
Citation: Hussain, T.; Faiz, R.B.;

Aljaidi, M.; Khattak, A.; Samara, G.;

Alsarhan, A.; Alazaidah, R.

Maximizing Test Coverage for

Security Threats Using Optimal Test

Data Generation. Appl. Sci. 2023, 13,

8252. https://doi.org/10.3390/

app13148252

Academic Editors: Paolino Di Felice

and Vito Conforti

Received: 29 April 2023

Revised: 28 May 2023

Accepted: 16 June 2023

Published: 16 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Maximizing Test Coverage for Security Threats Using Optimal
Test Data Generation
Talha Hussain 1 , Rizwan Bin Faiz 1, Mohammad Aljaidi 2,* , Adnan Khattak 1, Ghassan Samara 2,
Ayoub Alsarhan 3 and Raed Alazaidah 2

1 Faculty of Computing, Riphah International University, Islamabad 46000, Pakistan;
thussain98ml@gmail.com (T.H.); rizwan.faiz@riphah.edu.pk (R.B.F.); adnan_ktk08@yahoo.com (A.K.)

2 Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa 13110, Jordan;
gsamara@zu.edu.jo (G.S.); razaidah@zu.edu.jo (R.A.)

3 Department of Information Technology, Faculty of Prince Al-Hussein Bin Abdallah II for Information Technology,
The Hashemite University, Zarqa 13116, Jordan; ayoubm@hu.edu.jo

* Correspondence: mjaidi@zu.edu.jo

Abstract: As time continues to advance, the need for robust security threat mitigation has become
increasingly vital in software. It is a constant struggle to maximize test coverage through optimal
data generation. We conducted explanatory research to maximize test coverage of security require-
ments as modeled in the structured misuse case description (SMCD). The acceptance test case is
designed through the structured misuse case description for mitigation of security threats. Mal
activity is designed from SMCD upon which constraints are specified in object constraint language
(OCL) in order to minimize human dependency and improve consistency in the optimal test case
design. The study compared two state-of-the-art test coverage maximization approaches through
optimal test data generation. It was evident through the results that MC/DC generated optimal
test data, i.e., n + 1 test conditions in comparison to the decision coverage approach, i.e., 2n test
conditions for security threats. Thus, MC/DC resulted in a significantly lower number of test cases
yet maximized test coverage of security threats. We, therefore, conclude that MC/DC maximizes
test coverage through optimal test data in comparison to decision coverage at the design level for
security threat mitigation.

Keywords: modified condition/decision coverage; decision coverage; test coverage; test data; object
constraint language; structured misuse case description; system under test

1. Introduction

Software testing is a time-consuming but vital activity that tries to raise the quality
of software [1]. The prime goal of software testing is to ensure that the delivered product
is bug-free. However, due to the constraints of the testing project’s budget, manpower,
and testing time, it would be unrealistic to expect perfect and faultless software to
successfully complete the project. Therefore, it is essential to manage the testing cost to
reduce the overall development budget and time [2]. As a result, rather than spending
a large budget pursuing a flawless software system, most software developers would
make a compromised testing plan [3]. Test coverage is an important indicator of software
testing [4]. Offering data on various coverage item aids in evaluating the success of
the testing process. The hardest part of maximizing test coverage is coming up with
appropriate test data [5]. Moreover, generating test data to achieve 100% coverage is
labor-intensive and expensive. A greater number of tests also necessitates a longer test
period and greater tester memory. Test development becomes more challenging due to
the growing number of tests required to fulfil adequate coverage criteria [6]. Selecting
a portion of tests from a large baseline test set becomes critical when it is impossible
to apply all the tests due to test time or tester memory limitations. It is clear from the

Appl. Sci. 2023, 13, 8252. https://doi.org/10.3390/app13148252 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148252
https://doi.org/10.3390/app13148252
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6152-9256
https://orcid.org/0000-0001-9486-3533
https://orcid.org/0000-0001-9075-2828
https://doi.org/10.3390/app13148252
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148252?type=check_update&version=1

Appl. Sci. 2023, 13, 8252 2 of 15

literature that testing accounts for more than 40% of project costs [7]. Instead of covering
all the entities in the tested program, test data can be aimed toward covering the optimal
set to reduce the testing effort [8]. Reducing the amount of data utilized for testing is
one method of minimizing this cost. Test data optimization can maximize test coverage,
yet reduce maintenance cost, for both black-box and white-box testing.

Our research goal is to maximize test coverage through optimal test data generation
at the design level for security threat mitigation. Early security threat detection and
corresponding mitigation leads to a reduction in maintenance costs, especially in the case
of large software systems [9]. Time and cost can be saved if the security defects are caught
in the early stage of the development, but it is most costly if the defects are found later.
It also causes damage to the organizations financially or in terms of data loss or user
inconvenience. Following on the motivational work of early testing [10], we have used
the mal-activity diagram for our experiment with constraints specified in object constraint
language (OCL). UML models with specified constraints in OCL are precise, comprehensive,
and consistent [11]. These constraints were derived from basic and alternate flow given
in the structured misuse case description and were modeled in the mal-activity diagram.
However, to complete the UML model, constraints can only be specified in formal constraint
language, i.e., object constraint language (OCL).

