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Abstract: Electronic health records (EHRs) security is a critical challenge in the implementation
and administration of Internet of Medical Things (IoMT) systems within the healthcare sector’s
heterogeneous environment. As digital transformation continues to advance, ensuring privacy, in-
tegrity, and availability of EHRs become increasingly complex. Various imaging modalities, including
PET, MRI, ultrasonography, CT, and X-ray imaging, play vital roles in medical diagnosis, allowing
healthcare professionals to visualize and assess the internal structures, functions, and abnormalities
within the human body. These diagnostic images are typically stored, shared, and processed for
various purposes, including segmentation, feature selection, and image denoising. Cryptography
techniques offer a promising solution for protecting sensitive medical image data during storage
and transmission. Deep learning has the potential to revolutionize cryptography techniques for
securing medical images. This paper explores the application of deep learning techniques in medical
image cryptography, aiming to enhance the privacy and security of healthcare data. It investigates
the use of deep learning models for image encryption, image resolution enhancement, detection
and classification, encrypted compression, key generation, and end-to-end encryption. Finally, we
provide insights into the current research challenges and promising directions for future research in
the field of deep learning applications in medical image cryptography.

Keywords: medical image security; cryptography; deep learning; electronic health records (EHR);
privacy; security; image authentication; image encryption; image decryption; IoMT

1. Introduction

Medical image security in the Internet of Medical Things (IoMT) presents several chal-
lenges that need to be addressed to ensure the confidentiality, integrity, and availability of
medical images. The healthcare industry has always been at the forefront of incorporating
new technology to improve patient care, increase efficiency, and enhance overall healthcare
delivery. Information technology (IT) has revolutionized the healthcare industry, improving
patient care, enhancing communication and collaboration, and optimizing healthcare pro-
cesses [1–4]. Its continued advancements hold significant potential for further transforming
healthcare delivery and promoting positive health outcomes. In such a highly IT-oriented
era, it is essential for healthcare organizations and technology providers to prioritize the
implementation of robust security measures to protect the confidentiality and integrity of
medical image transmission over the internet [5–8]. By adopting security measures, the risks
associated with eavesdropping and malicious activities can be significantly reduced, en-
hancing the overall security of medical image delivery. Three effective techniques—image
encryption, image steganography, and image authentication—can reconcile the qualities of
medical images with the need for security [8–10]. Deep learning’s ability to automatically
learn and extract complex features from medical images has significantly advanced the
field of medical image processing [11–14]. Its potential for improving diagnosis, treatment
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planning, and overall patient care is being explored across various medical imaging modal-
ities, including radiology, pathology, and ophthalmology [15–20]. As research in deep
learning continues to evolve, it holds great promise for further revolutionizing medical
image analysis and contributing to advancements in healthcare. Since these advancements
have the potential to improve patient privacy, protect against malicious attacks, and ensure
the integrity and authenticity of medical image analysis [7,8,10,21–24] by leveraging the
capabilities of deep learning, researchers are actively exploring innovative approaches to
enhance the security of medical image data.

Motivation and Contribution

Artificial intelligence (AI) algorithms are being used in radiology and chronic diseases
like cancer to develop precise and effective inventions that will aid in treating people
with these conditions and, ideally, finding a cure. AI algorithms have several benefits
over conventional analytics and clinical decision-making techniques. As training data are
understood by deep learning algorithms, the systems become more accurate. This allows
humans to obtain previously unattainable insights into treatment variability, care processes,
diagnostics, and patient outcomes. Clinical trials are a crucial component of medical
product development because they help to evaluate new treatments’ efficacy and uncover
any safety concerns. They are also an essential regulatory prerequisite for introducing
novel therapies into markets. One of the most difficult and expensive processes in the
healthcare sector is conducting clinical studies. Going forward, incorporation of technology
would influence clinical development and change the trial procedure. As per the reports of
Acumen Research [25], shown in Figure 1, the market for virtual clinical trials was worth
USD 10.8 billion in 2021, and it is anticipated to grow to USD 18.6 billion by 2030, at a
compound annual growth rate (CAGR) of 6.2% from 2022 to 2030.
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According to a research study by Accenture, 26% of U.S. consumers have experienced
a healthcare data breach and 50% of them became victims of medical identity theft. The
average out-of-pocket cost for victims of medical identity theft is estimated at $2500 per
incident. The affected patients either changed their healthcare providers or insurance plans
or sought legal counsel. Data breaches most frequently occurred in hospitals, urgent care
clinics, pharmacies, physicians’ offices and health insurance companies [26]. The cost of
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a breach in the healthcare industry went up to 42% since 2020. The average total cost of
a data breach in the healthcare industry is USD 10.10 million [27]. Recently, this trend is
supported by research from Check Point Software Technologies [28], shown in Figure 2,
which found that in Q1 2023, the healthcare industry averaged 1684 attacks per week, up by
22% than past year. In 2023, healthcare will be the third most-targeted sector after banking,
insurance, and communications. These statistics and facts demonstrate how vulnerable the
data assets of people and businesses are. Alarmingly, attackers are specifically targeting
the healthcare sector, making it the most open to assault.
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Medical imaging records are also at danger because of healthcare data breaches, along
with patient health details such as insurance member ID and Social Security numbers. A
crucial component of patient treatment is medical imaging. The exchange of medical images
for the purpose of facilitating care delivery is now possible, thanks to the digitization of
imaging data and the frequent storage of these records on picture archiving communication
systems (PACS).

The broad field of deep learning in medical imaging involves participation from pa-
tients, hospitals, research centers, algorithm developers, diagnostic instrument vendors,
industry, and legislators. Due to the situation’s high level of complexity, the resulting
lack of transparency regarding stakeholder motivations and data usage patterns, the ease
with which electronic imaging data storage enables data sharing and other factors, the
value of individual privacy is threatened, and there is a risk that the restrictions on per-
sonal data will be loosened in the name of, at best, scientific advancement and, at worst,
financial interests.

The field of secure and privacy-preserving deep learning algorithms provides methods
to assist in bridging the gap between the protection of personal data and its use for ordinary
clinical and research purposes. To have an extensive overview of the new techniques in this
developing field, a survey of the relevant publications already in existence is requisite. To
accomplish this, we provide a thorough description of how cryptographic methods have
been applied to deep learning-based medical picture processing. We believe our study can
act as a blueprint for future field investigations. Our most significant contributions are
as follows:

• With an emphasis on their applications in deep learning-based medical image analysis,
we present an overview of the current and emerging privacy preservation strategies.
To cover the most current progress, we specifically provide a thorough assessment of
more than 150 pertinent papers;

• By classifying the publications depending on how they use cryptography in deep
learning-based medical image analysis, as shown in Figure 3, we provide a thor-
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ough coverage of the subject. We highlight task-specific problems for each of these
applications and offer recommendations for resolving them based on the literature
research;

• Finally, we provide a critical analysis of the condition of the field, emphasizing major
issues, noting unresolved issues, and suggesting possible future approaches.
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Paper Organization. The rest of this paper is divided into the following sections.
With an emphasis on a fundamental notion that underlies deep learning-based medical
imaging applications, we present the field’s history in Section 2 of our paper. The most well-
known adversarial medical image analysis is shown in Section 3, which also examines the
weaknesses of deep learning-based medical imaging applications. We thoroughly explore
the applications of cryptography in a number of medical imaging tasks, as illustrated in
Figure 2. Section 4 presents the various applications of cryptography in deep learning-
based medical image analysis. We create a taxonomy and identify task-specific problems
for each of these tasks in particular. The discussion and future directions for the entire field
are presented in Section 5. Section 6 serves as the paper’s conclusion, where we propose
suggestions for contending with the field’s rapid development.

