
Citation: Peralta-López, J.-E.;

Morales-Viscaya, J.-A.; Lázaro-Mata,

D.; Villaseñor-Aguilar, M.-J.; Prado-

Olivarez, J.; Pérez-Pinal, F.-J.; Padilla-

Medina, J.-A.; Martínez-Nolasco, J.-J.;

Barranco-Gutiérrez, A.-I. Speed

Bump and Pothole Detection Using

Deep Neural Network with Images

Captured through ZED Camera.

Appl. Sci. 2023, 13, 8349. https://

doi.org/10.3390/app13148349

Academic Editor: Jan Egger

Received: 12 May 2023

Revised: 27 June 2023

Accepted: 29 June 2023

Published: 19 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Speed Bump and Pothole Detection Using Deep Neural
Network with Images Captured through ZED Camera
José-Eleazar Peralta-López 1, Joel-Artemio Morales-Viscaya 1 , David Lázaro-Mata 1,
Marcos-Jesús Villaseñor-Aguilar 1,2 , Juan Prado-Olivarez 1 , Francisco-Javier Pérez-Pinal 1 ,
José-Alfredo Padilla-Medina 1 , Juan-José Martínez-Nolasco 1 and Alejandro-Israel Barranco-Gutiérrez 1,*

1 Tecnológico Nacional de México en Celaya (TecNM), Antonio García Cubas, Esquina,
Av. Tecnológico, Celaya 38010, Mexico; 11030720@itcelaya.edu.mx (J.-E.P.-L.);
d2003026@itcelaya.edu.mx (J.-A.M.-V.); d2003008@itcelaya.edu.mx (D.L.-M.);
mvillasenor@upgto.edu.mx (M.-J.V.-A.); juan.prado@itcelaya.edu.mx (J.P.-O.);
francisco.perez@itcelaya.edu.mx (F.-J.P.-P.); alfredo.padilla@itcelaya.edu.mx (J.-A.P.-M.);
juan.martinez@itcelaya.edu.mx (J.-J.M.-N.)

2 Departamento de Ingeniería Robótica, Universidad Politécnica de Guanajuato, Unidad Cortazar Avenida
Universidad Sur No. 1001 Comunidad Juan Alonso, Cortazar 38496, Mexico

* Correspondence: israel.barranco@itcelaya.edu.mx

Featured Application: This research has a direct application to autonomous cars, as well as Ad-
vanced Driver Assistance Systems (ADAS).

Abstract: The condition of the roads where cars circulate is of the utmost importance to ensure that
each autonomous or manual car can complete its journey satisfactorily. The existence of potholes,
speed bumps, and other irregularities in the pavement can cause car wear and fatal traffic accidents.
Therefore, detecting and characterizing these anomalies helps reduce the risk of accidents and damage
to the vehicle. However, street images are naturally multivariate, with redundant and substantial
information, as well as significantly contaminated measurement noise, making the detection of street
anomalies more challenging. In this work, an automatic color image analysis using a deep neural
network for the detection of potholes on the road using images taken by a ZED camera is proposed. A
lightweight architecture was designed to speed up training and usage. This consists of seven properly
connected and synchronized layers. All the pixels of the original image are used without resizing.
The classic stride and pooling operations were used to obtain as much information as possible. A
database was built using a ZED camera seated on the front of a car. The routes where the photographs
were taken are located in the city of Celaya in Guanajuato, Mexico. Seven hundred and fourteen
images were manually tagged, several of which contain bumps and potholes. The system was trained
with 70% of the database and validated with the remaining 30%. In addition, we propose a database
that discriminates between potholes and speed bumps. A precision of 98.13% using 37 convolution
filters in a 3 × 3 window was obtained, which improves upon recent state-of-the-art work.

Keywords: speed bump detection; deep neural network; pothole detection; safe car driving

1. Introduction

Surface irregularities in road pavements are one of the main causes of accidents
and vehicle breakdowns in Mexico. In 2018, more than 12,000 traffic accidents occurred
throughout the country; 13.9% of these were related to road conditions, second only to the
car driver factor (Secretaría de Comunicaciones y Transportes de Mexico, 2020) [1]. In April
2023, a hospital worker fell into a deep ditch that had no markings in the La Conchita
neighborhood in Mexico City [2]. Therefore, early detection of these anomalies would
facilitate driving for autonomous and manual vehicles and reduce the risk of accidents,
resulting in fewer human and economic losses. Over the years, the global scientific and

Appl. Sci. 2023, 13, 8349. https://doi.org/10.3390/app13148349 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148349
https://doi.org/10.3390/app13148349
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6887-8686
https://orcid.org/0000-0003-0598-8145
https://orcid.org/0000-0001-8390-3552
https://orcid.org/0000-0002-6116-6464
https://orcid.org/0000-0002-1642-7274
https://orcid.org/0000-0003-4080-1286
https://orcid.org/0000-0002-5050-6208
https://doi.org/10.3390/app13148349
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148349?type=check_update&version=1

Appl. Sci. 2023, 13, 8349 2 of 17

technological community has developed many methods and techniques to detect road
abnormalities, including those that use accelerometers and smartphone GPS sensors, such
as in [3–6], as well as detection based on image processing in [7–9]. In addition, some
of these techniques have incorporated artificial intelligence methods, such as supervised
machine learning and deep learning, into the detection process. The autonomous driving
of passenger cars is a current area that has motivated us to work on the detection of
irregularities in the road such as potholes and speed bumps [10].

One advantage of using accelerometers to detect potholes and bumps is the high
degree of confidence in detection when the vehicle has already passed over the anomaly.
However, predicting the existence of a pothole or a speed bump with this sensor is more
difficult unless an updated database is used through the internet. Table 1 presents various
investigations related to the proposal of this work, in chronological order.