The modified condition/decision coverage (MC/DC) methodology is one widely used
method for generating the optimum test data for code coverage [12]. Through optimal
test data generation, we aim to maximize test coverage in our study. Achieving 100% test
coverage can be thought of as maximizing test coverage, since it is noted in the literature that
the method used to generate test data to reach 100% coverage is laborious and expensive.
This study concludes that achieving 100% test coverage is not realistic or feasible.

Use cases outline functional specifications; however, they are unable to allow the mod-
eling of security threats. To model security threats and identify misuse cases, the use case
diagram is developed. Since a use case model simply specifies the necessary capabilities, the
textual description often captures the core of the use case. This textual description plays a vital
role while representing a misuse case. Diagrams of misuse cases and the textual descriptions
of those diagrams give developers essential security-related details.

Misuse cases can be used to implement security threats, and test cases are developed
from misuse cases for security threats. Diagrams of misuse cases and the textual descrip-
tions of those diagrams give the developer essential security-related details [13]. Techniques
to create security test cases from misuse instances have been proposed by a plethora of
authors [14]. By executing test cases and verifying that the software worked as intended,
security testing may be put into practice utilizing misuse cases. An example of a test case
would include test input, excepted output, and actual output. It is a sign that the program
functionality is correctly implemented when the expected output and actual output match.

We create test cases using (i) automated and brute, (ii) weak password attacks, (iii) ses-
sion id links, and (iv) session expiry time. The goal of employing misuse situations is
to build security acceptance test cases at a high level and get beyond the challenge of
discovering acceptance test cases from programming languages. Without any knowledge
of the programming language, the user will concentrate on creating acceptance test cases
from textual descriptions. To create acceptance test cases, textual descriptions of the use
cases, misuse instances, threats to them, and solutions are identified. The various usage
scenarios should be covered by the designed acceptance test cases. Security acceptance test
cases include expected outputs and inputs like any other test case. Data or functional calls
might be used in the input security acceptance test scenarios. Evaluation of acceptance test
cases is done in the output of the intended outcome.

The remainder of this paper is structured as follows: The Literature Review, Research
Question and Gap Analysis are discussed in Section 2. The Research Methodology is
discussed in Section 3. The Experiment design and complete methodology are discussed in
Section 4. The acceptance test cases created for security risks from both SMCD and USMCD

Appl. Sci. 2023, 13, 8252 3 of 15

are also consistently evaluated in Section 4 of the report. Results and threats to validity are
discussed in Section 5. The conclusion and future work are presented in the last Section 6.

Research Significance

Our study’s research significance is:

1. Firstly, it will help in designing consistent acceptance test cases for security threats
(authentication and authorization) through structured misuse case descriptions for
early-stage mitigation of security threats. This will help us to overcome the challenge
of inconsistent acceptance test case design due to its reliance upon human judgment.

2. Secondly, by comparing two state-of-the-art approaches that maximize test coverage
through optimal test data generation for structured misuse case descriptions. It
was evident from our results that modified condition decision coverage (MC/DC)
maximizes test coverage through optimal test data generation with minimum test
conditions in contrast to decision coverage (D/C) through structured misuse case
descriptions.

2. Literature Review

Test coverage is a crucial component of software maintenance and a significant indica-
tor of the quality of the product. By offering information on various coverage topics, it aids
in evaluating the success of the testing process. It takes a lot of time and money to create
enough test data to reach 100% coverage. A greater number of tests necessitates a longer
testing period and more tester memory. However, the quantity of tests needed to guarantee
high coverage criteria has been rising, making test development more difficult [15]. A
subset of tests from a large baseline test set must be chosen when it is difficult to apply all
the (alleged) tests due to test time or tester memory limitations. Test data generation can
be aimed towards covering the ideal set rather than all the entities in the tested program
to reduce the testing effort. We generate a large amount of test data when we conduct
model-based testing. The main challenge in software testing is coming up with test data
that meets a specific adequacy criterion. As we will have different test data at the design
level, more precisely when we conduct the testing manually, this problem results from
the test case subjectivity issue. The test case subjectivity issue will be fixed because the
design diagram was made precise with constraints specified in object constraint language
(OCL) [11]. Techniques like MC/DC and decision coverage are used at the code level
to increase test coverage. In [16] applied MC/DC at graphics processing units (GPUs)
and sequential (central processing unit) CPU code and proved how you can achieve 100%
MC/DC code coverage in combinational testing. However, to the best of our knowledge,
it has not yet been determined in the literature review which of these two, (MC/DC) or
(D/C), maximizes test coverage through ideal test data generation at the design level, so
we’ll use both of these strategies and compare the outcomes.