2. Deep Learning-Based Medical Image Analysis

Medical image analysis plays a crucial role in various aspects of healthcare, including
diagnosis, treatment, and health monitoring. It involves the processing and interpretation
of images obtained from different modalities to gain insights into the human body and aid
in medical decision-making. The integration of deep neural networks and computer vision
techniques in medical image analysis has revolutionized the field, enabling earlier and
more accurate diagnoses, improved treatment outcomes, and ultimately contributing to the
advancement of healthcare and reduction in mortality rates. The development of medical
imaging has been shown to extend human life expectancy, according to an intriguing study
in [29]. Ultrasonography (US), CT scans, X-rays, PET, and MRI are the medical imaging
techniques that are most frequently employed. These image modalities are significant for
the detection, segmentation, and classification or diagnosis of anomalies because they offer
vital functional and anatomical details about various body organs. Figure 4 displays a
typology of significant medical imaging modalities.
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Medical image analysis is primarily used to support radiologists and clinicians in
making accurate diagnoses and disease prognoses. Deep learning is used to perform a
variety of tasks in medical image analysis, the most essential of which are classification
or diagnosis, detection, and segmentation. PET models powered by AI have already
demonstrated their ability to execute segmentation, detection, and classification tasks more
effectively and objectively than skilled physicians [31–33]. Additionally, it is anticipated
that the next generation of healthcare systems will include completely automated intelligent
medical picture diagnosis systems. Few survey publications [12,30,34–36] have been written
about deep learning-based medical image analysis.

2.1. Classification or Diagnosis

Deep learning applications in medical image analysis fall primarily under the category
of classification or computer-aided diagnosis (CAD). In CAD, deep learning models are
utilized to classify medical images into different classes or categories based on specific
diagnostic tasks. Deep learning models are trained on large datasets of medical images.
These datasets consist of images with corresponding classification of the presence or absence
of specific diseases. Numerous researchers have reported their findings related to deep
learning-based classification while analyzing the medial image datasets. L. et al. [12]
have reviewed the application of deep learning in the field of big data analysis and early
diagnosis of diseases while analyzing medical images, especially their segmentation and
classification. To classify 14 diseases based on an X-ray of the chest, Rajpurkar et al. [37]
updated the DenseNet 121 model, known as the CheXNet model. It is also found that
the CheXNet exceeds average radiologist’s performance on the F1 metric and also the
model is able to detect all 14 diseases in ChestX-ray14. Korolev et al. [38] evaluated two
approaches based on ResNet [39] and VGGNet [40] architectures for Alzheimer diagnosis.
Single-lesion segmentation and recognition have been successfully accomplished using
deep learning-based methods. Because there is less fluctuation between lesions, or a
greater variety of lesions is present, multiple-lesion recognition is more challenging than
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single-lesion recognition. Recent studies have looked into using deep learning-based
methods to overcome the difficulty of recognizing multiple lesions. Ref. [41] provides a
comprehensive overview and analysis of recent advances in deep learning-based multiple-
lesion recognition techniques, including the identification of many diseases throughout the
entire body as well as multiple lesions in various body regions.

In most of the research papers, the base algorithm used for different tasks related
to medical image analysis is CNN. As a result of its higher accuracy and lower error
rate, the CNN model is frequently utilized for image classification. However, in order
to generalize the hidden correlations discovered in the learning data, large datasets are
required. To enhance/optimize the performance of these CNN-based techniques there are
two commonly used approaches reported in the literature, i.e., transfer learning [42–45]
and general adversarial network (GAN) [46–48].

2.2. Detection

In addition to classification, medical image analysis techniques aim to detect specific
objects, regions, or abnormalities within medical images. It enhances the accuracy, efficiency,
and consistency of image interpretation and aids in early diagnosis, treatment planning,
and disease monitoring. Accurate and rapid object localization of anatomical or diseased
objects, such as organs and landmarks, is crucial for image registration and segmentation
tasks [49–51]. Zhang et al. [52] used two stage task-oriented CNN-based regression model
for anatomical landmarks extracted from MRIs and CT images. As a result, 1200 brain
landmarks from MRIs while 7 prostate landmarks from CT images were detected. The goal
of LUNA16 [53] challenge is to improve the ability to detect lung nodules on CT scans,
which is essential for pulmonary cancer diagnosis [54]. On the same LUNA 16 dataset, deep
ensemble 2D CNN approach [55] comprising three different CNNs with different layers,
pooling techniques and kernels is applied and it predicted the outcome with more accuracy.
Park et al. [56] used an AI model designed in a cascade structure using deep learning for
detecting abdominal hemorrhage lesions in real time. The developed method could achieve
reasonably good results in terms of sensitivity and specificity. Xue et al. [57] explores
various deep learning techniques such as ResNet152, ResNet50, DenseNet121 and VGG16
for detecting COVID-19 and pneumonia on CT and radiography images. The suggested
model outperforms other reported approaches in the literature in diagnosing COVID-19 and
pneumonia. Abdelrahman et al. [58] presents the survey on distinct mammography task,
i.e., breast density classification, calcification detection, mass detection and classification
along with breast density classification, using CNN-based approaches. A comparison is
provided with advantages and disadvantages of each CNN-based approach applied to
these performed tasks.

2.3. Segmentation

One of the most difficult problems in medical image analysis is medical image segmen-
tation, which involves separating the pixels of organs or lesions from background medical
pictures like CT or MRI scans to provide crucial information on the shapes and sizes of these
organs. Many researchers have proposed segmentation approaches for medical images
using deep learning techniques. There are a few review articles [11,59–63] on deep learning-
based medical image segmentation, which shows that deep learning-based segmentation
is now firmly established as a robust tool in medical imaging applications. Deep learn-
ing techniques are not only used for segmentation in 2D medical imaging but also these
techniques are being explored for target volume automatic segmentation in three types of
imaging modalities, i.e., CT, PET and MRI. A comprehensive review of deep learning-based
retinal blood vessel segmentation methods for five years have been conducted [64]. And it
presents trend analyses on the recently published literature and provides possible solutions
for the identified gaps. The state-of-the-art work towards volumetric segmentation in
three different imaging modalities is presented [65]. In the presented paper, various deep
learning architectures related to volumetric segmentation are summarized and compared to
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the performance of different models using standard geometric evaluation metrics. Authors
in [59] present their 3D deep supervision mechanism, using which they are able to perform
volumetric segmentation tasks successfully conducted on liver segmentation from 3D CT
scans and vessels segmentation from 3D MRI.