Table 1. Review of approaches to detect speed bumps and potholes.

Reference Accuracy % Type of Detection Sensor Method

[11] 78.5 Road anomaly Accelerometer Support vector machine
[12] 90 Pothole Accelerometer Z-DIFF
[13] 97 Pavement distress Image Neural network thresholding
[14] 85 Pedestrian crossing and speed bump Image and LIDAR height-difference-based algorithm
[15] 93 Potholes and bumps Accelerometer Energy peak acceleration value
[16] 90–95 Pothole Accelerometer Neural network
[17] 85 Speed bump Image Color image thresholding
[18] 92 Speed bump Image Connected component analysis.
[19] 94.7 Speed bump Image Gaussian mixture model
[8] 97.4 Speed hump/bump Image (ZED) Mobilenet-SSD CNN model
[4] 94–96 Potholes and bumps Accelerometer Wavelet
[20] 80 Speed bump Image Gray-level co-occurrence matrix
[5] 97.14 Speed bump Accelerometer GALGO
[9] 77 Pothole Image Inception V2
[7] 88.9 Potholes and bumps Image YOLO
[21] 90 Speed bump Image Otsu thresholding
[22] 90 Pothole Image Tiny-YOLOv4

1.1. Related Works Using One-Dimensional Signals

According to the review carried out, three main types of sensors have been used in
pothole and/or bump detection: accelerometers, cameras, and/or lidar. One of the ad-
vantages of using an accelerometer is that we only have to analyze three one-dimensional
time signals from the three x, y, and z axes. For example, [11] propose automatic road
anomaly detection using smart mobile devices, in which they collected triaxial acceleration
data while riding a motorcycle. Their data record covers about 3 h and 60 km. In refer-
ence [12], the authors present real-time pothole detection using Android smartphones with
accelerometers, achieving a 90% true positive rate. In reference [13], an approach for pave-
ment segmentation using genetic algorithms is documented. Captured pavement images
are used to define a cost function, which is then maximized by information theory to choose
the optimal threshold for segmentation. Additionally, in [15], accelerometers are used to
detect street conditions, specifically potholes and bumps. Experimental tests were carried
out on urban roads of Calabria, Italy, and the algorithm that was developed to detect road
bumps and potholes analyzes the acceleration signal from high-energy events. In another
article [16], Kulkarni et al. introduce a road pothole detection Android application. This
system uses the smartphone’s accelerometer for pothole detection and GPS to pinpoint
its location on Google Maps. Through an email, this information is sent and stored in an
internet database to notify future drivers that there is a pothole. The accuracy achieved by
the local system reached 90–95%.

Appl. Sci. 2023, 13, 8349 3 of 17

1.2. Related Works Using Multi-Dimensional Signals

In order to design more accurate and reliable top detection systems, more sensors
have been added to detect them, such as lidar, radar, and video cameras. The study
in reference [14] presents an environment mapping and sensing method for real-time
autonomous driving for rural and off-road environments. This has been designed in two
parts: (1) camera system to detect lanes, pedestrian crossings, and speed bumps; and
(2) obstacle detection system using lidar. The first part returns lane positions using the
vision module “VisLab Embedded Lane Detector (VELD)”. This prototype achieved an
accuracy of 85%. In reference [17], Devapriya et al., report detection of speed bumps with
85% accuracy, either to alert or to directly interact with the vehicle. It was made with the
help of image processing concepts. The methodology uses the smartphone’s hardware
such as GPS. This procedure is designed for roads built with proper signage. In 2016,
Devapriya et al. [18] proposed an Intelligent Transportation System (ITS) for traffic and
transportation management for smart and safe driving. The Advanced Driver Assistance
System (ADAS) belongs to ITS, which provides alerts, warnings, or information to the
user while driving. The proposed system detects speed bumps but does not detect low
speed bumps, which causes misidentification in several cases. The proposed method uses
Gaussian filtering and median filtering to remove noise in the image. Subsequently, image
subtraction is achieved by subtracting the median filtered image from the Gaussian filtered
image. The resulting image is converted to a binary image, and the regions are analyzed
using the connected component approach. The system works for bumpers with suitable
paint regardless of their dimension, and it achieved 92% accuracy. In other research [19],
Srimongkon et al. present a speed bump detection method based on the Gaussian mixture
model. The method based on the speed bump stripe pattern is applied to segment it from
the highway and several other environments. The morphological closure operator is then
performed to complete the speed bump area. In the results, both daytime and nighttime
conditions were tested. The experimental results show that the proposed system can detect
the protuberances with an efficiency of 94.7%. Varma et al. [8] propose a method that detects
and informs the driver about the upcoming unmarked and marked speed bumps/humps
in real time using deep learning techniques and provide the distance the vehicle is using
stereo vision approaches. It was built using NVIDIA GPUs and Stereolabs ZED Stereo
camera hardware. The driver or autonomous system of the vehicle can control the speed of
the vehicle to be in safer limits in order not to cause turbulence to the passengers or damage
to the vehicle. The accuracy of the system achieves 97.4%. Bello-Salau et al. [4] presented
an algorithm for detecting and describing potholes and bumps from noisy signals acquired
using an accelerometer. A wavelet transformation filter was used to analyze the signals into
multiple scales. Its coefficients were correlated across near scales and filtered using a spatial
filter. Road anomalies were detected on a fixed threshold system, while characterization
was achieved using unique features extracted from the filtered wavelet coefficients. Their
analyses show that the proposed algorithm detects and characterizes road anomalies with
94–96% of accuracy. Bharathi et al. [20] proposed a speed breaker identification method
using gray-level co-occurrence matrix (GLCM) features. This approach has three stages:
pre-processing, feature extraction, and classification. Noise removal, rescaling the image,
and gray scale conversion has been constructed as a part of pre-processing. In the feature
extraction stege, the pixels’ spatial relationship is obtained. The image’s second order
statistical GLCM are used as features. These characteristics include correlation, angular
second moment, entropy, homogeneity, and contrast. Neural network-based classifiers are
programmed in the third stage to identify the presence of a speed breaker. The performance
of the classifier is evaluated by calculating the confusion matrix and achieves 80%. Celaya-
Padilla et al. developed a method for the detection of road abnormalities (i.e., speed bumps).
This proposal makes use of a gyroscope, an accelerometer, and a GPS sensor installed in
a car. After having the vehicle travel through several streets, data are retrieved from the
sensors. Then, using a cross-validation, a genetic algorithm is used to find an adequate