Test coverage maximization has been exercised in a number of ways in the literature.
Subhash and Vudatha maximized test coverage through combinatorial test cases using the
particle swarm optimization algorithm [17]. Avdeenko increased code coverage through
automated test data generation based on a genetic algorithm [18]. In other research by
Lemieux [19], test coverage was also improved through search-based software testing
(SBST), which generates high-coverage test cases with a combination of test case generation
and mutation at the code level.

Heba Muhammad and Muhammad Najm in [20] maximized test coverage through
optimal test data generation by using the hybrid greedy hill climbing algorithm (HGHC)
for generating a small number of test data. Gupta maximized test coverage through the
test suite minimization approach based on diversity aware mutation adequacy criterion for
detecting and locating faults together [21]. Shahbaa increased test coverage through test
case prioritization techniques [22]. A recent study published by Barisal and Kumar was
related to developing methods for maximizing the structural code coverage for MC/DC [23].

Appl. Sci. 2023, 13, 8252 4 of 15

Thus, there is strong research motivation to apply MC/DC at the design level so as to
maximize test coverage for security threats.

In [16], Jaime Luis maximized test coverage at the code level through MC/DC. Besides
in [24], the author used MC/DC to maximize test coverage for software under test (SUT)
through optimal test data generation for a search-based empirical evaluation. Noman [25]
maximized test coverage at the source code level through MC/DC in combination with
manual testing.

A UML diagram can be used as input for a test case generation technique, and test cases
can then be validated using another technique [17]. Moreover, when using UML models we
need to ensure that the generated code is correct for the UML Model. This requires the UML
models to be accurate, complete, and consistent. Any errors or inconsistencies in the UML
models can lead to incorrect code generation [26]. The literature makes a strong case for the
value of constraints specified in OCL at the design level. By outlining models that cannot
be included, constraints specified in OCL help UML models be comprehensive, consistent,
and accurate when used with them [11]. The unified modeling language (UML), which
receives a lot of interest from scholars and professionals, has become a crucial standard
for modeling software systems [27]. Extensive test data is produced when we conduct
model-based testing [28]. Making test data that meet a specified adequacy criterion is a key
challenge in software testing.

In [29], the author has generated acceptance test cases for security threats using an
unstructured misuse case description. By incorporating the misuse case description into the
mal-activity diagram, a misuse scenario is created and inputs and triggers are determined.
The flow of usage shown in the mal-activity diagram is used to design test cases. Test cases
are created in [30] where misuse instances pose security issues. The findings show that the
suggested misuse case creation method offers superior coverage for security issues. Their
strategy, nevertheless, has to be better organized and provide a thorough explanation of the
procedure. The techniques used to generate test cases from the use case were extensively
available in the latest research. A use case model is initially created from the functional
requirements. As a result of the use case model, test cases are created. The final stage
involves using commercially available tools to execute the prepared test cases. In [31],
the author proposed an approach to generate test cases from use cases, misuse cases, and
137 mitigations of use case descriptions. Early on in a product’s development, this includes
security features. In misuse scenarios, they recommend several improvements to make it
easier to define security needs.

It is evident from the above literature that there is a need to design consistent accep-
tance test cases for security threats (authentication and authorization) through structured
misuse case descriptions for early-stage mitigation of security threats. This will help us to
overcome the challenge of inconsistent acceptance test case design due to its reliance upon
human judgment. For that, we have first identified misusage scenarios through structured
misuse case descriptions against security threats such as authentication and authorization
and their corresponding mitigation. We then model a combination of basic and alternate
security threat mitigation scenarios in the mal-activity diagram.

Besides two state-of-the-art approaches that maximize test coverage through optimal
test data generation from source code [16,32]. However, which among the modified condi-
tion decision coverage (MC/DC) and decision coverage (D/C) maximizes test coverage
through optimal test data generation with minimum test conditions at the design level is
yet to be explored. Besides, a combination of MC/DC with manual testing at the design
level has not yet been experimented on.

Research Question

The main challenge in software testing is coming up with test data that meets an
established adequacy criterion. It is evident from the literature, that test coverage in
source code can be maximized through optimal test data generation using the MC/DC
and decision coverage approach. However, there is no evidence in the literature on how to

Appl. Sci. 2023, 13, 8252 5 of 15

maximize test coverage for SMCD through optimal test data. To achieve our goal, we focus
on the following research questions:

• RQ1: Which among decision coverage and MC/DC maximizes test coverage for
security threats in the Structured Misuse case description?

• Hypothesis 1: Decision coverage maximizes test coverage for security threats in the
Structured Misuse case description

• Hypothesis 2: MC/DC maximizes test coverage for security threats in the Structured
Misuse case description.