There are few survey papers recently published related to deep learning-based medical
image segmentations for various diseases. Krishnapriya et al. [66] have conducted a survey
for MRI brain tumor segmentation methods. In this review, the authors have highlighted
the publicly available dataset related to brain tumor along with deep learning architec-
tures used and tumor segmentation techniques. Liu et al. [67] have surveyed more than
150 papers for extensively covering the technical aspects related to brain tumor segmenta-
tion under imbalanced conditions, different type of network architecture design and also
multi-modality processes. The authors have also provided the future research possibilities
in this direction. Bonaldi et al. [68] have presented a survey based on bottlenecks and strate-
gies related to deep learning-based segmentation in medical images for musculoskeletal
anatomical structures. They have analyzed 140 articles related to anatomical structures,
network architectures, bioimaging techniques and various performance indicators.

3. Vulnerability of Deep Learning-Based Medical Image Analysis

Although the deep learning-based medical image analysis has had a breakthrough
in healthcare sector, it is still vulnerable to various security threats, including model
inversion attack [69], poison attack [70] and several security vulnerabilities [71,72]. Among
the reported attacks on medical imaging, adversarial attacks have attracted the most
attention from the community of deep learning-based medical image imaging handling
security concerns, as it raises a series of potential safety and security issues. Apart from
disrupting the inference stage of deep learning algorithms, adversarial attacks can very
easily bypass the manual check carried out by experts because of the visual similarity to its
clean counterpart. Adversaries can manipulate the input medical images to deceive the
deep learning models. By making subtle modifications to the images, they can cause the
models to produce incorrect or misleading results, potentially leading to misdiagnosis or
compromised patient care [71,73].

3.1. Adversarial Attacks against Medical Images

In this section, we list some of the most popular adversarial strategies that have been
suggested for use against medical images. Deep learning model architectures are used to
execute various tasks on medical pictures while analyzing a variety of adversarial threats.
Systems for medical imaging that rely on deep learning are seriously at risk from these
types of attacks. A “White Box Attack” is one in which the attacker has knowledge of the
architecture and parameters of the underlying model. On the other hand, the attack is
referred to as a “Black Box Attack” if the attacker does not have access to the deployed
model architecture. Additionally, “Untargeted Adversarial Attacks” are those that just
want the implemented model to be confused and forecast the incorrect class. “Targeted
Adversarial Attacks”, on the other hand, are those that force the model to forecast a (false)
desired output. In this review, the following adversarial attacks from recently released
research publications are analyzed:

3.1.1. FGSM (Fast Gradient Sign Method)

The first proposed adversarial attack was the FGSM (fast gradient sign method) [74].
FGSM is a white-box attack that provides computer vision systems with hostile examples.
In order to improve the loss function, this approach extracts the adversarial gradient and
changes the values of the pixels. For a one-step update along the gradient descending
direction, it perturbs a clean sample. The attack is designed as follows:

x′ = x + ε × sign (∇x J (θ, x, y)) (1)
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where x is the input image, y is the label and θ represents the weights of the model.
Moreover, ε is the magnitude of perturbation, J (θ, x, y) is the gradient loss, sign (·) is the
sign function and ∇x (·) is the gradient w.r.t. x.

3.1.2. BIM (Basic Iterative Method) or I-FGSM

An iterative and developing approach of FGSM is the BIM (basic iterative method)
or I-FGSM [75]. When the picture is misclassified, it conducts an FGSM with a value and
updates its value for T iterations with a minor perturbation. This approach is described as
follows:

xt+1
′ = xt

′ + α × sign (∇x J (θ, xt
′, y)) (2)

where αT = ε and the α is the magnitude of the perturbation for each iteration.

3.1.3. PGD (Projected Gradient Descent)

The generalization of BIM, known as PGD (projected gradient descent) [76], does not
include the condition αT = ε. Perturbations are limited by projecting adversarial samples
from each iteration into ε − L∞ or ε − L2 neighbor of the clean image.

3.1.4. C&W (Carlini & Wanger)

Another state-of-the-art attack is C&W (Carlini & Wagner) [77], which comprises of
three techniques: C & W∞, C & W2 and C & W0, which minimize L∞, L2 and L0 norms,
respectively, to compute the perturbation’s value.

3.1.5. JSMA (Jacobian-Based Saliency Map Attack)

A few pixels are affected by the iterative JSMA (Jacobian-based saliency map at-
tack) [78], which only modifies the value of one pixel every iteration while leaving the
others unchanged. The saliency map is created in this manner. The region that has had the
greatest significant perturbation is then chosen, and it is perturbed in a clean image.

3.1.6. UAP (Universal Adversarial Perturbation)

The UAP (universal adversarial perturbation) attack [79] tries to find the best pertur-
bation that misclassifies the majority of the data points by perturbing all the photos in
the dataset.

3.1.7. Deep Fool (DF)

A competing attack called deep fool (DF) aims to use the nearest boundary as an
example. According to the authors, this technique resulted in a subtle disturbance as
opposed to crude extrapolations of an optimal distributive vector created via FGSM. One
loss gradient in l(f(k) and y) is used in the DF attack, as shown below [80].

3.2. Adversarial Medical Image Analysis

The objective of a medical adversarial attack is to produce adversarial cases to thwart
medical diagnosis models while they are still in the inference stage. The no-box adversarial
approach against systems that analyze medical images was researched by Bortsova et al. in
detail [81]. Numerous studies have shown that pre-training can significantly improve the
transferability of the surrogate model to the target black-box model. Their findings indicate
a relationship between the value of disruption and the effectiveness and perceptibility of
the attacks. Finally, attack performance might be affected when the attacker and target
have different data and models, which is improved by pre-training models, which also
increases adversarial transferability.

Paschali et al. [82] investigated how adversarial attacks affected the classification of
skin lesions and brain segmentation. Inception-v3 [83], Inception-v4 [84], and
MobileNet [85] models have been used for the classification task, while the segmenta-
tion work was carried out using SegNet [86], U-Net [87], and DenseNet [88]. The most
effective models for classification and segmentation tasks, according to experiments, were
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InceptionV3 and DenseNet. The authors demonstrated that a model’s robustness for clas-
sification is connected with its depth, whereas a model’s efficiency for segmentation is
increased by packed blocks and skip connections. The hostile samples were barely evident
because the SSIM was 0.97–0.99.

