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Abstract: Screw assemblies of radar are characterized by numerous densely distributed small screws
of various types, rendering their manual assembly difficult and inefficient. To improve the assembly
quality and efficiency, an automatic assembly system was developed. First, the position and attitude
relationships among the workpiece, camera, and base coordinate systems of the manipulator were
obtained using three-point location and nine-point calibration methods. Second, a visual servoing
strategy is designed for guiding the manipulator such that its position can be adjusted adaptively to
achieve the high-precision positioning of threaded holes. Third, a method for evaluating assembly
quality is developed. The templates of angle–torque curves of various screws were produced by
fitting experimental data. Furthermore, the assembly quality was determined by calculating the
similarity between the angle–torque curves and templates based on the Fréchet distance. Finally, the
feasibility was verified using a flat plate component with five threaded holes.

Keywords: screw assembly; visual servoing; quality evaluation; Fréchet distance

1. Introduction

The performance of complex electronic devices such as radar is affected by many
factors, such as the material ratio of components and assembly accuracy [1], of which
assembly accuracy is a very important aspect. Radar requires many screws to fix high-
precision structural parts. The screws are small, densely distributed, and of various types [2].
As a result, the manual assembly of screws is inefficient. For automatic assembly equipment,
a small screw assembly requires high positioning accuracy. Otherwise, screw assembly
failure can easily result in damaged surface parts and missing screws, negatively affecting
product quality. In view of the foregoing, the automatic assembly of small screws is not
currently popular [3]. Accordingly, the investigation of automatic assembly equipment for
dense small screws is necessary.

Currently, the key steps in automatic screw assembly are screw hole positioning and
screw tightening [4]. Most factories rely only on drawings to obtain the position information
of threaded holes and control mechanisms to identify the corresponding positions for screw
assembly. For example, Matsuno et al. [5] designed a six-revolute (6R) manipulator screw
operation system that relied on the self-positioning capability of a manipulator to locate
a threaded hole. The manipulator is controlled by an additional force sensor such that it
is flexible in the workpiece plane and can be used to adjust the screw position. However,
owing to the inherent structural errors of the manipulator, its absolute positioning accuracy
may be as high as several millimeters [6]. Moreover, the actual workpiece coordinate system
typically has errors; hence, it is not an ideal workpiece coordinate system. Therefore, the
sole reliance on the self-alignment of the manipulator does not ensure that the screw is
correctly placed in the threaded hole, causing the screw to destroy the surface of the
assembled part.
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To improve the positioning accuracy of threaded holes, visual measurement technol-
ogy has been introduced to modify their position information. After moving the industrial
camera over the threaded holes according to the drawing information, a more accurate
position can be obtained by visually measuring the screw assembly [7,8]. He et al. devel-
oped a threaded hole recognition and positioning technology based on machine vision
technology. It located the holes based on edge detection and Hough transformation as well
as measured the coordinates of thread holes for guiding the manipulator to complete the
assembly [9]. Pitipong et al. designed an automatic locking system for a manipulator with
four degrees of freedom. The position and attitude errors of the screws were monitored
in real time based on fuzzy control and visual servo feedback strategy [10]. Albert et al.
used machine vision for guiding SCARA robots to locate threaded holes such that these
machines could be applied to the automated production line of microscrews [11].

In actual assembly processes, the screw assembly may fail or be disqualified because
of the measurement and motion errors of the manipulator; accordingly, determining the
assembly quality of screws is critical. Currently, teaching methods are commonly used
in the industry. This method assumes that each screw has a unique angle–torque curve
during assembly and that the fault is typically a deviation from the correct curve [12]. This
method compares the real-time torque curve with the characteristic torque curve during
assembly. If the screw assembly characteristic curve follows the set track and stops within
the final threshold area, then the screw assembly is considered successful [13]. Although
this method is easy to implement and typically reliable, it has insufficient flexibility and
setting the corresponding characteristic torque is time consuming. Moreover, because only
the threshold for important nodes is set, the trend of curve changes between two nodes is
ignored, easily leading to misjudgment [14]. Neural network models are frequently used for
screw assembly quality prediction. Li et al. determined the key parameters related to screw
assembly using an analytic hierarchy process. They also analyzed the pre-tension model
of the screw using support vector regression. Accordingly, the prediction of assembly
quality and determination of key parameters have been realized [15]. Meiners applied
machine learning to bolt assembly angle–torque curve analysis as well as detected the
classified errors during assembly [14]. Chen et al. collected the muscle and torque signals
during screw assembly and processed the collected data using a multi-segment parallel
convolution neural network to realize screw assembly quality prediction [16].