3. Research Methodology

This section defines the thorough facts of our conducted experiment. Let us discuss
the content in detail. Our research approach is quantitative because we have a numerical
dataset and we will use statistical analysis methods to test relationships between variables.
We apply MC/DC and decision coverage criteria on the Design Level for optimal test
coverage of security requirements generating the Optimal Test and improving consistency
for security requirements. We will perform an experiment to generate optimal test coverage
to reduce the testing effort by achieving maximum test coverage through optimal test data.

Our research methodology is explanatory research, which aims to explain the causes
and consequences of a well-defined problem. Spending too much time in testing is a
well-defined problem. There are often independent and dependent variables in a control
experiment. Our research uses the experimental method to determine the cause and effect
between variables, including dependent and independent variables. In our experiment,
the dependent variable is the Optimal Set of test data, and the independent variables are
MC/DC and decision coverage.

4. Experiment Design

This study aims to maximize test coverage for security threats using Optimal Test Data
Generation. One of the most common ways to model security threats is through the misuse
case. To achieve our research goal, we undertake an experiment to generate optimal test
data at a design level. In the experiment, test data was generated through (MC/DC) and
decision coverage from the mal-activity diagram, with test conditions extracted for seven
constraints. Overall, this study contributes to the field of software security by providing
a methodology for generating optimal test data at the design level for security threats.
Moreover, test data generated from OCL constraints eliminated the challenge of inconsistent
acceptance test case design due to its reliance upon human judgment.

The steps of the proposed methodology are as follows:

1. Identify security authentication and authorization threats.
2. Design the structured misuse case description.
3. Draw mal-activity from the structured misuse case description.
4. Specify constraints in the mal-activity diagram using OCL.
5. Transform constraints into Boolean expression.
6. Transform Boolean expression into Truth Table Expression.
7. Generate possible test data:

7.1 through MC/DC (modified condition decision coverage).
7.2 through decision coverage (D/C).

8. Compare and find optimal test data generated through MC/DC and D/C
9. Design test cases for generated optimal test data.

In Figure 1 as mentioned below, above steps are mapped according to the method-
ology flow.

Appl. Sci. 2023, 13, 8252 6 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 16

9 Design test cases for generated optimal test data.
In Figure 1 as mentioned below, above steps are mapped according to the methodol-

ogy flow.

Figure 1. Proposed Methodology.

Step 1: Elicitation/Extraction of Security Requirements i.e., authentication and authoriza-
tion

In the context of software development, security requirements refer to the set of fea-
tures and functionalities that ensure that the software system is secure and protected
against unauthorized access, data breaches, and other types of cyber-attacks. The first step
in developing a secure software system is to elicit or extract the security requirements.

“Elicitation/Extraction of Security Requirements” refers to the process of identifying
and defining these security requirements. In Table 1, Authentication and Authorization
were addressed.

Table 1. Identification of Security Threats.

Elicitation of Security Requirement Goal Sub-Goal
The application should authenticate the User
using a valid username and Password.

Security Authentication

Authorization codes should be set up and
modified only by the System Administrator.

Security Authorization

Step 2: Structured Misuse Case Description
The structured misuse case description is provided in the following Table 2.

Figure 1. Proposed Methodology.

Step 1: Elicitation/Extraction of Security Requirements i.e., authentication and authorization

In the context of software development, security requirements refer to the set of
features and functionalities that ensure that the software system is secure and protected
against unauthorized access, data breaches, and other types of cyber-attacks. The first step
in developing a secure software system is to elicit or extract the security requirements.

“Elicitation/Extraction of Security Requirements” refers to the process of identifying
and defining these security requirements. In Table 1, Authentication and Authorization
were addressed.

Table 1. Identification of Security Threats.

Elicitation of Security Requirement Goal Sub-Goal

The application should authenticate the User
using a valid username and Password. Security Authentication

Authorization codes should be set up and
modified only by the System Administrator. Security Authorization

Step 2: Structured Misuse Case Description

The structured misuse case description is provided in the following Table 2.

Appl. Sci. 2023, 13, 8252 7 of 15

Table 2. Structured Misuse Case Description.

ID* SMC-SA-001

Goal* Security

Sub Goal* Authentication

Misuse Case Name* Steal Login Details
IMPLEMENTS steal sensitive data

Associated Misusers* Information Thief

Author Name ABC

Date dd/mm/yy

Description*
Misuser gets access through automated attacks such as
credential stuffing and brute force technique to Login into
the system to perform illegal activities with the user data.

Preconditions* The login page is accessible to the Information Thief.

Trigger* Information Thief clicks the login button

Basic Flow*

Information Thief uses an automated attack tool to generate
many combinations of usernames and passwords.
Login Details, i.e., username, Password, and Captcha
matched with the login details of the system.
On Successful Login, a verification code will be sent on the
user email id/SMS for multifactor authentication.
If a user receives a verification code and verifies the login
attempt, then the Information thief will be redirected to the
User’s personal and sensitive data pages.

Alternate Flow*

BF-2. In case of non-authentic/invalid login details, i.e.,
username, Password, and Captcha, or the number of login
attempts are greater than three against the same IP, it
will be blocked.
BF-4. If the multifactor authentication verification code is
not received through Email/SMS, repeat the Bf3.