Fundoscopy, dermoscopy, and chest X-ray images were subjected to PGD white and
black box attacks by Finlayson et al. [89] using a pre-trained ResNet50 model [39]. In both
instances, the model’s accuracy was significantly reduced.

In order to perform segmentation tasks, Bortsova et al. [90] experimented with targeted
PGD attack in X-rays. The model fragmented the heart symbol rather than the actual heart
since they added barely discernible noise to the photographs. Additionally, they used
white-box, black-box, and untargeted PGD attacks, which considerably reduced the model’s
average IoU.

The COVID-19 classification accuracy from X-rays and CT scans was investigated
by Pal et al. [91]. They developed adversarial samples using the FGSM attack and evalu-
ated them using the VGG-16 and InceptionV3 models. These models are susceptible, as
evidenced by the accuracy declines of up to 90% in VGG-16 and up to 63% in InceptionV3.

Hirano et al. [92] evaluated the vulnerability of CNN-based COVID-Net [93] model
which is one of the first deep learning model to detect COVID-19 using chest X-ray (CXR)
images and is an open source and also available for general public. Targeted and non-
targeted, two types of attacks are explored by applying perturbation generated via the fast
gradient sign method (FGSM). The COVID-Net CXR small and CXR big models have both
been assessed by the authors. Their findings demonstrated that, after adding 2% universal
adversarial perturbations, both models achieved success rates for non-targeted and targeted
attacks of >85% and >90%, respectively. Additionally, scientists have demonstrated that
these models result in normal and pneumonia test pictures as COVID-19 images with larger
perturbations. Furthermore, they examined COVID-Net’s susceptibility in comparison to
certain other DL models including ResNet and VGG. They employed adversarial retraining
as a defense strategy and used the COVIDx dataset.

For the categorization of skin cancer, diabetic retinopathy, pneumonia, and other
diseases, Hirano et al. [94] looked into universal adversarial attacks on DNNs. They
tested both targeted and non-targeted attacks using a variety of models, including VGG16,
VGG19, InceptionV2, DenseNet169, DenseNet121, and ResNet50. They found that, in
the majority of situations, adversarial training was ineffective, particularly in attacks that
were not specifically targeted. While this was happening, non-targeted attacks had a low
transferability rate. Finally, according to the authors, VGG16 and VGG19 appear to be more
resilient than the other models.

MRI images for brain tumor segmentation include four different modalities (T1, T2,
T1ce, and FLAIR) with various intensities to make it simple to identify and label the brain
tumor. Cheng et al. [95] looked at the outcomes of adversarial instances when they are
used concurrently across all modalities and on each modality separately. The MICCAI
BRATS 2019 [96] dataset and an ensemble U-Net model were used in the experiments.
They employed universal random perturbation, which is comparable to [79], for the de-
velopment of adversarial cases. The findings demonstrated that simultaneous disruption
greatly reduces model accuracy, but perturbation of only one modality only marginally
lowers accuracy.

On three datasets—ChestX-ray8 [97], ISIC [98], and fundoscopy [99]—Ma et al. [100]
analyzed the robustness of the ResNet50 model. They used four cutting-edge white-box
attacks—FGSM, PGD, C&W, and BIM—and concentrated on untargeted situations. Addi-
tionally, the perturbation value was calculated, and it was discovered that the strongest at-
tacks, C&W, BIM, and PGD, had nearly 100% attack accuracy everywhere. Dermoscopy pho-
tos had no significant variation but were slightly more reliable than the other datasets. They
also used four detectors, KD [101], LID [102], deep features and quantized deep features-
based detectors, which had very high detection accuracy for detecting
adversarial samples.
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The impact of adversarial instances on retinal images was investigated by
Shah et al. [103]. In order to identify diabetic retinopathy, they looked at image-based
(CNN-0 [104], CNN-1 [105], and hybrid lesion-based [106] algorithms for medical image
analysis. In order to create adversarial images, CNN-0 and I-FGSM were utilized, and
CNN-1 and hybrid lesion-based models were tested on them. As evidenced by their respec-
tive accuracy reductions of 45% and 0.6%, the results demonstrate that CNN models are
relatively susceptible and hybrid lesion-based models are more resilient.

The current attacks on medical imaging are outlined in Table 1. These kinds of attacks
were investigated only on tasks involving classification and segmentation. The PGD
method appears to be the most successful, and FGSM and PGD were the most widely used
strategies. A majority of the investigations also made use of MRI, fundoscopy, dermoscopy,
and X-ray images.

Table 1. Summary of attacks on tasks involving classification and segmentation using deep
learning models.

Ref. Year Task Image Modality Model Attack
Scenario Attack Performance

Degradation

[81] 2021 Classification X-ray, Fundoscopy,
Microscopy

Inception-v3 and
Densenet-121 No-box FGSM, PGD 35%

[82] 2018 Classification,
Segmentation MRI, Dermoscopy

InceptionV3,
InceptionV4,

MobileNet, SegNet, U
Net and DenseNet

White-box,
No-box

FGSM, DeepFool,
SMA

6–24%/
19–40%

[89] 2018 Classification Fundoscopy,
Dermoscopy, X-ray ResNet50 White-box,

Black-box PGD 50–100%

[90] 2021 Segmentation X-ray Similar to U-Net White-box,
No-box PGD Up to 100%

[91] 2021 Classification CT, X-ray VGG-16, Inceptionv3 White-box FGSM Up to 90%
[92] 2020 Detection Chest X-ray COVID-Net White-box FGSM Up to 45%

[94] 2021 Classification OCT, X-ray,
Dermoscopy

VGG16, VGG19,
Inception,

DenseNet169,
DenseNet121

ResNet50

White-box UAP Up to 72%

[95] 2020 Segmentation MRI scans U-Net White-box UAP Up to 65%

[100] 2021 Classification X-ray, Fundoscopy,
Dermoscopy DNN White-box FGSM, BIM, PGD,

CW Up to 100%

[103] 2018 Classification Fundoscopy CNN, Hybrid
lesion-based model No-box I-FGSM 45%/0.6%

4. Deep Learning for Medical Image Cryptography

The use of medical images to guide diagnosis and treatment strategies, among other
things, is gaining popularity as medical imaging technology becomes more widespread.
For instance, images from chest CT scans and brain MRIs can be utilized to help diagnose
lung disease and find brain tumors, respectively. However, because these medical images
contain private and sensitive information about the patients, their disclosure could have an
impact on the patients’ right to privacy as well as legal repercussions for the institutions.
Therefore, attempts have been made to build security solutions (such as cryptographic
primitives) to secure these medical images and safeguard the privacy of the patients.