Appl. Sci. 2023, 13, 8349 4 of 17

model that accurately detects road abnormalities. The proposed model had an accuracy
of 97.14%.

1.3. Deep Learning Proposals

Maeda et al. presented a study to address road damage detection issues [9]. A large-
scale road damage dataset was prepared, and images were captured using a smartphone
installed on a car. Next, they used convolutional neural networks to train the damage
detection system with their database and compared the accuracy and runtime speed on a
GPU server and a smartphone. The accuracy reached was 75%. Shah and Deshmukh [7]
attempted to identify the road surface by classifying it into potholes, speed bumps, and
normal road from image data. The clasification of the road surface from the images, utilizing
convolution neural network ResNet-50, is discussed. The images are hand-classified into
the three classes, and these are used to train the neural network, achieving a true positive
rate of 88.9%. Kennedy-Babu et al. [21] proposed two speed bump-detection methods:
(i) Otsu’s threshold and (ii) morphological operation. These processes are superior to the
existing ones because they do not utilize any external information network, so they are
free from GPS error, network overload, delay, and incorrect alarm. The proposed Otsu’s
approach is straightforward, efficient, and yields 74.6% accuracy. The performance of the
morphological or structural operation achieves good results, with an 85.8% detection ratio.
The two proposed designs provide a higher than 90% detection rate for properly painted
roads and optical illusion-type speed bumps. Another contribution is the investigation
of Asad et al. [22], which classified a dataset of images with potholes in various road
conditions and lighting variations. They tested various deep learning architectures such
as Tiny-YOLOv, YOLOv4, and YOLOv5, with accuracies of 80.04%, 85.48%, and 95%,
respectively. The study found Tiny-YOLOv4 to be the best model for pothole detection,
with 90% detection accuracy.

1.4. Our Proposal

A relevant problem detected in studies such as [14,17,18,20,21] was that their systems
focused on detecting well-marked speed bumps; for this reason, they presented difficulties
during the detection of unmarked speed bumps. Our system is capable of detecting marked
and unmarked speed bumps with a balanced success rate. This is an important aspect in
the Mexican environment because many speed bumps are not marked. Also, the way that
our system processes the images differs from most current convolutional networks because
it does not perform a stride in the convolution layer in order not to under-sample and thus
hide detailed information about the input image. Although the amount of processing at the
input is greater than in other architectures, we tried to use the fewest number of network
layers so as not to compromise the processing speed of the deep network. In contrast to
various works in the literature, our proposal manages to detect both speed bumps and
potholes [2] for car traffic, and the work methodology that we follow is illustrated in the
flowchart of Figure 1.

In this article, we propose the use of a deep neural network without strides or pooling
but with a “batch normalization” layer to classify images that contain a pothole or speed
bump, as well as those that do not. This is in conjunction with a manually labeled database
obtained from ZED camera videos on avenues in the city of Celaya, Guanajuato, Mexico, in
order to help autonomous driving systems and human drivers prevent road accidents due
to speed bumps and humps.

Appl. Sci. 2023, 13, 8349 5 of 17

Figure 1. Proposal flowchart.

2. Materials and Methods

The software used in this work was MATLAB 2019a , along with its Deep Learning
toolbox, running on a Windows 10 Pro operating system on hardware equipped with an
Intel(R) Core(TM) i9-10900X CPU @ 3.70 GHz 3.70 GHz processor, manufactured in Dalian,
Liaoning, China.

A database was constructed using a ZED camera [23] mounted on the front of an SUV,
as shown in Figure 2. The tour to take the photographs was conducted in the city of Celaya,
Guanajuato, Mexico. A total of 179 images of bumps were collected and stored in folder 0
(134 yellow speed bumps and 35 unmarked speed bumps); 231 images of potholes were
stored in folder 1; and 304 images of streets without bumps or potholes were stored in
folder 2. The images were captured at a resolution of 376 × 672 pixels. One of the most
important factors when selecting the images was the position of the sun. For example,
around six in the afternoon, the sun sometimes shone directly into the camera and hindered
the capture of good-quality images. Therefore, it was necessary to eliminate such images,
as well as some images that did not contain speed bumps or potholes, to balance the
number of images in each class.

Figure 2. ZED camera sitting on the car’s front.

Three categories stored in different folders were used to label the images: an image
with label 1 has a speed bump, an image with label 2 has a pothole, and an image with

Appl. Sci. 2023, 13, 8349 6 of 17

label 3 has no speed bump or pothole. Examples of this type of image are shown in Figure 3.
It is important to note that, in the database, there are speed bumps that are not marked
and others that are marked in yellow. Some have yellow stripes, and others are completely
painted yellow. The potholes, which are not desired characteristics of the streets, are not
marked and could be confused with puddles of water on the streets.

Figure 3. The three types of images to classify.