Nevertheless, several problems in assembling dense small screws persist and have not
yet been resolved by research.

(1) The existing visual-based threaded hole positioning methods pose certain risks in
the assembly of dense small screws. The main reason is that due to the complex structure
of the manipulator, absolute positioning accuracy is difficult to ensure. On the other hand,
high-precision manipulators are costly, making them unsuitable for widespread use in
ordinary factories. When the manipulator moves over the threaded holes in the longitudinal
direction, it is affected by the accumulation of absolute positioning errors. In particular, this
is because the distance between two threaded holes is extremely small. Moreover, the target
threaded holes may not be in the center view of the camera, leading to positioning errors;
consequently, some screws may not be installed. As shown in Figure 1, when locating
threaded hole 1 in Step 1, the camera center is closer to threaded hole 2 because of the
motion error of the manipulator. Thus, threaded hole 2 is misjudged as the target threaded
hole. As the assembly task progresses, in Step 3, a screw is installed in hole 6. However,
because threaded hole 1 is outside the camera view, a screw is not threaded into this hole.
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(2) Angle–torque curves are typically used to determine the screw assembly quality.
Teaching methods considerably rely on human experience in artificially setting thresholds.
Moreover, the range of torque fluctuations of the screw varies and can easily lead to
misjudgment owing to different work scenarios and screw types. In addition, if a method
based on neural networks is adopted, a large number of experiments need to be conducted
to gather sufficient data to support the training of the neural network [17,18], which will
delay the time to deployment.

To complete the assembly of dense small screws on flat panel parts, an automatic
assembly system for small screws was developed in this study. The system uses industrial
cameras, a laser distance measurer, a torque sensor, and a motor encoder to fabricate a 6R
series manipulator. The fabricated equipment has multi-source status sensing capabilities,
such as detecting image, distance, torque, and angle, to improve the screw assembly quality.
The main contributions of this study are as follows.

(1) The position and attitude relationship between the workpiece and basic coordinate
systems of the manipulator is obtained using a three-point positioning method with
a laser distance measurer. The affine transformation relationship between the pixel
and workpiece coordinate system is obtained using a nine-point calibration method,
laying a foundation for automatic screw assembly.

(2) A visual servo-positioning method has been designed. Firstly, the workpiece is
divided into several sub-areas according to the size of the camera’s field of view.
When the manipulator moves to the center of a sub-area, a photo is taken, and the
threaded holes in each sub-area are identified. Secondly, the industrial camera roughly
measures the pixel distance between each threaded hole and the center of the area.
By calculating the physical distance, it guides the manipulator to move the camera
over the threaded hole to be installed, where further precise positioning is carried out
through the industrial camera.

(3) A screw assembly quality assessment system was developed. Experiments show that
the angle–torque curves of the same type of assembly errors exhibit similar trends.
Therefore, the corresponding template curve was fitted using a polynomial, and the
screw assembly quality was determined by comparing the screw tightening curve
with various assembly template curves based on the Fréchet distance.

In the scheme presented in this paper, existing issues can be specifically addressed.
Firstly, the visual servo method can resolve the problem of poor absolute positioning
accuracy of the manipulator. Traditional methods require the target threaded hole to be in
the center of the camera’s field of view after the manipulator’s long-distance movement,
a requirement hard to achieve due to the manipulator’s absolute positioning accuracy.
However, servo-positioning only needs to ensure that the camera’s field of view covers the
workpiece area. Then, through multiple short-distance movements, the target threaded
hole can be approached gradually, allowing the manipulator to complete the task with ease.
Secondly, taking advantage of the similarity in the shape of the angle–torque curves of
the same type, we designed an assembly quality assessment method based on the Fréchet
distance. This approach no longer depends on manually setting thresholds or training with
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large amounts of experimental data. Its principle is easy to understand, making it more
suitable for widespread adoption in factories.

The structure of this paper is as follows. The introduction describes the research
background, current situation, and purpose. Section 2 introduces the automatic screw
assembly method in detail, including the main process, definition of the key coordinate
system, the servo-positioning strategy, and the screw assembly quality assessment method.
Section 3 discusses the prototype experiments and presents the analysis of experimental
results to verify the validity of the method. Finally, Section 4 summarizes the conclusions. It
also reviews the research content and findings as well as proposes future research directions.

