies on ion flotation and solvent sublation for REE ion recovery.

Flotation Techniques REEs REE Concentration [M] pH Surfactants Frothers Eff. * [%] References

Ion flotation

Ce 1 [mg/L] – – – – [132]
La, Ce, Gd, and Yb (0.01–5.4) × 10–4 3 NaDDS – 57–61 [140]
Nd 7 × 10–4 3 NaDDS – 85–97 [133,134]
Ce and Y 1 × 10–3 6 NaDDS – – [138]
Y and Yb 1 × 10–3 – NaDDS – – [135]
Yb 1 × 10–3 – NaDDS – [137]
La and Y 1 × 10–3 – NaDDS – – [136]
La and Ho 1 × 10–3 – NaDDS – – [143]
Sm 1 × 10–3 – NaDDS – – [139]
La, Ce, Gd, and Yb (0.01–5.4) × 10–4 9 Monorhamnolipid – 90–95 [140]
La (0.3–1.6) × 10–5 – Monorhamnolipid EtOH – [131]

Eu and Tb 2.5 × 10–5 – Cetylpyridinium
chloride EtOH – [142]

Nd 10–7–10–6 – AKYPO RO 90 VG – – [141]

Solvent sublation

Ce and Y 1 × 10–3 7–8 NaDDS Isooctyl
alcohol 99 [138]

Ce 1 × 10–3 8 NaDDS Isooctyl
alcohol 99 [144]

Tb 1 × 10–3 7 NaDDS 2-octanol 99 [145]
Sm 1 × 10–3 8 NaDDS 2-octanol 98 [139]

Note: NaDDS = sodium dodecyl sulfate; AKYPO® RO 90 VG = trade name of nonaoxyethylene oleylether
carboxilic acid; EtOH = ethanol. * = separation efficiency.

4.3. Solvent Sublation

Solvent sublation (Figure 3b) is an advanced flotation technique combining the princi-
ples of ion flotation and solvent extraction. This technique consists of two liquid compo-
nents: (i) aqueous phases containing REE ions, and (ii) an organic phase. It should be noted
that the organic substances used in this process must have a lower density than water to
facilitate separation. They also need to have low solubility and a high ability to accumulate
sublate, so isooctyl alcohol and 2-octanol are usually used [138,139,144,145].

Separation occurs when sublate-bearing gas bubbles (usually using nitrogen gas) float
and transfer rare earth ions to the organic phase. The gas flow rate used in this process
must be very low (~3.3 × 10−4 m3/h) to ensure that the bubbles do not disturb the organic
phase. Similar to ion flotation, NaDDS is frequently used as the surfactant in solvent
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sublation. Several authors have obtained 99% separation efficiency using this technique at
pH 7–8 [138,139,144,145].

4.4. Electroflotation

Electroflotation (Figure 3c) is an advanced flotation technique that uses electrolysis to
generate microbubbles. Stainless steel and aluminum are the most common and inexpensive
cathode materials used, while titanium with ruthenium-titanium oxide coating is preferred
as the anode [146–148].

In the past ten years, electroflotation has often been applied to higher concentration
REEs (50–250 M) and suitable for the leachate of the hydrometallurgical processes in
chloride, carbonate, sulfate, and nitrate media [147]. It is also important to note that in
electroflotation, the formation of poorly soluble compounds of metal salts (e.g., metal-
hydroxides, metal-sulfides, metal-phosphates) is essential before floating REE ions to the
surface via bubbles [149].

Surfactants used in electroflotation include cationic (Septapav and DDAC), anionic
(NaDDS), and non-ionic (PEO-1500) types (Table 5). It has been reported, however, that
electroflotation efficiency depends on the type of electrolyte, which could be related to
the effects of REE ionic charges. In a chloride electrolyte, anionic surfactant (NaDDS)
is outperformed by other surfactants, especially for the recovery of Sc at neutral pH.
Meanwhile, cationic surfactant is better when REE ions are found in carbonate and nitrate
electrolytes. In some cases, flocculants (i.e., C494, C496, N300, M345, and A137) were
used instead of surfactants to enlarge the precipitated metal compounds and enhance their
probability of collision with bubbles [146,150,151].