The schematic of generic secure cloud-based IoMT system within the healthcare
sector’s heterogeneous environment is shown in Figure 5. In this type of the IoMT systems,
it is expected that the medical images are transmitted to the cloud through cryptosystems
in the form of encrypted data. Then, there are central cloud computing servers with deep
learning models for various medical image analysis applications. These clouds return
encrypted results/predictions to different healthcare centers. Readers must note that
encrypted results are shown in the image form whereas it may not be necessarily true
each time. These results are decrypted by authorized doctors or clinicians for various
analysis purposes.
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Cryptographic approaches are being used in various ways and reported in the liter-
ature. The following subsections cover the reported papers related to each categorized
approach. Figure 6 shows the different applications of cryptographic approaches used in
deep learning-based medical image processing securely. Figure 6a shows the example of
encryption approach used while processing the medical images [107], whereas (b) illus-
trates the encrypted denoising approaches in the IoT-based healthcare systems. Figure 6c
focuses on the tumor classification based on encrypted MRI images using deep learning-
based medical image analysis and (d) shows Chest X-ray images encrypted first and then
compressed before processing through deep learning-based models, and then these images
are decompressed and decrypted by the authorized doctors or clinicians. Figure 6e illus-
trates the end-to-end encryption scheme in cloud-based services, in which homomorphic
encryption is used and deep learning model works on these homomorphic encrypted
images only, which is reported as a more secure encrypted approach while performing
deep learning-based medical image analysis., and (f) shows the deep learning-based key
generation approach for encrypting the medical images while performing various analytical
tasks on these images.
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4.1. Encryption Algorithms for Deep Learning-Based Medical Image Analysis

Medical imaging is regarded as one of the most sensitive and significant types of
data in information systems. A robust encryption scheme that can withstand adversarial
or cryptographic attacks is necessary when sending medical images over the network.
Confidentiality is the most crucial component that requires careful consideration among
the three security objectives for the security of information systems, namely confidentiality,
integrity, and availability. When it comes to the encryption of medical images while they
are processed by deep learning algorithms, there are two types of techniques, namely cryp-
tography and homomorphic encryption, that are commonly documented in the literature.
Here, some of the most recent work in this direction has been discussed.

Radiologists could utilize the technique that Naik et al. [112] demonstrated to identify
lung diseases. The DenseNet-121 model is used by the suggested system to process the
chest X-ray pictures. Additionally, they used the AES-128 technique to secure the private
data that are included in medical photographs before uploading them to the cloud. An
online cloud program has been created by Kumar et al. [113] to assess if tumors are visible
in MRI images. The photos were sent to the cloud server using the AES-256 cryptographic
technique. For tumor inference from the images, they utilized the CNN model which had
an accuracy rate of 97.87%.

The smart healthcare system presented by Mohanty et al. [114] incorporates the capa-
bility of tumor detection from brain MRI images using CNN-LSTM and additionally the
proposed system is secured by using the SHA-256 encryption technique. In the suggested
smart healthcare system, the modified SHA-256 algorithm is recommended for safe medical
data processing. With the suggested secure medical data processing system, they may
attain the accuracy of 98.51%.

Paul et al. [115] presented a strategy based on an LSTM model that is trained on the
MIMIC-III dataset and uses homomorphic encryption to protect sensitive data. Because the
CKKS encryption system can be used to time series data, such as hourly clinical statistics,
homomorphic encryption is used instead. For the goal of predicting in-hospital mortality,
they have deployed this encrypted LSTM model with enhanced accuracy.

PINPOINT, a temporal convolutional neural network, was developed by Falcetta et al. [116]
to predict time series while maintaining anonymity. It is suggested to use a cloud-based
forecasting system with integrated homomorphic encryption and temporal CNN. The
suggested system is validated using four different kinds of datasets. Forecasting of new
cases for COVID-19 is also included, and it is successfully carried out with positive results.

Munjal et al. [111] presented the systematic review on homomorphic encryption and
its applications in the healthcare sector. They have discussed homomorphic encryption
evolution and their types along with the applications. In this paper, authors have discussed
and compared various approaches using homomorphic encryption for detecting cancer,
analyzing heart rate, cardiovascular problems and also secure query generating systems
in healthcare.

The privacy-preserving deep learning strategy for categorizing COVID-19 from the
chest X-ray pictures was presented by Boulila et al. [107]. In order to classify COVID-19
X-ray images, the COVID-19 dataset is encrypted using partly homomorphic encryption,
and the encrypted images are then fed into the MobileNetV2 model. When they use a deep
learning model on encrypted photos, they can obtain an accuracy of 93.3%.

Table 2 lists the current encryption techniques for deep learning-based medical image
processing. When conducting activities relating to disease detection, classification, seg-
mentation, and COVID-19 forecasting, these encryption algorithms are also used. While
researchers have just lately begun to report on homomorphic encryption, AES and SHA
are the two most often used cryptographic algorithms.
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Table 2. A summary of medical image encryption techniques for deep learning-based medical
image analysis.

Ref. Year Organ Task Image
Modality Datasets Model Metrics

Type of
Encryption
Algorithm

Algorithm Name

[112] 2020 Chest Lung diseases
detection X-ray NIH Chest X-rays

[117] DenseNet-121
AUROC scores,

Accuracy,
Confusion matrix

Symmetric
algorithm AES-128

[115] 2021 Multi-
organ

In-hospital
mortality

prediction task

Multi-
modalities

MIMIC-III (CCU
Dataset) [118] RNN-LSTM Precision, Recall Homomorphic

encryption CKKS

[113] 2022 Brain Brain tumor
segmentation MRI Real-Time Dataset CNN Accuracy rate Symmetric

algorithm AES-256

[114] 2022 Brain Tumor detection MRI, EEG Brain Tumor
Dataset [119]

CNN-LSTM,
DNN Accuracy rate Hash functions SHA-256

[116] 2022 Chest COVID-19 New
cases forecasting

COVID-19
New cases

dataset
NA

PINPOINT
(Temporal

CNN)
NA Homomorphic

encryption

Brakerski/
Fan–Vercauteren

(BFV)

[107] 2022 Chest COVID-19
Classification X-ray

COVID-19
Radiography

Database [120]
MobileNetV2 Precision, Recall, F1

score, Support
Homomorphic

encryption Paillier Method

4.2. Medical Image Resolution Improvement or Denoising for Deep Learning-Based Medical
Image Analysis

Along with the rapid advancement in the digital image processing technology, im-
proving the resolution of the medical images or medical image denoising remains a funda-
mental challenge to meet the better diagnosis in such a heterogeneous IoMT environment
today. Here are some recently published works related to enhancing the resolution of
medical images.

More S. et al. [121] presented a CNN-based sparse aware noise reduction strategy
for enhancing the quality of reconstructed MR images in order to produce high quality
pictures. Additionally, authors have included encryption and decryption in the suggested
IoT architecture using the ABE algorithm.