2. Methods
2.1. Main Process of Automatic Screw Assembly

To realize the automatic assembly of screws, a 6R manipulator is used to conduct the
research. A screw-locking device with an industrial camera, a laser distance measurer, a
torque sensor, and a motor encoder is mounted, as shown in Figure 2.
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Figure 2. Mechanism design of screw assembly equipment. (1, 6-DOF industrial manipulator;
2, screw-locking device; 3, laser distance measurer; 4, industrial cameras and light sources; 5, sliding
track; 6, flange plate.)

Industrial cameras were placed on the fixture using the eye-in-hand method. The
cameras together with the manipulator approached the target during the positioning of the
threaded holes. The laser distance measurer determines the distance between the end of the
manipulator and the surface of the workpiece in the same direction as the axis of the flange
at the end of the manipulator. The screw-locking device was mounted on a sliding platform
and driven up and down by a cylinder. When tightening is performed, the manipulator is
in a stationary state, and its distance to the working plane remains fixed. The screw-locking
device moves back and forth with high precision along the sliding platform and holds the
screw for tightening.

The automatic assembly process for screws is shown in Figure 3. First, the workpiece
coordinate system is determined using the three-point positioning method with the support
of a laser distance measurer. Second, the workpiece is divided into several sub-areas to
ensure that all threaded holes can be captured when the camera moves to the center of
the sub-area. Then, a servo-positioning strategy is implemented to achieve the accurate
positioning of each threaded hole. Subsequently, the screw-locking device installs the screw.
Finally, the screw assembly quality is assessed.
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2.2. Definition of Coordinate System

In this section, the key coordinate systems necessary for the automatic assembly
of screws are defined. These systems include the basic coordinate system, {B}, of the
manipulator, flange coordinate system, {f }, camera coordinate system, {C}, pixel coordinate
system, {p}, and workpiece coordinate system, {F}. The three-point positioning method and
nine-point calibration method were employed to determine the relationships between {F}
and {B} and between {F} and {p}.

2.2.1. The Three-Point Positioning Method to Determine the Relationship between {F} and {B}

The three-point positioning method was used to establish {F} [19]. First, the industrial
manipulator carries the laser distance measurer to position points a, b, and c on the work-
piece. As shown in Figure 4, points a and b are two points on one side of the working plane;
generally, two points on one side of the workpiece are considered. Point c is a point on the
working plane located as far as possible from points a and b. By adjusting the manipulator,
the reading of the laser distance measurer at the three positions becomes consistent.
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Point a is the origin of {F}, and
→
ab is the direction vector of the X axis of {F}. The

coordinates of points a, b, and c are set as (xa, ya, za),(xb, yb, zb), and (xc, yc, zc), respec-

tively. Starting from point a, direction vectors
→
ab and

→
ac are established and obtained by

Equation (1): { →
ab = (xb − xa, yb − ya, zb − za)
→
ac = (xc − xa, yc − ya, zc − za)

(1)

The direction vector,
→
zF, is obtained by cross-multiplying direction vectors

→
ab and

→
ac,

as shown in Equation (2):
→
zF =

→
ab× →ac (2)

The direction vector,
→
yF, is obtained by cross-multiplying direction vectors

→
zF and

→
ab,

as given in Equation (3):
→
yF =

→
zF ×

→
ab (3)

The attitude relationship, B
F H , of {F} relative to the base coordinate system, {B}, can

be obtained by converting direction vectors
→
xF,

→
yF, and

→
zF into unit vectors, as given by

Equation (4):
B
F H =

[ →
xF∣∣∣→xF

∣∣∣
→
yF∣∣∣→yF

∣∣∣
→
zF∣∣∣→zF

∣∣∣
]

(4)

2.2.2. Calibration of Vision Systems Based on Nine-Point Calibration

An industrial camera collects the image information of the workpiece, and the pixel
coordinates of the key points can be obtained through image processing. However, the pixel
coordinates cannot be directly used to guide the movement of the manipulator. Thus, they
must be calibrated and transformed into {F} coordinates to guide the camera’s movement.
Therefore, the nine-point calibration method is used to solve the position and attitude
relationship between {p} and {F}.