Table 5. A summary of recent studies on electroflotation for REE ions recovery.

Electrolyte REEs REE Concentration [M] pH Surfactants;
(Type) Eff. * [%] References

Chloride
Sc 50 7

NaDDS; (−) 99 [148,152]
Septapav; (+) 88 [148]

DDAC; (+) 88 [152]
PEO-1500; (0) 90 [148,152]

La 50 10
NaDDS; (−) 83–98 [146,148,152]
Septapav; (+) 74–88 [146,148]
PEO-1500; (0) 53–95 [146,148,152]

Carbonate

Sc 50 7

NaDDS; (−) 91 [148,152]
Septapav; (+) 77 [148]

DDAC; (+) 77 [152]
PEO-1500; (0) 58 [148,152]

La 50 7
NaDDS; (−) 12–20

[146]Septapav; (+) 29–34
DDAC; (+) 3–70

Ce, La, Nd, Pr, and Sm 3–137 7 Septapav; (+) 97–99 [151]

Carbonate-chloride Ce, La, Nd, Pr, Sm, and Gd 200–250 7
NaDDS; (−) 86–87

[150]Septapav; (+) 85–90
PEO-1500; (0) 83–90

Nitrate

Sc 50 7
NaDDS; (−) 64

[148,152]Septapav; (+) 97
PEO-1500; (0) 80

La 50 10

NaDDS; (−) 11–96 [146,152,153]
Septapav; (+) 14–98 [146,153]

DDAC; (+) 98 [152]
PEO-1500; (0) 9–96 [146,152,153]

Sulfate

Sc 50 7

NaDDS; (−) 22 [148,152]
Septapav; (+) 45 [148,152]

DDAC; (+) 41 [152]
PEO-1500; (0) 88 [148,152]

La 50 10

NaDDS; (−) 18–97 [152,153]
Septapav; (+) 38–97 [153]

DDAC; (+) 97 [152]
PEO-1500; (0) 14–56 [152,153]

Note: (+) = cationic surfactant; (−) = anionic surfactant; (0) = nonionic surfactant; NaDDS = sodium dode-
cyl sulfate; Septapav = didecyldimethylammonium chloride; DDAC = dodecyldimethylammonium chloride;
PEO-1500 = polyethyleneoxide; * = separation efficiency.
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4.5. Absorbing Colloid Flotation

Another advanced flotation technique capable of extracting low quantities of REE ions
from an aqueous solution is absorbing colloid flotation (ACF; Figure 3d). This method
utilizes colloidal Fe(OH)3 by adding ferric chloride (FeCl3) into the flotation system. Sepa-
ration occurs when REE ions adsorb to colloids via physisorption called “hydroxide flocs”,
which have a positive charge. An anionic surfactant (NaDDS) is then added to collect the
hydroxide flocs through their attachment to rising bubbles. Rezgar et al. [154], for example,
investigated the application of ACF to recover Ce from an aqueous solution and found that
maximum recovery reached 99.8% under acidic conditions.

Based on the concept of ACF, Perlova and Chernetskaya [155] investigated the applica-
tion of phosphine oxide as a carrier to recover La and Ce from an aqueous solution. In this
previous work, the recovery of REE ions reached 90% under alkaline pH because of higher
La3+- and Ce3+-hydroxocomplexes interacting with polar groups on phosphine oxide.

5. Conclusions

Flotation technology is widely employed in mineral processing, particularly for the
concentration of REMs, because of its high efficiency in separating particles based on
their contrasting surface properties (hydrophilic and hydrophobic). The findings of this
systematic review indicate that flotation technology as applied to REEs can be categorized
into two distinct groups: (i) flotation technology for primary resources, and (ii) flotation
technology applied to secondary resources. For the first group, flotation proves to be
advantageous in the separation of REMs from associated gangue minerals, especially
at finer liberation sizes. This technique also offers higher selectivity for REMs recovery
than other separation methods and ensures that the products have higher grades. In
the second group, conventional and advanced flotation techniques were employed to
recover REE-bearing materials from secondary sources, such as wastewater generated
by hydrometallurgical processes and other industries, including end-of-life products like
phosphors in fluorescent lamps. The application of flotation technology in these secondary
resources allows for the effective extraction and recovery of REEs, contributing to not only
resource recycling but also environmental conservation.