Gayatri S. et al.’s [24] research focus on developing a lightweight cloud infrastructure
for processing medical data while maintaining the privacy of the data’s contents. The
pseudo-predictive deep denoising network (PPDD) was developed using deep learning
techniques. The dynamic data are unpacked and a denoise procedure is used at the edge
devices to reduce the complexity of the storage system. A comparison of the proposed
architecture’s validity with earlier related work published in the literature is also included.

Zheng Y. et al. [108] proposed the privacy-preserving DNN-based image denoising on
the cloud for IoT multimedia healthcare applications. According to the suggested system
design, the model owner initially stores an encrypted trained DNN model in the cloud.
The encrypted DNN model that was previously stored is used to perform image denoising
in the encrypted domain after the encrypted images have been transmitted to the cloud.
Thanks to the suggested security strategy, the DNN model and private picture content are
all kept private throughout the entire cloud-based service flow.

Alslman Y. et al. [122] proposed a hybrid encryption approach that encrypts the medi-
cal pictures, first using AES first and then a deep learning model (autoencoder). By using
autoencoders as a feature extraction method, this hybrid model enables to have control
over the size and structure of the medical images being encrypted and then communi-
cated. During decryption, the hybrid encryption approach that has been proposed can also
denoise the medical images.

Shafai et al. [123] suggested the implementation of the CADTra model for automatic
detection of disorders associated with pneumonia. The constructed model uses autoen-
coder techniques with a modified loss function to denoise the images and deep learning
algorithms to classify data. They have applied transfer learning techniques and a four-layer
convolutional neural network to the categorization of pneumonia. With regard to chest
X-ray pictures, this model supports the multi-class classification while supporting the bi-
nary classification for CT images. Additionally, 98% and 99%, respectively, of the proposed
model’s correctness have been attained.
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The multi-scale denoising convolutional neural network (MSDCNN) model was
proposed by Chui et al. [124] for the detection of prostate cancer, and this model is also
capable of suppressing noise in MRI data. The process between the noisy picture dataset
and the residual image dataset is what constitutes residual learning. The cleaned picture
dataset is then created from the residual learning output and subsequently processed
using a multi-scale convolutional neural network. For further classification processing, this
cleaned picture dataset is modified with smoothing, down sampling, and fine graining.

Table 3 presents the list of recently published works related to enhancing the resolution
of medical images while performing the various tasks using deep learning algorithms. In
some works, autoencoders are used as image denoising algorithms, whereas few authors
have reported modified deep learning algorithms used for denoising of the medical images
before performing the classification, detection, or reconstruction-related tasks.

Table 3. List of medical images denoising techniques for deep learning-based medical image analysis.

Ref. Year Organ Task Image
Modality Datasets Model Metrics

Image
Denoising
Algorithm

[108] 2021 Chest Classification X-ray ChestX-Ray8 [97] DNN PSNR, SSIM DNN-based

[121] 2021 Heart
Reconstruction
of high-quality

images
MRI scans Stroke

prediction [125] CNN PSNR, SSIM,
MSE

SARN
technique

[123] 2022 Chest Classification CT scan,
X-ray

COVID-CT [126],
Chest X-ray images
[127], Chest X-ray

and CT images [128]

Deep CNN
(CADTra)

Accuracy,
Precision, Recall,

F1-score, Log
loss, PSNR, SSIM

Autoencoder

[124] 2022 Prostate
gland Detection MRI scans

NaF Prostate [129],
TCGA-PRAD [130],
Prostate-3T [131],

PROSTATE-
DIAGNOSIS [132]

Multi-scale
denoising

convolutional
neural network

(MSDCNN)

Sensitivity,
Specificity,
Accuracy

Residual
learning

[122] 2022 Eye Classification Eye fundus
images Messidor2 [133] Autoencoder Loss, Encryption

Time
Autoencoder

and AES

[24] 2023 Multi-
organ Classification Real-time CT

scans Real time CT scans
Pseudo-predictive

deep denoising
network

SNR, SI,
CNR, ER

Deep
denoising
network

4.3. Privacy-Preserving Object Detection and Classification in Medical Image
Encryption Algorithms

Deep learning-based analysis of medical images can extract sensitive information
through object detection. These medical images include embedded personal information
that must be secured. Consideration should be given to the security of the data itself as
well as the security of the deep learning-based processing and the information that was
collected. Given that it has been utilized and will be employed in several object-detection
healthcare applications in the near future, the security issues with the deep learning-based
approach becomes crucial. For medical image privacy, some research papers have reported
on privacy-preserving object detection along with the image encryption algorithms.

Liu et al. [134] have proposed the lightweight privacy-preserving faster R-CNN frame-
work (SecRCNN) for object detection from medical images. While designing this frame-
work, a secret sharing sub-protocol is added to complete the secure computation in it. To
demonstrate the efficiency and secure computation through SecRCNN, comprehensive
theoretical analysis is performed along with the extensive experiments. To improve the
efficiency of SecRCNN, sub-protocols involved in this R-CNN are modified and authors
are able to achieve better computation time and efficiency.

Chao et al. [109] present fully homomorphic encryption tightly integrated with the
CNN functions (CaRENets). They present a novel resource-efficient method for homomor-
phic inference on encrypted images. It has practical implications for secure deep learning
inference in medical imaging systems. The authors have considered two ophthalmology
applications involving the classification of retinopathy of prematurity (ROP) and diabetic



Appl. Sci. 2023, 13, 8295 15 of 25

retinopathy (DR). They have provided the set of experiments to demonstrate that CaRENets
can significantly improve both inference and memory efficiency.

Usman et al. [135] proposed an approach for a secure dyslexia biomarkers classification
using a deep CNN model and residual number system (RNS) is used to encrypt the dataset.
The proposed cascaded deep CNN shows classification outcomes with a performance
accuracy of 73.2% on the encrypted data.

Usman et al. [136] proposed a privacy-preserving classification model named as
homomorphic residue number system-CNN (HoRNS-CNN). This model is the combination
of pre-trained CNN model and RNS-FHE encryption scheme. They are able to obtain
encouraging results for classifying the dyslexia neural biomarkers. The collection of
recently released articles on privacy-preserving or security mechanisms used for object
recognition or classification during the processing of medical images using deep learning
models is shown in Table 4.

Table 4. List of Privacy-Preserving Object Detection and Classification in Medical Image
Encryption Algorithms.

Ref. Year Organ Task Image Modality Datasets Model Metrics
Privacy Preserv-

ing/Security
Mechanism

[109] 2019 Eye Classification Fundoscopy ROP Dataset [137],
IDRiD [138] CNN Accuracy, Memory

Efficiency, Latency

Fully
homomorphic

encryption

[135] 2020 Brain Classification MRI Kaggle brain
MRI dataset

Deep
CNN Accuracy RNS encryption

[136] 2022 Brain Classification Brain MRI NA CNN Accuracy RNS-FHE

[134] 2022 Multi-
organ Detection

Image CLEF medical
image dataset (contains
multi-modality images)

CLEF medical
image dataset [139] SecRCNN Computation

overhead

Additive secret
sharing-based
sub-protocols

4.4. Image Encryption and Compression in Deep Learning-Based Medical Image Processing

The security of medical images for transmission and storage is a crucial concern, given
the exponential proliferation of images. An effective strategy frequently used to protect
medical image data is encryption. These medical images take up a lot of storage space, so
compression is required before transmission. In this section, recently reported work in this
direction is presented.