2.1. Basics of Deep Learning in Images

Deep learning is a set of machine learning algorithms that models high-level abstrac-
tions on large amounts of data using multiple iterative nonlinear transformations of data
expressed in matrix or tensor form. A typical architecture in this scheme for image un-
derstanding is a convolutional neural network (CNN) that is organized in layers. Usually,
the first layers perform convolution operations and the last one has a fully connected
neural network.

Linear filtering of an image is accomplished through an operation called convolution
indicated by ∗ and also expressed as (4), (5) and (6) for color images. This is an operator in
the neighborhood of each pixel, where the output is the weighted sum of neighboring input
pixels. The weight matrix is called the convolution kernel or filter. For example, Figure 4
illustrates how a pixel resulting from the convolution is calculated when filtering it with a
3 × 3 kernel in position (2, 4).

When an output pixel at the edge of an image is computed, a portion of the convolution
falls outside the image edge, as illustrated in Figure 5. The padding of pixels outside the
image to complete the processing of the image convolution is simply called “Padding”.
If set to “same”, MATLAB calculates the padding value at training time so that the output
is the same size as the input when stride is equal to 1.

On the other hand, stride operation controls the jumps of the filter on the input image
in pixels. If the stride is set to 1, the filter moves 1 pixel at a time, and if the stride is 2,
the filter moves 2 pixels at a time. The higher the stride value, the smaller the size of the
resulting output image, as shown in Figure 6.

Appl. Sci. 2023, 13, 8349 7 of 17

Figure 4. The yellow area of the image is convolved (*) with the kernel (matrix) on the right and its
result is 575.

Figure 5. In “same” padding the border pixels are copied out in order to complete the convolution
operation. In order to allow the center of the kernel to be applied to the edges of the image.

Figure 6. The colors indicate the different types of strides that are made during the convolution. In
stride = 1 we have two jumps while for stride = 2 we only have one jump.

The pooling operation reduces resolution of the feature map by reducing its height
and width, while retaining features of the map required for classification. This is called
down-sampling. Figure 7 shows an example of this process.

Appl. Sci. 2023, 13, 8349 8 of 17

Figure 7. In each four pixels neighborhood of a different color, there are two types of pooling, the one
on the left is the one that chooses the maximum and the one on the right is the one that calculates
the average.

For several decades in image processing, convolution has been used to filter images,
segment them, improve their contrast, and even classify them. However, this processing is
a very data-heavy task, which is why stride and pooling operations are used to subsample
data; however, these processes waste the high quality of the current images.

2.2. Convolutional Neural Network Architecture

First, a color image is received from the camera with resolution k × l × c (k =
672 columns, l = 376 rows, and c = 3 for RGB color index), with 8 bits of resolution
for each pixel and the RGB color scheme expressed as:

I(x, y, z) ∈ 0 ≤ Z ≤ 255∨ {x|1 ≤ x ≤ k}, {y|1 ≤ y ≤ k}, {z|1 ≤ z ≤ k} (1)

where I is a three-dimensional matrix. The first layer, named “ImageInputLayer”, creates a
data normalization function that subtracts the mean image (meanI) of the training set (for
this case, the maximal n is 714) from each input image for color images with dimensions of
376 in height, 672 in width, and 3 for color in the RGB format, stored in a (376,672,3) tensor.

meanI =
(I1 + I2 + ... + In)

n
(2)

În = I −meanI (3)

The second layer, “Convolution2Dlayer”, is a convolutional layer with 37 convolution
filters of width and height 3 × 3 (f1, f2,. . ., fp=37), with stride = 1 and without pooling, but
with a padding type = ”same” to capture image details and avoid subsampling the scene
information, stored in a (376,672,3,37) tensor.

CONVp(x, y, 1) =
a

∑
dx=−a

b

∑
dy=−b

fp(dx, dy, 1) În(x− dy, y− dz, 1) (4)

CONVp(x, y, 2) =
a

∑
dx=−a

b

∑
dy=−b

fp(dx, dy, 2) În(x− dy, y− dz, 2) (5)

CONVp(x, y, 3) =
a

∑
dx=−a

b

∑
dy=−b

fp(dx, dy, 3) În(x− dy, y− dz, 3) (6)

where fp is a convolution window of size (2a + 1) by (2b + 1). And dx and dy are the
indices that traverse the window on the x and y axes.

The third layer, “batchNormalizationLayer”, normalizes a mini-batch of data across
all observations for each feature independently to accelerate training of the convolutional
neural network and reduce sensitivity to network initialization. It is recommended to use

Appl. Sci. 2023, 13, 8349 9 of 17

batch normalization layers between convolutional layers and non-linearities, as in our case,
where we use a ReLU layer after a convolutional layer, stored in a (376,672,3,37) tensor.

Ĉp(x, y, z) =
CONVp(x, y, z)− µp

σp
(7)

ˆCNp(x, y, z) = αpĈp(x, y, z) + βp (8)

where µp is the mean, σp the standard deviation, αp an amplification parameter, and βp a
bias value for each feature.

The fourth layer, “ReluLayer”, is a rectified linear unit (ReLU) that performs a thresh-
olding operation on the input. Values less than zero are set to zero, and values greater
than zero remain their value. Compared to the tanh (hyperbolic tangent) and sigmoidal
functions, ReLU has no saturation zones. These saturation zones mean that the output of
the neurons does not change significantly, which causes the training gradient to not change
and network parameters to not undergo significant changes. This generates a stagnation
in the training process. That is the reason why the ReLU function has gained relevance in
current neural networks, stored in a (376,672,3,37) tensor.

ReLU(x, y, z) = max(0, ˆCNp(x, y, z)) (9)

The fifth layer, “fullyConnectedLayer”, creates a fully connected neural network with
an output size of 3 because it is being classified into that number of classes (i = 1, 2, 3).
The output of the ReLU layer is vectorized (vec()); that is, the matrix is converted to a
vector with all the elements of the matrix, an operation also known as flattening. This layer
multiplies its inputs by an array of weights Wi and then adds a bias vector bi; the result is
applied to the input of a tansig function. It means that our full connected neural network
has 28,046,592 inputs and 3 outputs (28046592,3).