Recent research works highlight that in the flotation of primary resources, significant
attention was given to the selection of flotation reagents, including collectors, frothers,
and depressants. Among the various collectors used, three types are frequently employed:
(i) carboxylate, (ii) hydroxamate, and (iii) organo-phosphoric acid. It was observed that,
during flotation, hydroxamate and organo-phosphoric acid collectors exhibited higher
affinities for REMs than carboxylate collectors. Hydroxamate, however, has the highest
price among the three common collectors for REMs. Meanwhile, organo-phosphoric acid
collector was the most sensitive in terms of flotation conditions and was reported to be
effective only under acidic conditions. When economics is considered for the selection
of a collector for REMs flotation, carboxylate is the best candidate, due to its lower cost
compared with the other collector groups.

Over the past decade, numerous studies have investigated the performance-enhancing
effects of hydroxamate collectors. Additionally, alternative collectors, such as ionic liquids,
sodium dodecyl sulphate, flotigam EDA, R845N, combinations of kerosene and fatty acids,
and combinations of octanohydroxamic acid and sodium oleate, have been introduced to
further improve flotation efficiency. The literature consistently demonstrates that the most
effective approach to enhance flotation recovery and grade is through the depression of
associated gangue minerals. Several depressants have been employed in REMs flotation.
Notably, the combination of sodium silicate and starch was beneficial for depressing all
types of gangue minerals, particularly silicate gangue minerals. Meanwhile, ammonium
lignosulfonate was suitable for inhibiting iron-bearing minerals. Dissolved ions were also
highlighted as having significant effects on REMs flotation. Extensive research works have
elucidated the consumption of collectors when semi-soluble gangue minerals like calcite,
fluorite, dolomite, and barite were present in the flotation pulp. The inevitable presence of
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alkaline earth metal ions (e.g., Ca2+, Mg2+, Ba2+, Sr2+) inhibited the adsorption of collectors
on REM surfaces, resulting in lower floatability. In contrast, certain metal cations such as
Pb2+, La3+, Fe3+, and Al3+ have been applied to enhance the floatability of REMs. These
cations exhibited a strong affinity to activate REM surfaces by providing more active sites
for collector adsorption.

For secondary resources, flotation technologies for REE recovery can be classified
into five main techniques: (i) froth flotation, (ii) ion flotation, (iii) solvent sublation,
(iv) electroflotation, and (v) absorbing colloid flotation. It is worth noting that froth
flotation, identical to conventional flotation of primary resources, remains a highly effec-
tive method for isolating end-of-life products containing REEs, particularly for separating
phosphors from glass in spent fluorescent lamps. Meanwhile, the other flotation techniques
were primarily applied to isolate REEs from wastewater, showcasing their effectiveness
in separating bulk REEs. These flotation technologies not only contributed to wastewater
treatment but also facilitated the recovery of REEs, aligning with the principles of sus-
tainable development and supporting the UN Sustainable Development Goals (Goal 12:
Responsible consumption and production). However, it is important to highlight that the
separation of individual REE ions through flotation techniques still lacks extensive study.
This represents a challenging topic for future research, focusing on enhancing flotation tech-
nologies by investigating the effects of important parameters such as surfactant selection,
solution pH, and electrolyte conditions. By addressing this research gap, advancements
can be made in optimizing flotation processes for individual REE separation.

We believe that this review is beneficial for stakeholders across various disciplines,
including those working in fundamental research studies, policy development, mineral pro-
cessing, and extractive metallurgy, as well as waste management and recycling. It offers a
fundamental understanding of conventional and advanced flotation, presents key concepts,
and provides numerous ideas for developing future technologies in the REMs industry. By
utilizing the concepts and insights presented in this systematic review, stakeholders can
drive advancements and innovations in REMs processing and REE recycling, ultimately
contributing to the growth and sustainability of the industry.
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