Selvi et al. [110] developed an adaptive sigma filterized synorr certificateless signcryp-
tive Levenshtein entropy coding-based deep neural learning (ASFSCSLEC-DNL) technique
to perform encryption and compression on medical images. The objective of the ASSCSLEC-
DNL technique is to enhance the security of the medical images during transmission. The
proposed approach is applied on chest X-ray medical images and the results are found to
be encouraging and comparable with the existing state-of-the-artwork.

A block-based perceptual encryption (PE) algorithm approach that may be used with
both grayscale and color medical images was proposed by Ahmad et al. [140]. The JPEG
compression technology is used to reduce the size of these images. Chest X-ray images
are used for the implementation of a deep learning-based system for TB screening. On
three CXR image datasets, the suggested technique is examined in terms of encryption,
compression, and DL-based categorization. The lossy manner of compression was used,
and it was discovered that the performance of restored images is unaffected by distortion.

Kumar et al. [141] proposed a secure framework, i.e., MediSecFed, for federated learn-
ing in a hostile environment. This model relies on the ideas from knowledge distillation
and model inversion to ensure additional security and privacy features. This method is
evaluated on two chest X-ray datasets. The proposed method was also compared with
FedAvg and it outperformed by 15% on both the datasets in a hostile environment.

A novel medical image crypto-compression algorithm is proposed, which is based on
artificial neural network (ANN) and the chaotic system, by Hajjaji et al. [142]. The main
objective of the proposed approach is to preserve the sensitive information of medical
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images. The proposed approach was validated on both the steps, i.e., encryption and
compression. Results showed that the security and quality of the compressed images
are comparable to the results of uncompressed images. Table 5 summarizes the list of
encryption or security algorithms applied along with the compression mechanism while
performing deep learning-based images analysis for various tasks.

Table 5. List of encryption or security algorithms with compression mechanism for deep learning-
based medical image analysis.

Ref. Year Organ Image
Modality Datasets Model Metrics Encryption/Security

Algorithm
Compression

Algorithm

[110] 2021 Chest X-ray Chest X-ray images
(pneumonia) [127]

Deep feed-forward
artificial neural

network

PSNR, Encryption
Time, Compression

Ratio

Synorr certificateless
signcryption

Levenshtein entropy
encoding technique

[140] 2022 Chest X-ray Shenzhen
dataset [143] EfficientNetV2 PSNR, SSIM, and

MS-SSIM, Accuracy
Perceptual

encryption algorithm
JPEG compression

algorithm

[141] 2022 Chest X-ray COVIDX-8B,
COVIDX-8A [93]

ResNet18 and
ResNet34 Accuracy Federated learning KD

[142] 2019 Brain MRI NA ANN PSNR, UIQ, SNR and
correlation factor ANN

Piecewice linear
chaotic map
(PWLCM)

4.5. Key Generation in Encryption Algorithms for Medical Image Analysis

Key generation is a critical component of encryption algorithms used in medical
image analysis. Encryption is employed to protect sensitive medical data and ensure its
confidentiality, integrity, and authenticity. When it comes to medical image analysis, such
as the processing and transmission of medical images, the use of encryption algorithms is
particularly important.

Ding et al. [22] proposed a novel deep learning-based key generation network (Deep-
KeyGen) to generate the private key, which can be used for encrypting and decrypting
of medical images. DeepKeyGen was evaluated on chest X-ray dataset, the BraTS18
dataset and the ultrasonic brachial plexus dataset. The experimental results also show that
DeepKeyGen achieves higher levels of security when compared to other key
generation algorithms.

Using a neural network with key generation, Krishna et al. [144] introduced a novel
dynamic medical image encryption technique. The key generation neural network receives
the seed value from the ROI of the image. Following the creation of the key, the input
image is encrypted using our inventive encryption algorithm, which is represented here
by an encryptor. To further strengthen security, the key is itself encrypted before being
transmitted. Although the encryption strength and key strength of the suggested approach
are superior, the lengthier encryption time needs to be reduced. To test the proposed
dynamic image encryption technique, X-ray images are used in the experiments. Table 6
presents the summary of published work related to key generation algorithms while
performing the encryption or security on deep learning-based medical image analysis.

Table 6. Summary of encryption/security algorithms along with key generation mechanism.

Ref. Year Organ Image
Modality Datasets Metrics Encryption/Security

Algorithm
Key Generation

Algorithm

[22] 2020 Chest, Neck,
Brain X-ray, MRI, US

Montgomery
County’s chest X-ray

dataset [143],
Ultrasonic brachial

plexus dataset [145],
BraTS18 dataset [96]

Entropy, NPCR,
UACI, Learning Rate,

P-value
DeepKeyGen

Generative
adversarial

network (GAN)

[144] 2022 Hand X-ray Dataset from [146] Entropy, NPCR,
Encryption speed

AES-256 and Hill
cipher GAN-based PRNG
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4.6. End-to-End Image Encryption for Deep Learning-Based Medical Image Analysis

Deep learning-based image encryption methods have recently drawn a lot of attention.
When utilizing end-to end image encryption methods, the content is hidden until it is
decrypted using the correct and permitted key. Using an encryption key, the original image
is converted into a cipher image, which is then decrypted to reveal the original image using
a decryption key.

An image encryption method based on the Cycle-GAN network was proposed by
Panwar et al. [147]. The encryption and decryption network can effectively encrypt and
decrypt an input image after training. The encrypted images are the same size as the
original images in terms of size. The secret keys in this method serve as the trainable
parameters. To achieve end-to-end encryption, the authors made sure that the hospital
database stored the encrypted images and that only a person with access to the keys could
retrieve the original images by utilizing the proposed approach EncipherGAN.

Gaudio et al. [148] proposed the explainable privacy preserving image compression
method named as DeepFixCX, which compresses images without learning by removing
or obscuring spatial and edge information. DeepFiXCX improves predictive classification
performance of a DNN on glaucoma and cervix-type detection and can improve multi-label
chest X-ray classification performance.

For end-to-end image diffusion, Zhu et al. [149] developed the flexible image encryp-
tion and decryption ResNet (FEDResNet) architecture. The security of the encryption
network is improved in the proposed design by serial and parallel distribution of the
images. The two crucial planes are built using a user-defined chaotic map to regulate access
rights to images. After rigorous testing, they were able to attain high levels of security with
acceptable efficiency.