FCLi = vec(ReLU(x, y, z)) ∗Wi + bi (10)

The sixth layer (3 inputs, 3 outputs), “SoftMax”, also uses a softmax function, which is
typically used as the final layer of classifiers based on neural networks. It converts a vector
of N real values into a vector of N real values that sum to 1, allowing for interpretation as
probabilities. In our case, N = 3.

so f tmax(FCL)i =
eFCLi

∑N
j=1 eFCLj

. (11)

The seventh and last layer, “classOutput” (3 inputs, 3 outputs) is the classification
layer. It computes the cross-entropy loss of the classification outputs as mutually exclusive
classes (3,3).

loss = − 1
M

M

∑
n=1

K

∑
i=1

gitniln(qni) (12)

where M is the number of samples, K is the number of classes, gi is the weight for class i, tni
is the indicator that the nth sample belongs to the ith class, and qni is the output for sample
n for class i, which in this case is the value from the softmax function. In other words,
qni is the probability that the network associates the nth input with class i. The complete
deep learning network architecture can be seen in Figure 8 with respective parameters
and hyperparameters.

Appl. Sci. 2023, 13, 8349 10 of 17

Figure 8. Convolutional neural network architecture with their hyperparameters and parameters.

2.3. Hyperparameter Tuning

Hyperparameters in CNN are the high-level parameters of the architecture; for ex-
ample, the size of the input image, the number of convolution filters to use, the size of
the convolution filters, the number of neural network outputs, among others. These are
defined before training it. On the other hand, the network parameters are the values that
are chosen automatically by an optimization algorithm implemented by MATLAB; in our
case, this is the SGDM (Stochastic Gradient Descent with Momentum Optimizer) as the
weights of the neural network and the values of the elements of the convolution filters.

Computer hardware is very relevant for training deep neural networks, especially
when using GPUs for performing the iterations [24]. However, it is necessary to optimize
the network architecture by tuning its hyperparameters and starting with an appropriate
database. Simply increasing the depth of the network does not always result in better
performance or better feature learning. Therefore, if the categories are highly discriminable,
very deep architectures may not be required. On the other hand, using a larger input
volume during training can improve filter learning for different categories, even though
the computational cost can be significant. Considering that the network’s main task is
prediction, using high-performance equipment becomes an intermediate step. The final
application can run on low-cost embedded systems, such as a Raspberry Pi. To find the
right architecture, it is crucial to make gradual changes to a single parameter at a time,
allowing for the correct analysis of its effect on training.

3. Results

In this section, the accuracies of various deep neural network architectures are pre-
sented to determine the best one. Only the hyperparameters of the convolution layer
were varied, since it is the most computationally intensive layer. After conducting several
experiments with different filters, the best architecture was identified, and only some of the
results are presented. Figure 9 depicts the training and validation progress, as well as the
accuracy of the proposed deep neural network (Model 1) for detecting speed bumps and
potholes in our database. In this case, 36 filters of dimensions 5 × 5 were used.

Appl. Sci. 2023, 13, 8349 11 of 17

Figure 9. Model 1: Neural network accuracy using 36 filters of 5 × 5 pixels, accuracy 91.12%.

Figure 10 shows the progress of training and validation, as well as the accuracy of the
proposed deep neural network called Model 2. It used 37 filters of 5 × 5 pixels, with an
accuracy of 92.06%.

Figure 10. Model 2: Neural network accuracy using 37 filters of 5 × 5 pixels, accuracy 92.06%.

Figure 11 shows the progress of training and validation, as well as the accuracy of the
proposed deep neural network called Model 3. It used 38 filters of 5 × 5 pixels, with an
accuracy of 64.95%.

Appl. Sci. 2023, 13, 8349 12 of 17

Figure 11. Model 3: Neural network accuracy using 38 filters of 5 × 5 pixels, accuracy 64.95%.

Figure 12 shows the progress of training and validation, as well as the accuracy of the
proposed deep neural network called Model 4, which used 37 filters of 7 × 7 pixels, with
an accuracy of 57.94%.

Figure 12. Model 4: Neural network accuracy using 37 filters of 7 × 7 pixels, accuracy 57.94%.

Figure 13 shows the progress of training and validation, as well as the accuracy of the
proposed deep neural network called Model 5, which used 37 filters of 3 × 3 pixels, with
an accuracy of 98.13%.

Appl. Sci. 2023, 13, 8349 13 of 17

Figure 13. Model 5: Neural network accuracy using 37 filters of 3 × 3 pixels, accuracy 98.13%.

Figure 14 shows the progress of training and validation, as well as the accuracy of the
proposed deep neural network called Model 6, which used 38 filters of 3 × 3 pixels with an
accuracy of 83.18%.

Figure 14. Model 6: Neural network accuracy using 38 filters of 3 × 3 pixels, accuracy 83.18%.

Feature Visualization of Convolutional Neural Network

Convolutional neural networks use filters that extract complicated features from
a window of 3 × 3, 5 × 5, to p × p, where p is usually odd. The network learns these

Appl. Sci. 2023, 13, 8349 14 of 17

characteristics automatically during the training or optimization process. What the network
learns during training is sometimes unclear. However, MATLAB provides functions to
be able to visualize the learned functions. The outputs of the fully connected layers at
the end of the network correspond to high-level combinations of the features learned by
the previous convolution layers. In the case of our CNN proposal, it shows the features
obtained in layers 2, 3, and 4 in Figures 15–17.