The solution process mainly involves the basic ({B}), flange ({f }), camera ({C}), pixel
({p}), and workpiece ({F}) coordinate systems, as shown in Figure 5. The pose of the camera
center in {B} is described by {C}; the optical axis of the camera is the Z axis. Moreover, {p} is
a two-dimensional coordinate system that describes the projection of three-dimensional
space objects onto the image plane.
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The Zf axis of {f } is perpendicular to the {F} plane. The optical axis of the camera is
set parallel to the Zf axis of the flange (i.e., the camera optical axis is perpendicular to the
workpiece surface) through fixture design. This means that the pixel coordinate system is
parallel to the workpiece surface.

Because the manipulator carries the camera and screw-locking device to perform
movement at the same height relative to {F} at a fixed attitude, considering the ZF axis
is unnecessary for {F}. Thus, the problem is simplified to solving the corresponding
relationship between the target pixel set (u, v) of the plane image and coordinate point set
(x, y) of the manipulator in {F}. The pixel points, (u, v), in the image can be transformed
into points (x, y) in {F} through two-dimensional affine transformation.

In two-dimensional affine transformation, when a figure on one plane is translated
to another, the parallel lines remain parallel before and after the translation. Each affine
transformation can be represented by a combination of translation, rotation, shearing, and
scaling [20]. The composition of the two-dimensional homogeneous affine matrix is given
by Equation (5):

H2D =

1 0 TX
0 1 TY
0 0 1

 ·
cos α − sin α 0

sin α cos α 0
0 0 1

 ·
1 − sin θ 0

0 cos θ 0
0 0 1

 ·
SX 0 0

0 SY 0
0 0 1

 (5)

where

SX is the scaling of the X axis of the original coordinate during the conversion;
SY is the scaling of the Y axis of the original coordinate during the conversion;
θ is the shear coefficient of the transformed coordinate system;
α is the rotation angle around the origin of the coordinate system;
TX is the translation distance in the X axis direction of two coordinate systems;
TY is the translation distance in the Y axis direction of two coordinate systems.

The affine transformation between the pixel and workpiece coordinate systems is
represented by a two-dimensional homogeneous transformation matrix obtained from
Equation (6): x

y
1

 =

a11 a12 a13
a21 a22 a23
0 0 1

u
v
1

 (6)
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where

u is the abscissa of {p};
v is the vertical coordinate of {p};
x is the abscissa of {F}; and
y is the vertical coordinate of {F}.

Calculating the affine matrix requires at least three sets of corresponding image pixels
and camera coordinates in {F}. To improve the calibration accuracy, nine datasets are
generally used. This operation is overdetermined, the resulting affine matrix minimizes the
distance between the input and transformed point sets, as given by Equation (7):

∑
i

∥∥∥∥∥∥
x

y
1

 − H2D ·

u
v
1

∥∥∥∥∥∥
2

= min (7)

where H2D is the affine matrix. As shown in Figure 6, the manipulator reaches nine
positions to capture pictures and record the position where the origin of {f } is in {F}.
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Subsequently, the nine collected images were processed, and the edge-detection
method was used to extract the center coordinates of the marked points. This process
is shown in Figure 7.
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Subsequently, the nine collected images were processed, and the edge-detection 

method was used to extract the center coordinates of the marked points. This process is 

shown in Figure 7. 

 

(a) Original image (b) Detection circle 
(c) Extracted center  

coordinates 

Figure 7. Image processing for extracting center coordinates.

The coordinates of the nine points in {p} and {B} are listed in Table 1.
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Table 1. Coordinates of nine points in {p} and {B}.

Serial Number
{p} {B}

Row (Pixel) Column (Pixel) X Axis (mm) Y Axis (mm)

1 79.02 66.95 374.757 −19.774
2 49.91 1816.61 374.823 10.873
3 80.22 3592.19 375.929 41.958
4 1333.11 68.42 396.523 −20.117
5 1358.83 1891.15 397.565 11.794
6 1292.22 3589.96 396.963 41.563
7 2671.97 41.37 419.751 −20.984
8 2702.25 1842.53 420.865 10.548
9 2687.39 3578.81 421.174 40.957

The affine transformation matrix of the pixel and workpiece coordinate systems is
obtained from Table 1 and Equation (7); it is given by Equation (8):x

y
1

 =

 0.0173557 0.000326546 373.364
−0.000293878 −0.0175115 −20.923

0 0 1

u
v
1

 (8)