Pati et al. [150] proposed present the community-driven generally nuanced deep
learning framework (GaNDLF) as an end-to-end solution for scalable clinical workflows.
The proposed GaNDLF is able to process the images of various domain including radiology
scans and digitized histology WSIs along with the various workload, e.g., segmentation,
regression and classification.

Ding et al. [151] proposed an end-to-end two-stage generative adversarial neural
network (ToStaGAN) to improve the brain tumor segmentation from MRI images. In the
proposed approach, UNET network is used in the first stage and U-shaped contextual
autoencoder (ConEnDer) is used in the second stage. The performance of the proposed
two-stage generation network is evaluated on BRATS2015 and it is found that the proposed
network achieve better performance than the one-stage network. Table 7 summarizes the
list of encryption or security algorithms applied along with the while performing deep
learning-based images analysis for various tasks. It can be seen from the table that in this
direction most of the work is reported very recently.

Table 7. List of end-to-end encryption or security algorithm with deep learning model.

Ref. Year Organ Image Modality Datasets Task Metrics Encryption/Security
Algorithm

End-to-End
Deep

Learning
Model

[151] 2021 Brain MRI BRATS2015 [152] Segmentation

Dice, Positive
predictive

value (PPV) and
Sensitivity.

Two-stage generative
adversarial neural

network (ToStaGAN)

UNET and
U-shaped
contextual

autoencoder

[149] 2022 Chest X-ray ImageNet Classification Accuracy Image diffusion with
dilated ResNet FEDResNet

[147] 2023 Skin Dermoscopy Skin cancer dataset
[153] Classification

PSNR, SSIM,
Correlation

Coefficient, Entropy
Cycle-GAN network Encipher GAN

[148] 2023
Chest,
Cervix,

Eye
X-ray, Fundoscopy,

CT scan

Chexpert [154],
Intel-MobileODT

dataset [155], KimEye
dataset [156]

Classification,
Detection Speed and Accuracy Explainable machine

learning DeepFixCX

[150] 2023 MRI, CT Classification,
Segmentation

Dice similarity
coefficient, Hausdorff

distance, MSE,
Accuracy

UNet, ResUNet GaNDLF
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5. Discussion

This section discusses numerous factors to take into account when implementing deep
learning techniques for secure and confidential medical image analysis. In light of deep
learning’s recent success with these tasks, a roadmap for the future of artificial intelligence
in secure medical image analysis is developed as well.

5.1. Various Deep Learning Architectures with Security Features for Medical Image Analysis

In order to protect the confidentiality and integrity of medical image analysis, deep
learning architectures with security features are essential. The efficacy of deep learning-
based medical image analysis is demonstrated by a variety of recently published
literature [12,37–41,49,49–62,64,64,65,157–159]. In the literature, several deep learning archi-
tectures have been described to handle various imaging modalities and tasks
related to medical image processing with different components of encryption or
cryptography [107,110,112–116,123,124,135,136,140,141,144,147–151,160,161]. Multi-layer
networks, cascaded networks, training models with partial and complete supervision,
transfer learning, and conventional deep learning architectures are some of these designs.
Majority of the time, there are few expert reviews and scant data. Medical image processing
has typically favored shallow networks over highly deep designs utilized in computer
vision applications [40,162]. This survey’s analysis reveals that many DCNN network
topologies have been implemented or suggested for use in medical image processing.
These architectures invest a lot of effort on decreasing the parameter space, speeding
up computing, and handling 3D data. It is frequently observed that DCNN-based archi-
tectures perform better when processing medical images when compared to other deep
learning frameworks.

5.2. Limitations of Deep Learning for Medical Image Cryptography and Future Prospects

The constraints of deep learning for medical image cryptography should be considered
by researchers and practitioners. For overcoming the obstacles and identifying opportu-
nities in the future, it is essential to comprehend these constraints. Several drawbacks of
deep learning for medical image cryptography are listed below, along with anticipated
future developments.

5.2.1. Limited Generalization

Deep learning algorithms that have been trained on a particular dataset may have trou-
ble adapting adequately to new or varied medical image data. In cryptography activities,
this may result in decreased performance and compromised security. The development of
models that more accurately generalize across various medical imaging modalities, illness
types, and patient groups may be the main emphasis of future study.

5.2.2. Adversarial Attack Vulnerability

Deep learning models are vulnerable to adversarial attacks, in which dishonest indi-
viduals tamper with the input data to falsify the model’s predictions. The security and
integrity of the encrypted data can be jeopardized by adversarial attacks in medical imag-
ing cryptography. To develop deep learning models more resistant to such attacks, future
research might investigate reliable training techniques and protection mechanisms.

5.2.3. Computationally Expensive

Deep learning models used for medical image cryptography sometimes need expen-
sive hardware and protracted training periods. This may make them less useful, particularly
in real-time contexts or contexts with limited resources. Future work should focus on creat-
ing hardware accelerators, optimization methods, and more efficient algorithms to lessen
the computational load and accelerate cryptographic operations.
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5.2.4. Data Availability and Quality

Large-scale high-quality datasets are required for the training of deep learning models.
Access to large labeled datasets, however, may be constrained in medical image cryptogra-
phy because of data scarcity and privacy issues. Future developments could include the
creation of privacy-preserving methods that permit the training of models on encrypted or
decentralized data sources while retaining the integrity and security of the data.

In a nutshell, despite deep learning’s potential for medical image cryptography, it
has drawbacks related to generalization, adversarial attacks, processing demands, and the
availability of high-quality data. Future possibilities include overcoming these constraints
through research and development initiatives targeted at enhancing generality, robustness,
efficiency, and accessibility of high-quality data.

6. Conclusions

A comprehensive review of deep learning-based medical image analysis is offered,
along with security considerations. In conclusion, classification, detection, and segmenta-
tion in all subfields of medical image analysis have found conventional neural network-
based deep learning methods to be more acceptable. As a result, researchers are looking
into many angles for potential security solutions. The security of deep learning-based med-
ical image analysis and its cryptographic aspects are the only topics covered in this study.
This paper investigated six distinct areas of cryptography with an eye toward security,
privacy preservation, various encryption approaches, end-to-end encryption, and certain
security mechanisms based on deep learning algorithms. New security strategies need to
be investigated and studied considering the diversity in how medical images are presented
and the use of deep learning algorithms. The availability of more processing power and
better DL architectures with security features enable higher performance for larger datasets.
This achievement would ultimately lead to better computer-assisted detection and diagno-
sis methods. To deploy these techniques, additional study as well as security verification
that these DL-based systems do not leak patients’ private information are needed. Also,
for those imaging modalities where these procedures are not already used, more research
is needed before adopting these methods. Given the recent developments, combining
advanced security practices and procedures with deep learning approaches would greatly
increase medical image analysis for smart healthcare applications.
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