Assumption The system has login forms feeding input into
database queries.

Threatens Use Case* User Login

Business Rules The Hospital system shall be available to its end-users over
the internet.

Stakeholder & Threats

Hospital O/I Maintenance Department, O/I User
Department, Store Keeper, Dispenser.
If deleted, data loss reveals sensitive information to damage
the business and reputation of the hospital.

Threatens Use case Mitigation

Note:

If a user from the same IP address attempt three logins
failed attempts, block the IP. Also, apply Captcha and
multifactor authentication to avoid attacks.

All fields with * are mandatory for Structured Misuse
Case Description.

Step 3: Designing the Mal-Activity Diagram

In this step, the mal-activity diagram is designed for the Structured Misuse case
description. Structured Misuse case descriptions are modeled into the mal-activity diagram
to identify the inputs and triggers. Figure 2 illustrates the mal-activity diagram modeled
from the structured misuse description.

Appl. Sci. 2023, 13, 8252 8 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 16

In this step, the mal-activity diagram is designed for the Structured Misuse case de-
scription. Structured Misuse case descriptions are modeled into the mal-activity diagram
to identify the inputs and triggers. Figure 2 illustrates the mal-activity diagram modeled
from the structured misuse description.

Figure 2. Mal-activity diagram for SMC-SA-001.

Step 4: Specify constraints in Mal Activity Diagram using OCL
Following are the specification of constraints in OCL that will be used for transfor-

mation into boolean expression.
self. Username = ‘valid’ and self. Password = ‘valid’ and self.captcha = ‘valid’} and

self.attempts < 3

Step 5: Transformation of Constraints into Boolean Expression
self. Username = ‘valid’ ∧ self. Password = ‘valid’) ∧ (self.captcha = ‘valid’ ∧ self.at-

tempts < 3))
After converting into a logical operation, we applied the MC/DC and decision cover-

age to each constraint.
Step 6: Transform Boolean expression into truth table expression

We will specify and label each constraint separately, i.e., Table 3, before transforming
them into Boolean expression.

Figure 2. Mal-activity diagram for SMC-SA-001.

Step 4: Specify constraints in Mal Activity Diagram using OCL

Following are the specification of constraints in OCL that will be used for transforma-
tion into boolean expression.

self. Username = ‘valid’ and self. Password = ‘valid’ and self.captcha = ‘valid’} and
self.attempts < 3

Step 5: Transformation of Constraints into Boolean Expression

self. Username = ‘valid’ ∧ self. Password = ‘valid’) ∧ (self.captcha = ‘valid’ ∧
self.attempts < 3))

After converting into a logical operation, we applied the MC/DC and decision cover-
age to each constraint.

Step 6: Transform Boolean expression into truth table expression

We will specify and label each constraint separately, i.e., Table 3, before transforming
them into Boolean expression.

Table 3. Explanation of constraints transformation.

a self. Username = ‘valid’

b self. Password = ‘valid’

c self.captcha = ‘valid’

d self.attempts < 3

Appl. Sci. 2023, 13, 8252 9 of 15

Constraints specified using Table 3 become ((a ∧ b) ∧ (c ∧ d)).
In the following Table 4, the Boolean expression, which is first transformed from a

constraint, is now transformed into truth Table form.

Table 4. Transformation of Boolean Expression into truth table form.

No. a b c d ((a ∧ b) ∧ (c ∧ d))

1 F F F F F

2 F F F T F

3 F F T F F

4 F F T T F

5 F T F F F

6 F T F T F

7 F T T F F

8 F T T T F

9 T F F F F

10 T F F T F

11 T F T F F

12 T F T T F

13 T T F F F

14 T T F T F

15 T T T F F

16 T T T T T

Step 7: Generating Possible Test

We will use the decision coverage approach mentioned in [32,33] and MC/DC de-
scribed in [16]. To obtain MC/DC and decision coverage, we need to solve the combinations
of true and false values required to achieve the MC/DC criterion. Multiple solutions are
required corresponding to a constraint to generate test data according to the MC/DC
criterion. For example, consider a constraint as an expression C = p ∨ q, where p and q are
the clauses of the constraint. There are four combinations of possible outcomes, two each
for p and q (TT, TF, FF, and FT).

Step 7.1: Generating test data for MC/DC

The idea of the MC/DC is to select the subset of all possible combinations that directly
impact the outcome value of the actual constraint. In the case of C, these combinations are
(FF, TF, and FT). To identify this subset, the first step is to reformulate the original constraint
to obtain more constraints that satisfy the MC/DC criterion.

The pair table suggested in [34] provides several potential pairs for each clause, and
we need to select minimum subsets of pairs that cover all clauses. In our table, potential
pairs are (8,16) from A, (12,16) from B, (14,16) from C, and (15,26) from D. For A, we need
to test only conditions of (8,16); for B, we need to test only (12,16). For C, we need to test
only (14,16); for D, we must only test (15,16). So, we need to test 5 constraints (8, 12, 14, 15,
16) as specified in Table 5.