2.3. The Visual Servo-Positioning Strategy

In the screw assembly process, the precise measurement of the central coordinates is
necessary to ensure that the screw can be accurately assembled to avoid damage to the
threaded hole. However, for some countersunk threaded holes, imaging may be irregular
owing to the shielding of the upper cover plate and the lighting effect of the light source
equipment. This can considerably affect the diameter and center coordinate measurement
accuracies of the threaded holes. The threaded holes in the center of the image are not
affected, as shown in Figures 8 and 9. Accordingly, a visual servo-positioning strategy was
developed. By repeatedly moving the camera until the threaded hole becomes the image
center, the accuracy of feature extraction can be improved.
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In this section, the displacement of the camera in {p} is first converted into displacement
in {F}. Second, the specific process of the visual servo-positioning strategy is introduced.
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2.3.1. Camera Displacement in {F}

In Equation (6), (a13, a23) is the coordinate of the origin of {p} in {F} when finding the
optimal solution of the nine-point calibration. If the camera is fixed here, its coordinate
information in {F} can be calibrated by solving the pixel coordinate of the center of the
threaded hole in the image. However, in practical applications, the camera is not fixed
in this position; instead, it moves with the robot. Accordingly, (a13, a23) also changes.
Therefore, a reference coordinate system, {xF − oF − yF}, shown in Figure 10 is established
on the plane of {F}. The coordinate of the origin in {F} is (a13, a23), and the coordinate
system moves with the camera.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 21 
 

Imaging Plane Schematics

Camera Optical Axis

Edge threaded hole Central threaded hole

A
B

Edge threaded hole  

Figure 9. Schematic of threaded hole imaging. 

2.3.1. Camera Displacement in {F} 

In Equation (6), 13 23( , )a a
 is the coordinate of the origin of {p} in {F} when finding the 

optimal solution of the nine-point calibration. If the camera is fixed here, its coordinate 

information in {F} can be calibrated by solving the pixel coordinate of the center of the 

threaded hole in the image. However, in practical applications, the camera is not fixed in 

this position; instead, it moves with the robot. Accordingly, 13 23( , )a a
 also changes. There-

fore, a reference coordinate system, 
{ }F F Fx o y− −

, shown in Figure 10 is established on 

the plane of {F}. The coordinate of the origin in {F} is 13 23( , )a a
, and the coordinate system 

moves with the camera. 

FZ
FY

FXFO

u

vo

Fy

FxFo

0 0( , )
2 2

u v
p

 

Figure 10. Establishment of reference coordinate system. 

At this time, the relationship between the reference coordinate system and {p} is given 

by Equation (9): 

11 12

21 22

F

F

x a a u

y a a v

     
=     

      
(9) 

After image processing, if the distance moved by the camera in {p} is 
( , )u v

, then that 

in {F} is 0 0( , )x y
, which is obtained by Equation (10): 

0

0 11 12

0 21 22 0

2

2

u
u

x a a

y a a v
v

 
−    

=     
    −
    

(10) 

  

Figure 10. Establishment of reference coordinate system.

At this time, the relationship between the reference coordinate system and {p} is given
by Equation (9): [

xF
yF

]
=

[
a11 a12
a21 a22

][
u
v

]
(9)

After image processing, if the distance moved by the camera in {p} is (u, v), then that
in {F} is (x0, y0), which is obtained by Equation (10):[

x0
y0

]
=

[
a11 a12
a21 a22

][ u0
2 − u
v0
2 − v

]
(10)

2.3.2. The Servo-Positioning Strategy

First, the photograph of the sub-area is divided according to the camera’s field of
vision and workpiece size. Then, the manipulator is guided to capture pictures above the
center of each area alternately. To ensure that all the threaded holes in each sub-area are
within the camera’s field of vision, each sub-area is allowed to overlap to some extent, as
shown in Figure 11, A–D are examples of sub-areas.
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After obtaining the threaded hole information from the image, a rectangular frame
was used to approximate the hole’s position. Moreover, the assembly sequence was
given. As shown in Figure 12, “+” is the image center, and “×” is at the center of the
red rectangle. Approximate positioning is performed according to the rectangular central
coordinate information, and the distance between the image center and target threaded
hole is calculated. This process is called the approximate positioning of threaded holes.
The purpose is to move the screws that must be assembled near the center of the camera’s
field of view (i.e., move the camera from “+” to “×” to prepare for precise positioning).
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Figure 12. Approximate positioning of threaded holes.