Figure 15. Layer 2: 37 convolutional kernels of size 3 × 3 × 3 learned by the “2Convolution2Dlayer”
on the 224 × 224 × 3 input images.

Figure 16. Layer 3: 37 convolutional kernels of size 3 × 3 × 3 learned by the “batchNormalization-
Layer” on the data from layer 2.

Figure 17. Layer 4: 37 convolutional kernels of size 3 × 3 × 3 learned by the “ReluLayer” on the data
from layer 3.

4. Discussion

The results show that there are different architectures and that the best one is Model 5,
with a precision of 98.13%. It can also be observed that, when the number of filters is varied
in 5 × 5 windows, the best result is obtained with 37 filters. When the number of filters
is fixed at 37 and the filter size is varied, the best result is obtained with a size of 3 × 3.
However, increasing the number of filters to 38 with a 3 × 3 filter size leads to a decrease in
precision to 83.18%, as shown in Table 2. Therefore, we selected Model 5.

Appl. Sci. 2023, 13, 8349 15 of 17

Pothole and bump detection systems based on images provide us with the opportunity
to predict the presence of these anomalies on the road in order to avoid them. In contrast,
accelerometers do not allow this because they require a very sudden movement to detect a
pothole or speed bump.

Table 2. Accuracies of different convolutional network architectures.

Model Filter Size Filter Quantity Accuracy Training and Validation Time

1 5 × 5 36 91.12% 17 min 27 s
2 5 × 5 37 92.06% 17 min 46 s
3 5 × 5 38 64.95% 20 min 33 s
4 7 × 7 37 57.94% 20 min 56 s
5 3 × 3 37 98.13% 17 min 21 s
6 3 × 3 38 83.18% 17 min 46 s

On the other hand, when we compared our proposal with similar works, we identified
several articles that detected potholes and speed bumps using accelerometers, lidar, and im-
ages. However, the closest works to ours were those proposed by Maeda et al., and by Asad
et al. [9,22]. The first proposed a system on a smartphone running Inception V2 to detect
potholes in Czech, Indian, and Japanese cities. Although they reported that their dataset
was composed of 9053 road damage images captured with a smartphone, unfortunately,
that dataset only contained images of potholes photographed from inside the car, not
from the angle of a camera on a car to detect or predict the existence of anomalies on the
road. The second proposed an image classification with potholes that were specifically
photographed, which does not allow for capturing the conditions in which a driver would
observe a pothole in the distance from a car. However, it is also a lightweight architecture
that has eight layers of image processing.

In contrast, our database includes three types of images: those with speed bumps,
with potholes, and without either. Moreover, the images were taken from the front of
a car. Our deep neural network uses only 7 layers, which is lighter for the processing
hardware compared to Inception V2 with 12 layers. Our proposal achieves an accuracy
of 98.13%, whereas that of Maeda et al. reaches only 77%, as shown in Table 3. Unlike
other works in the same vein, we do not use strides or pooling to extract all possible
information. We also use a “BatchNormalization” layer to accelerate the training and
decrease the sensitivity to network initialization, which other architectures do not use.
In addition, we use a “SoftMax” layer, which allows for the output of the fully connected
network to be interpreted as probabilities. The use of small 3 × 3 windows gives us the
advantage of obtaining more image details.

Table 3. Comparison of different proposals of the state of the art.

Reference Dataset Size Accuracy Detected Anomalies

Maeda et al. [9] 9053 images 77% Potholes
Asad et al. [22] 665 images 95% Potholes
Our proposal 714 images 98.13% Potholes and Speed bumps

5. Conclusions

A deep neural network for the detection of speed bumps and potholes was successfully
designed using images captured by a ZED stereoscopic camera placed on the front of an
SUV. This system has the potential to improve the safety of automated and human drivers.
The high degree of precision achieved during the validation process is satisfactory, and the
database is unique for capturing the specific situation of the streets of Celaya, Guanajuato,
Mexico. The deep convolutional network architecture only consists of seven layers, which
makes it light to implement in embedded and high-performance computing systems.
The proposed methodology takes advantage of all the information coming from the camera

Appl. Sci. 2023, 13, 8349 16 of 17

at its maximum resolution because no stride or pooling process is performed. Compared
to other larger architectures, better results were achieved with fewer flops. Unlike other
architectures, ours can classify potholes and speed bumps. As future work, we aim to
increase the size of the database to include special cases and to implement this method in
an integrated system, making it easily accessible for use on board cars. Another convenient
future work is to implement the architecture parallelization using GPU and/or FPGA
hardware. We believe that this system has great potential for further development and can
make a significant contribution to improving road safety.

Author Contributions: Conceptualization, A.-I.B.-G. and J.-E.P.-L.; methodology, J.-A.P.-M.; soft-
ware, J.-A.M.-V.; validation, D.L.-M. and M.-J.V.-A.; formal analysis, F.-J.P.-P.; resources, J.P.-O.;
data curation, D.L.-M.; writing—original draft preparation, J.-E.P.-L.; writing—review and edit-
ing, J.-A.M.-V. and J.-J.M.-N.; visualization, F.-J.P.-P.; supervision, J.-A.P.-M.; project administration,
A.-I.B.-G.; funding acquisition, A.-I.B.-G. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by CONACYT in Becas Nacionales and Sistema Nacional de
Investigadores grants. A part of the APC was funded by TecNM en Celaya.

Data Availability Statement: The MATLAB code and the database can be found at the following
link: https://drive.google.com/drive/folders/1ugaPdFtf5o2Wgreb2DTOBgVhdDk2uZAL?usp=
share_link (accessed on 4 July 2023).