Appl. Sci. 2023, 13, 8252 10 of 15

Table 5. Color Mapping for potential Constraints found in MC/DC.

No. a b c d ((a ∧ b) ∧ (c ∧ d))

1 F F F F F

2 F F F T F

3 F F T F F

4 F F T T F

5 F T F F F

6 F T F T F

7 F T T F F
8 F T T T F
9 T F F F F

10 T F F T F

11 T F T F F
12 T F T T F
13 T T F F F
14 T T F T F
15 T T T F F
16 T T T T T

Step 7.2: Generating test data for D/C

Decision coverage requires test cases to cover both branches of a decision. For each
decision, the D/C criterion requires two test cases. For example, for a decision, the Boolean
expression requires two test cases, e.g., the test cases (A = true, A = False) [33].

We have 16 test combinations for decision coverage because we must have to test
whether each combination is false or true for each condition, as mentioned in [33].

Step 8: Compare and Find Optimal Test Data

In the above example, we have 16 test conditions; for decision coverage, we need
to test all 16 test conditions to achieve maximum coverage for MC/DC. Therefore, it is
required to test only 5 test conditions, which comprise the actual test conditions in terms of
finding maximum errors. For MC/DC, optimal test conditions were found, and for decision
coverage, it is required to test all conditions. So our hypothesis 2 ‘MC/DC maximizes
test coverage for security threats in the Structured Misuse case description’ is true and
hypothesis 1 will be negated in the results of this experiment.

In step 8, we find that test data generated for MC/DC requires fewer test combinations
as compared to decision coverage. Therefore, in the test case design, we will use test
combinations identified for MC/DC.

4.1. Test Combinations Identified by MC/DC:

There were total 16 constraints generated truth table as mentioned in Table 4. After
applying MC/DC found test conditions in MC/DC are 8, 12, 14, 15, 16 as specified in
Table 5. These constraints are identified after application of MC/DC on relevant OCL
value for A,B,C,D. In above Table 5, color mapping is given for relevant OCL value i.e
for A,B,C,D. For a potential constraints are 8,16 mapped in orange color. Similarly, for b
potential constraints are 12,16 mapped in grey color, for c 14,16 mapped in green and for
d for 15,16 in purple. In result we found that the test combinations are 8,12,14,15,16 as
specified in Table 5, for which the test case will be designed.

Step 9: Acceptance test case design through Structured Misuse Case Description

In step 8, we identified that potential constraints are 8, 12, 14, 15 and 16. In order to
design test case from these constraints we need to check the truth/false value for each
a,b,c,d truth table value. In case if the value is true constraint will remain same, incase if
it’s false it will be reversed e.g., in given 8th constraint, we have F,T,T,T values for a,b,c

Appl. Sci. 2023, 13, 8252 11 of 15

and d respectively. We need to modify the constraint value for a since we got F result for
potential 8th constraint. In original Constrain we have a = self. Username = ‘valid’ referred
to Table 1, after altering the F value it will become self. Username = ‘Invalid’ and rest of
the constraint will remain same. For all these potential constraints we have updated the
original constraint accordingly in following Table 6.

Table 6. Identified Test Combination for MC/DC.

Constraint No. Test Scenario Constraint

8 Invalid Username
Unsuccessful login

self. Username = ‘Invalid’ ∧ self.
Password = ‘valid’) ∧ (self.captcha =
‘valid’ ∧ self.attempts < 3)

12 Unsuccessful Login due to
invalid Password

self. Username = ‘valid’ ∧ self. Password
= ‘Invalid’) ∧ (self.captcha = ‘valid’ ∧
self.attempts < 3))

14 Unsuccessful Login due to
invalid Captcha

self. Username = ‘valid’ ∧ self. Password
= ‘valid’) ∧ (self.captcha = ‘Invalid’ ∧
self.attempts < 3))

15
Unsuccessful Login due to
more than three
login attempts

self. Username = ‘valid’ ∧ self. Password
= ‘valid’) ∧ (self.captcha = ‘valid’ ∧
self.attempts > 3))

16 Successful Login
self. Username = ‘valid’ ∧ self. Password
= ‘valid’) ∧ (self.captcha = ‘valid’ ∧
self.attempts < 3)))

4.2. Acceptance Test Case Design

Acceptance test cases through the structured misuse case description (SMCD) will be
designed from the above mal-activity diagram shown in Figure 1. Test data is essential as
it is used to execute test cases [35]. We use the equivalence class partitioning technique
to generate test data as referred to in [36]. We have two scenarios in the above activity
diagram, and test cases will be designed for both scenarios. In the first scenario, users enter
their username and password to login. The IP of the system will be blocked for more than
three invalid attempts from the same IP. When the login and password are valid and the
user has made fewer than three attempts, the system will create a verification code. The
user will enter the verification code that was delivered to the email address in the second
scenario. If the code entered is authentic, the system will log the user in; otherwise, they
must repeat scenario 1 until they obtain the code. The acceptance test scenarios for incorrect
usernames, passwords, Captchas, and login attempts are shown.