After approximate positioning, the center of the threaded hole appears near the image
center. The sources of positioning errors are due to the (1) influence of the filming angle
(a small gap exists between the actual and measuring positions of the center of the threaded
hole) and the (2) absolute positioning error of the manipulator. However, owing to the
small measurement error and short-range motion of the manipulator, the positioning error
is negligible. The use of a suitable industrial camera and manipulator ensures that the
positioning error is less than the screw radius. When the threaded hole closest to the image
center is used as the hole for screw assembly, the correct threaded hole can be found.

At this point, the center of the threaded hole is precisely positioned, as shown
in Figure 13. The distance between the center pixel coordinate of the threaded hole and
that of the image is gradually reduced by several iterations until the error becomes less
than visual positioning accuracy. This ensures that the screw can be precisely installed
to prevent damage to the threaded hole. The number of specific iterations is related to
the absolute positioning accuracy of the manipulator. The higher the absolute positioning
accuracy, the fewer the iterations.

2.4. Screw Assembly Quality Assessment

To ensure the reliability of the automatic screw assembly system, a screw-locking
device with a torque sensor and motor encoder was used to determine the angle–torque
curve of each screw type. After assembly, the screw assembly quality was analyzed and
assessed using the angle–torque curve. This section first presents the analysis of the possible
angle–torque curves that may exist. Then, a screw assembly quality assessment algorithm
is presented. The angle–torque curve template was fitted according to the experimental
data under various screw assembly conditions. Moreover, the similarity between the actual
angle–torque curve and the template was calculated using the Fréchet distance to determine
the quality of the screw assembly.
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2.4.1. Screw Assembly Analysis

A common assembly defect of this system is that the large location error of the threaded
holes causes cross-threading, which occurs in the initial thread-matching stage, as shown in
Figure 14. When the positioning error is large, the screw can still be placed in the threaded
hole because its diameter is slightly larger than that of the screw. However, the axis of
the screw-locking device is at position A, and the screw is limited by the threaded hole
such that the axis is deflected, causing the thread to cross. During the tightening process,
the screw is subjected to considerable friction, resulting in a high friction torque at the
beginning of tightening. The torque reaches a specified value in advance, whereas the
preload does not satisfy the requirements, resulting in “false tightening”. The angle–torque
curve during assembly is shown in Figure 15.
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As shown in Figure 15, the cross-threaded screws have distinct characteristics at the
initial stage of tightening with large and fluctuating torques. The overall torque is greater
than the ideal tightening torque and reaches the predetermined torque in advance. For
ideally tightened screws, when the head of the screw does not come into contact with the
connecting piece, the torque overcomes the friction moment between the threaded pair. At
this stage, the torque curve small with no evident changing trend. When the screw head
comes into contact with the connected piece, the torque sharply increases, and the screw is
successfully locked.

2.4.2. Screw Assembly Quality Assessment

The process of the screw assembly assessment method is shown in Figure 16. First, the
actual angle–torque curve is obtained by the torque sensor and motor encoder. The Fréchet
distance between the curve and each template is then calculated to determine similarity.
Subsequently, the assembly quality of the screw is assessed.
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Figure 16. Assessment process of screw assembly quality.

Through experiments, several angle–torque curves can be obtained during screw
assembly. The curve representing a satisfactory screw assembly is selected as the reference
curve, and point (xi, yi) on multiple reference curves is fitted by a polynomial given by
Equation (11):

ŷ = a0 + a1x + a2x2 + . . . + an−1xn−1 + anxn (11)

Solving the n + 1 best-fit coefficients, a0–an, in the polynomial of degree n is necessary.
The square sum of the residuals was used as the error function to determine the fitting
effect. The smaller the square sum of the residuals, the better the fitting effect. The abscissa,
xi, of the sample is inserted into the fitted polynomial, ŷ, to obtain the new ordinate, ŷi. The
sum of the squares of residuals is obtained by Equation (12):

ε =
n

∑
i=1

(ŷi − yi)
2 (12)

The least squares method is applied to solve the group (a0, a1, a2, . . . , an−1, an) and
minimize the sum of the squares of residuals (i.e., the polynomial). After the calculation,
the fitting curve shown in Figure 17 is obtained; the curve is the template for the successful
assembly of screws.



Appl. Sci. 2023, 13, 8309 14 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 21 
 

Angle-torque curve

Start

Calculate Fréchet distance

Similarity calculation and 

analysis

Template curve

Assembly quality 

assessment

End
 

Figure 16. Assessment process of screw assembly quality. 