Acknowledgments: The authors would like to thank the TecNM collaborators for the support
provided to build this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Secretarĺa de Comunicaciones y Transportes de México. Estadĺstica de Accidentes de Tránsito; Secretarĺa de Comunicaciones y Trans-
portes de México: Mexico City, Mexico, 2020. Available online: https://imt.mx/archivos/Publicaciones/DocumentoTecnico/dt7
9.pdf (accessed on 4 July 2023).

2. Corro, I. Joven cae en zanja de Tláhuac con todo y coche; asegura que no habĺa señalización, VIDEO. El Universal, 8 March 2023.
3. Al-Shargabi, B.; Hassan, M.; Al-Rousan, T. A Novel Approach for the Detection of Road Speed Bumps using Accelerometer

Sensor. TEM J. 2020, 9, 469–476. [CrossRef]
4. Bello-Salau, H.; Aibinu, A.M.; Onumanyi, A.J.; Onwuka, E.N.; Dukiya, J.J.; Ohize, H. New road anomaly detection and

characterization algorithm for autonomous vehicles. Appl. Comput. Inform. 2018, 16, 223–239. [CrossRef]
5. Celaya-Padilla, J.M.; Galván-Tejada, C.E.; López-Monteagudo, F.E.; Alonso-González, O.; Moreno-Báez, A.; Martĺnez-Torteya,

A.; Galván-Tejada, J.I.; Arceo-Olague, J.G.; Luna-Garcĺa, H.; Gamboa-Rosales, H. Speed Bump Detection Using Accelerometric
Features: A Genetic Algorithm Approach. Sensors 2018, 18, 443. [CrossRef] [PubMed]

6. Martinez, F.; Carlos Gonzalez, L.; Ricardo Carlos, M. Identifying Roadway Surface Disruptions Based on Accelerometer Patterns.
IEEE Lat. Am. Trans. 2014, 12, 455–461. [CrossRef]

7. Shah, S.; Deshmukh, C. Pothole and Bump detection using Convolution Neural Networks. In Proceedings of the 2019 IEEE
Transportation Electrification Conference (ITEC-India), Bengaluru, India, 17–19 December 2019; pp. 1–4.

8. Varma, V.S.K.P.; Adarsh, S.; Ramachandran, K.I.; Nair, B.B. Real Time Detection of Speed Hump/Bump and Distance Estimation
with Deep Learning using GPU and ZED Stereo Camera. In Proceedings of the 8th International Conference on Advances in
Computing and Communication (ICACC-2018), Kochi, India, 13–15 September 2018; Volume 143, pp. 988–997.

9. Maeda, H.; Sekimoto, Y.; Seto, T.; Kashiyama, T.; Omata, H. Road Damage Detection Using Deep Neural Networks with Images
Captured Through a Smartphone. arXiv 2018, arXiv:1801.09454.

10. Villaseñor-Aguilar, M.J.; Peralta-López, J.E.; Lázaro-Mata, D.; Garcĺa-Alcalá, C.E.; Padilla-Medina, J.A.; Perez-Pinal, F.J.; Vázquez-
López, J.A.; Barranco-Gutiérrez, A.I. Fuzzy Fusion of Stereo Vision, Odometer, and GPS for Tracking Land Vehicles. Mathematics
2022, 10, 2052. [CrossRef]

11. Tai, Y.-C.; Chan, C.-W.; Yung-Jen, H.J. Automatic Road Anomaly Detection Using Smart Mobile Device. In Proceedings of the 5th
Conference on Artificial Intelligence and Applications (TAAI 2010), Hsinchu, Taiwan, 18–20 November 2010.

12. Mednis, A.; Strazdins, G.; Zviedris, R.; Kanonirs, G.; Selavo, L. Real time pothole detection using Android smartphones with
accelerometers. In Proceedings of the 2011 International Conference on Distributed Computing in Sensor Systems and Workshops
(DCOSS), Barcelona, Spain, 27–29 June 2011; pp. 1–6.

13. Salari, E.; Yu, X. Pavement distress detection and classification using a Genetic Algorithm. In Proceedings of the 2011 IEEE
Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 11–13 October 2011; pp. 1–5.

https://drive.google.com/drive/folders/1ugaPdFtf5o2Wgreb2DTOBgVhdDk2uZAL?usp=share_link
https://drive.google.com/drive/folders/1ugaPdFtf5o2Wgreb2DTOBgVhdDk2uZAL?usp=share_link
https://imt.mx/archivos/Publicaciones/DocumentoTecnico/dt79.pdf
https://imt.mx/archivos/Publicaciones/DocumentoTecnico/dt79.pdf
http://doi.org/10.18421/TEM92-07
http://dx.doi.org/10.1016/j.aci.2018.05.002
http://dx.doi.org/10.3390/s18020443
http://www.ncbi.nlm.nih.gov/pubmed/29401637
http://dx.doi.org/10.1109/TLA.2014.6827873
http://dx.doi.org/10.3390/math10122052

Appl. Sci. 2023, 13, 8349 17 of 17

14. Choi, J.; Lee, J.; Kim, D.; Soprani, G.; Cerri, P.; Broggi, A.; Yi, K. Environment-Detection-and-Mapping Algorithm for Autonomous
Driving in Rural or Off-Road Environment. IEEE Trans. Intell. Transp. Syst. 2012, 13, 974–982. [CrossRef]

15. Astarita, V.; Caruso, M.V.; Danieli, G.; Festa, D.C.; Giofrè, V. P.; Iuele, T.; Vaiana, R. A mobile application for road surface quality
control: UNIquALroad. Procedia-Soc. Behav. Sci. 2012, 54, 1135–1144. [CrossRef]

16. Kulkarni, A.; Mhalgi, N.; Gurnani, S. Pothole Detection System using Machine Learning on Android. Int. J. Emerg. Technol. Adv.
Eng. 2014, 4, 360–364.