For this situation, we will now create a test case. Username Valid Class: {A–Z},
{a–z} and Invalid Class: {0–9}, {!@#$%ˆ&*()[]{}}, Password Valid Class: {A–Z},{a–z},
{0–9},{!@#$%ˆ&*();:[]{}} and Invalid Class: {A–Z},{a–z} Captcha Valid Class: {A–Z},
{a–z},{0–9} and Invalid class: {!@#$%ˆ&*();:[]{}} Login Attempts Valid Class:{0 < attempt ≤ 3}
and Invalid Class: {attempt > 3}.

In the following Table 7, an acceptance test case is designed for the structured Misuse
case description.

The designed test cases for the identified test combinations have been effective in
detecting errors, while no other test combinations were found to be as effective other than
those mentioned in MC/DC. This result has given us satisfaction with our approach and
answered our question that MC/DC has generated test data with optimal test conditions
and it was also proved after the test case design. Results from the experiment and test case
design concludes that the test data generated for MC/DC is optimal and consistent at the
design level as proved by the formal activity diagram.

Appl. Sci. 2023, 13, 8252 12 of 15

Table 7. Acceptance test case Design.

TC # Scenario ECP
Input Expected

OutputUsername Password Captcha Attempts

TC-08

Invalid
Username
Unsuccessful
login

Username:
Invalid Class: {0–9,
@#$%ˆ&*()[]{}}

Admin123 Admin@98ml As12 1

Unsuccessful
Login due to
the wrong
username

Password:
Valid: {A–Z, a–z, 0–9,
!@#$%ˆ&*();:[]{}}

admin_#@!11

Captcha:
Valid Class:
{A–Z},{a–z},{0–9}

AB23C

Login Attempts:
Valid: {0 < attempt ≤ 3} 2

TC-SA-12

Unsuccessful
Login due to
invalid
Password

Username:
Valid: {A–Z, a–z} user

Unsuccessful
Login due to
the wrong
Password

Password:Invalid Class:
Password = {A–Z},{a–z} 1234

Captcha:
Valid Class:
{A–Z},{a–z},{0–9}

XYZ88

Login Attempts:
Valid: {0 < attempt ≤ 3} 3

TC-SA-14

Unsuccessful
Login due to
invalid
Captcha

Username:
Valid: {A–Z, a–z} ABC

Unsuccessful
Login due to
invalid
Captcha

Passsword:
Valid: {A–Z, a–z, 0–9,
!@#$%ˆ&*();:[]{}}

Admin&12345

Captcha:
Invalid class:
{!@#$%ˆ&*();:[]{}}

ZX&12

Login Attempts:
Valid Class: {attempt > 3} 1

TC-SA-15

Unsuccessful
Login due to
more than
three login
attempts

Username:
Valid: {A–Z, a–z} User

Unsuccessful
Login due to
more than
three login
attempts

Password:
Valid: {A–Z, a–z, 0–9,
!@#$%ˆ&*();:[]{}}

Admin&123

Captcha:
Invalid class:
{!@#$%ˆ&*();:[]{}}

ZXC12

Login Attempts:
Invalid Class: {attempt > 3} 4

TC-SA-16
Successful
Login

Username:
Valid: {A–Z, a–z} User

Successfully
logged in

Passsword:
Valid: {A–Z, a–z, 0–9,
!@#$%ˆ&*();:[]{}}

Admin&123

Captcha:
Valid Class:
{A–Z},{a–z},{0–9}

ZXC12

Login Attempts:
Valid Class:
{0 < attempt ≤ 3}

1

5. Results and Discussion

In this research, we have constraints with four n values. Constraints specified in OCL
can be with different n values. The test combinations identified are 5 for MC/DC and 16
for D/C. It is evident from the results that the test data generated for MC/DC is optimal in
each design experiment used. We performed a succinct analysis of the findings for n = 1,

Appl. Sci. 2023, 13, 8252 13 of 15

n = 2, n = 3, and n = 5. Additionally, we thoroughly specified the complete test data
generation procedure for n = 4 in the experiment given in the paper. It is important to
note that for experiments involving n = 2, n = 3, and n = 5, test data has been generated.
Furthermore, it should be noted that no constraint was accessible for n > 5. Based on
the conclusions drawn from the findings of this study, a mathematical formula has been
formulated for MC/DC and D/C approaches. The details of this formula are elaborated
upon in the concluding section of this paper.

The following formula is derived for MC/DC based on test data generated for all
design diagrams where n = 2, 3, 4, 5, respectively, for each diagram.

∑t = n + 1 (1)

The following formula is derived for D/C on basis of the test data generated for all
design diagrams where n = 2, 3, 4, 5, respectively, for each diagram.