The least squares method is applied to solve the group 0 1 2 1( , , ,..., , )n na a a a a−  and min-

imize the sum of the squares of residuals (i.e., the polynomial). After the calculation, the 

fitting curve shown in Figure 17 is obtained; the curve is the template for the successful 

assembly of screws. 

-1800 -800 -600 -400 -200-1000-1200-1400-1600 0

角度(°)

扭
矩

(N
·m

)

0

0.2

0.4

0.6

0.8

1

1.2

-1800-1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0
0

0.2

0.4

0.6

0.8

1

1.2

Angle(°)

T
o
rq

u
e

 (
N

·m
)

Experimental 

curve 1

Experimental 

curve 2

Experimental 

curve 3
Experimental 

curve 4
Experimental 

curve 7

Experimental 

curve 5
Experimental 

curve 8

Experimental 

curve 9

Experimental 

curve 6

 

Figure 17. Angle–torque curve of successfully assembled screws. 

Definition 1. Let a curve be a continuous mapping of f :[ a , b ] → V, among , ,a b R a b  , 

where (V, d ) is a metric space. Then, two curves can be formed: f :[ a , b ] → V and g :[ a , b ] 

→ V. The Fréchet distance between the two curves is defined by Equation (13) [21]: 

( )
[0,1]

, inf max{ ( ( ( )), ( ( )))}F
t

f g d f t g t
 

  


=
，  

(13) 

where 

 is any continuous non-decreasing function from [0, 1] to [ a , b ], 
 is any continuous non-decreasing function from [0, 1] to [ a , b ]. 

Figure 17. Angle–torque curve of successfully assembled screws.

Definition 1. Let a curve be a continuous mapping of f :[a, b]→ V, among a, b ∈ R, a ≤ b, where
(V,d) is a metric space. Then, two curves can be formed: f :[a,b]→ V and g:[a′,b′]→ V. The Fréchet
distance between the two curves is defined by Equation (13) [21]:

δF( f , g) = inf
α,β

max
t∈[0,1]

{d( f (α(t)), g(β(t)))} (13)

where

α is any continuous non-decreasing function from [0, 1] to [a, b],
β is any continuous non-decreasing function from [0, 1] to [a′, b′].

If the angle–torque curve to be identified is L1 and the curve template for successful
screw assembly is L2, then the calculation process of the Fréchet distance between L1 and
L2 is as follows.

(1) Discretize L1 into m points, as follows:

P = {(x1, y1), (x2, y2), . . . , (xm, ym), . . . , (xM, yM)} (14)

where xm and ym are the abscissa and ordinate of the mth point, respectively.

(2) Similarly, discretize L2 into n points as follows:

Q =
{
(x1
′, y1

′), (x2
′, y2

′), . . . , (xn
′, yn

′), . . . , (xN
′, yN

′)
}

(15)

where xn
′ and yn

′ are the abscissa and ordinate of the nth point, respectively.

(3) Calculate the Euclidean distance from each point on curve P to each point on curve Q
(expressed by distance matrix D):

D =



d11 · · · d1n · · · d1N
...

. . .
...

. . .
...

dm1 · · · dmn · · · dmN
...

. . .
...

. . .
...

dM1 · · · dMn · · · dMN

 (16)
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where dmn is the Euclidean distance from the mth point on curve L1 to the nth point on
curve L2.

(4) Create a matrix, F, whose element values are given by Equation (17):

Fij =


max (dij, min(di−1,j−1, di,j−1, di−1,j)) i > 0, j > 0
max (dij, d0,j−1) i = 0, j > 0
max (dij, di−1,0) i > 0, j = 0
dij i = 0, j = 0

(17)

The element value in the lower right corner of matrix FMN is the Fréchet distance
between curves L1 and L2. The Fréchet distance is inversely proportional to similarity. The
smaller the Fréchet distance, the greater the similarity.

2.4.3. The Feasibility of the Assessment Algorithm

After numerous tests, the angle–torque curve of failure in the process of thread assem-
bly was obtained. Consider the angle–torque curve of an assembly failure as an example
(Figure 18). The feasibility of applying the Fréchet distance to assess the assembly quality
of screws is expounded.
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Figure 18. Angle–torque curve of failure of assembled screw.