17. Devapriya, W.; Babu, C.N.K.; Srihari, T. Advance Driver Assistance System (ADAS)-Speed bump detection. In Proceedings of the
2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India, 10–12
December 2015; pp. 1–6.

18. Devapriya, W.; Babu, C.N.K.; Srihari, T. Real time speed bump detection using Gaussian filtering and connected component
approach. Circuits Syst. 2016, 7, 2168–2175. [CrossRef]

19. Srimongkon, S.; Chiracharit, W. Detection of speed bumps using Gaussian mixture model. In Proceedings of the 2017 14th
International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), Phuket, Thailand, 27–30 June 2017; pp. 628–631.

20. Bharathi, M.; Amsaveni, A.; Manikandan, B. Speed Breaker Detection Using GLCM Features. Int. J. Innov. Technol. Explor. Eng.
2018, 8, 384–389.

21. Babu, K.C.N.; Devapriya, W.; Srihari, T.; Nandakumar, R. Speed-bump Detection using Otsu’s Algorithm and Morphological
Operation. Int. J. Emerg. Technol. 2020, 11, 989–994.

22. Asad, M.H.; Khaliq, S.; Yousaf, M.H.; Ullah, M.O.; Ahmad A. Pothole Detection Using Deep Learning: A Real-Time and
AI-on-the-Edge Perspective. Adv. Civ. Eng. 2022, 2022, 9221211. [CrossRef]

23. STEREOLABS. Available online: https://www.stereolabs.com/zed-2/ (accessed on 13 April 2023).
24. Ssheshadri, Jetson Nano Developer Kit User Guide. 2788 San Tomas Expressway Santa Clara, CA 95051. 15 January 2020.

Available online: https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/docs/NV_Jetson_Nano_
Developer_Kit_User_Guide.pdf?svGUDWZio7oyFzB5oJu3kMwIBZBEpJ84wuGMfPRRDnmA5gIgeFKtQ987wVYovaAMCJa4
UR8deq0CLbvazMUVFAFxBjxIYCZq_Ws9iTdBPmL4HV89ellsIv1IceR5knK2ldDCWXys-t1rENTDFitQTKsDCg8G1cjlQR2_V3
D2DgjvFs1u986stSY_XLruS-GJonI=&t=eyJscyI6ImdzZW8iLCJsc2QiOiJodHRwczovL3d3dy5nb29nbGUuY29tLyJ9 (accessed on
4 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TITS.2011.2179802
http://dx.doi.org/10.1016/j.sbspro.2012.09.828
http://dx.doi.org/10.4236/cs.2016.79188
http://dx.doi.org/10.1155/2022/9221211
https://www.stereolabs.com/zed-2/
https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/docs/NV_Jetson_Nano_Developer_Kit_User_Guide.pdf?svGUDWZio7oyFzB5oJu3kMwIBZBEpJ84wuGMfPRRDnmA5gIgeFKtQ987wVYovaAMCJa4UR8deq0CLbvazMUVFAFxBjxIYCZq_Ws9iTdBPmL4HV89ellsIv1IceR5knK2ldDCWXys-t1rENTDFitQTKsDCg8G1cjlQR2_V3D2DgjvFs1u986stSY_XLruS-GJonI=&t=eyJscyI6ImdzZW8iLCJsc2QiOiJodHRwczovL3d3dy5nb29nbGUuY29tLyJ9
https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/docs/NV_Jetson_Nano_Developer_Kit_User_Guide.pdf?svGUDWZio7oyFzB5oJu3kMwIBZBEpJ84wuGMfPRRDnmA5gIgeFKtQ987wVYovaAMCJa4UR8deq0CLbvazMUVFAFxBjxIYCZq_Ws9iTdBPmL4HV89ellsIv1IceR5knK2ldDCWXys-t1rENTDFitQTKsDCg8G1cjlQR2_V3D2DgjvFs1u986stSY_XLruS-GJonI=&t=eyJscyI6ImdzZW8iLCJsc2QiOiJodHRwczovL3d3dy5nb29nbGUuY29tLyJ9
https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/docs/NV_Jetson_Nano_Developer_Kit_User_Guide.pdf?svGUDWZio7oyFzB5oJu3kMwIBZBEpJ84wuGMfPRRDnmA5gIgeFKtQ987wVYovaAMCJa4UR8deq0CLbvazMUVFAFxBjxIYCZq_Ws9iTdBPmL4HV89ellsIv1IceR5knK2ldDCWXys-t1rENTDFitQTKsDCg8G1cjlQR2_V3D2DgjvFs1u986stSY_XLruS-GJonI=&t=eyJscyI6ImdzZW8iLCJsc2QiOiJodHRwczovL3d3dy5nb29nbGUuY29tLyJ9
https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/docs/NV_Jetson_Nano_Developer_Kit_User_Guide.pdf?svGUDWZio7oyFzB5oJu3kMwIBZBEpJ84wuGMfPRRDnmA5gIgeFKtQ987wVYovaAMCJa4UR8deq0CLbvazMUVFAFxBjxIYCZq_Ws9iTdBPmL4HV89ellsIv1IceR5knK2ldDCWXys-t1rENTDFitQTKsDCg8G1cjlQR2_V3D2DgjvFs1u986stSY_XLruS-GJonI=&t=eyJscyI6ImdzZW8iLCJsc2QiOiJodHRwczovL3d3dy5nb29nbGUuY29tLyJ9

	Introduction
	Related Works Using One-Dimensional Signals
	Related Works Using Multi-Dimensional Signals
	Deep Learning Proposals
	Our Proposal

	Materials and Methods
	Basics of Deep Learning in Images
	Convolutional Neural Network Architecture
	Hyperparameter Tuning

	Results
	Discussion
	Conclusions
	References