As shown in Figure 19, the black solid line represents the Fréchet distance between
the eight experimental curves in Figure 18 and the successful assembly template curve,
while the red dashed line represents the Fréchet distance between the experimental curves
and the failed assembly template curve. It can be seen that there is a significant difference
between the Fréchet distances of successful and failed assemblies, which prevents confusion.
Therefore, the Fréchet distance can be used for judgment.
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3. Experiment

In this study, a specialized experimental platform was constructed to carry out the
necessary investigations, as illustrated in Figure 20. The essential equipment procured and
their respective characteristics are detailed as follows:

• Robotic Arm: Repeated positioning accuracy of 0.02 mm and maximum payload
capacity of 9 kg.

• CMOS Camera: 10 million pixels, resolution of 3664 × 2748, pixel size of 1.67 µm, and
frame rate of 8 FPS.

• Laser Displacement Sensor: Accuracy of 0.07 mm.
• Aluminum Experimental Board: Dimensions of 500 × 200 mm, with threaded holes

ranging from M2–M5 sizes uniformly distributed.

The practicality and applicability of the proposed methodology were substantiated
via a successful assembly of screws on the aforementioned experimental board, as demon-
strated in Figure 21.
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Figure 21. Test plate assembly.

First, the camera is positioned above the parts to be assembled and it captures images
and identifies the threaded holes. Subsequently, the affine transformation matrix is applied
to calculate the displacement (unit: mm) of the camera in the workpiece coordinate system,
as shown in Figure 22.
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Figure 22. Identification and positioning of threaded holes.

Approximate positioning is implemented according to the solution distance. After
completing the movement of the manipulator, photographs are captured to measure the
diameter of the threaded hole. According to the measurement results, the screws are
suctioned by the screw-arranging machine. Then, the screws are set for precise positioning,
as shown in Figure 23.
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When precise positioning is achieved, the control system sends a signal to guide the
offset movement of the manipulator. After the movement is completed, the sliding table
cylinder is extended, the screw is aligned with the threaded hole, and the screw-locking
device performs the assembly action, as shown in Figure 24.
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Figure 24. Screw assembly.

After installing a screw, the assembly quality assessment method is implemented to
determine whether the screw was successfully locked. If locking is successful, the assembly
of the next screw is initiated; otherwise, the screw-locking device reverses the installation
of the screw to mark the coordinates of the threaded hole.

The experimental results are shown in Figure 25. The system can achieve high-
precision positioning and assembly for the M2, M3, M3.5, M4, and M5 screws.
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The accuracy of visual positioning is shown in Figure 26. Generally, a visual position-
ing accuracy of less than 0.05 mm can be achieved after two precise positioning maneuvers,
thus satisfying the requirements.
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4. Conclusions

The mounting plates of electronic equipment, such as radar, require numerous screws
to fix various sensors. The screw assembly is characterized by various types of densely
distributed small screws. A small screw automatic assembly system was developed to
improve the assembly quality and efficiency. The mechanical system adopts a 6R series
manipulator equipped with an industrial camera, a laser distance measurer, a torque sensor,
and a motor encoder. The system can sense multi-source states, such as image, distance,
torque, and angle. First, the position and orientation relationships of the workpiece, pixel,
and base coordinate systems are obtained using the three-point positioning method and
nine-point calibration method, establishing the foundation for automatic screw assembly.
Second, a servo-positioning strategy is designed to locate the threaded hole accurately, and a
method for assessing the assembly quality of screws is developed. The angle–torque curves
of various small screws are obtained through experiments, and a template is constructed
by polynomial fitting. The similarity between the angle–torque curve and template is
calculated based on the Fréchet distance to determine the assembly quality of the screws.
The feasibility of the method is verified by considering a flat plate part with five sizes of
threaded holes as an example. Results show that the system can achieve high-precision
positioning and assembly for the M2, M3, M3.5, M4, and M5 screws.

The system developed in this paper realizes automatic screw assembly and can be
applied to most industrial scenarios, especially performing excellently in the assembly
of dense small screws for electronic devices such as radar installation boards. However,
it should be noted that during screw installation, despite successful assembly, minor
errors may slightly shift the installation board from its original position. When the error
accumulates to a certain extent, it may prevent hole alignment and thus assembly. Therefore,
the installation board requires fixture fixation.

In future work, we will design optimization strategies for screw assembly sequences,
enabling the installation board to undergo automated assembly without the need for
fixture fixation.
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