∑ t = 2n (2)

The test condition results clearly show MC/DC has generated optimal test data from
constraints compared to decision coverage. As a next step, we have designed the test cases
for optimal test conditions through equivalence class partitioning. The resultant scenarios
after test case generation proved that no other test scenario is identified except those which
were already extracted from MC/DC test data.

Threats to Validity

The groups chosen for experimentation might differ before receiving any treatment.
Because we have only utilized MC/DC and decision coverage to produce test data at the
design level, it could be dangerous if suddenly decision coverage performed better when
expressions became more complex or UML diagrams were altered. Additionally, if results
are altered for higher constraint orders, i.e., more than five, the formula obtained from the
extracted data results may also alter.

6. Conclusions and Future Work

This research designs acceptance test cases for security threats through SMCD. In
order to maximize test coverage through optimal test data generation, we model security
threat mitigation in SMCD. A mal-activity diagram was designed from SMCD to generate
consistent test data through MC/DC and D/C. A comparative analysis explains that
MC/DC maximizes test coverage through optimal test data from SMCD in comparison
with decision coverage. We have generated the test data from constraints for both MC/DC
and decision coverage. MC/DC generated n + 1 test conditions unlike decision coverage,
which generated test conditions. Moreover, all the test data generated from the constraint
is the same in each case, irrespective of the tester. Therefore, consistent test data will be
generated through MC/DC or decision coverage due to the constraint specification in the
object constraint language, hus, reducing the test case subjectivity. In this experiment,
regular expression orders up to order 4 are employed. In the future, it is possible to conduct
experiments for constraint n > 5 with higher complexity for other UML diagrams, and
other test data generation approaches can use MC/DC and D/C at the design level for
extensive analysis.

Appl. Sci. 2023, 13, 8252 14 of 15

Author Contributions: Conceptualization, T.H. and R.B.F.; data curation, T.H. and R.B.F.; formal
analysis, T.H. and R.B.F.; funding acquisition, M.A., G.S. and R.A.; investigation, T.H., R.B.F., A.K.
and M.A.; methodology, T.H.; project administration, R.B.F., M.A., A.A. and G.S.; resources, T.H.;
software, T.H.; supervision, R.B.F.; validation, T.H., R.B.F., A.K., M.A. and A.A.; writing—original
draft, T.H.; writing—review and editing, T.H., R.B.F., R.A. and G.S. All authors have read and agreed
to the published version of the manuscript.

Funding: This research is funded by Zarqa University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to extend their sincere appreciation to Zarqa University
for supporting this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bharathi, M. Hybrid Particle Swarm and Ranked Firefly Metaheuristic Optimization-Based Software Test Case Minimization.

Int. J. Appl. Metaheuristic Comput. 2022, 13, 1–20. [CrossRef]
2. Habib, A.S.; Khan, S.U.R.; Felix, E.A. A systematic review on search-based test suite reduction: State-of-the-art, taxonomy, and

future directions. IET Softw. 2023, 17, 93–136. [CrossRef]
3. Huang, T.; Fang, C.C. Optimization of Software Test Scheduling under Development of Modular Software Systems. Symmetry

2023, 15, 195. [CrossRef]
4. Aghababaeyan, Z.; Abdellatif, M.; Briand, L.; Ramesh, S.; Bagherzadeh, M. Black-Box Testing of Deep Neural Networks Through

Test Case Diversity. IEEE Trans. Softw. Eng. 2023, 49, 3182–3204. [CrossRef]
5. Mohi-Aldeen, S.M.; Mohamad, R.; Deris, S. Optimal path test data generation based on hybrid negative selection algorithm and

genetic algorithm. PLoS ONE 2020, 15, e0242812. [CrossRef]
6. Wang, J.; Lutellier, T.; Qian, S.; Pham, H.V.; Tan, L. EAGLE: Creating Equivalent Graphs to Test Deep Learning Libraries. In

Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 22–27 May 2022; pp. 798–810.
[CrossRef]

7. Khari, M.; Sinha, A.; Verdú, E.; Crespo, R.G. Performance analysis of six meta-heuristic algorithms over automated test suite
generation for path coverage-based optimization. Soft Comput. 2020, 24, 9143–9160. [CrossRef]

8. Alomar, E.A.; Wang, T.; Raut, V.; Mkaouer, M.W.; Newman, C.; Ouni, A. Refactoring for reuse: An empirical study. Innov. Syst.
Softw. Eng. 2022, 18, 105–135. [CrossRef]

9. Sidhu, B.K.; Singh, K.; Sharma, N. A machine learning approach to software model refactoring. Int. J. Comput. Appl. 2022,
44, 166–177. [CrossRef]

10. Pachouly, J.; Ahirrao, S.; Kotecha, K.; Selvachandran, G.; Abraham, A. A systematic literature review on software defect prediction
using artificial intelligence: Datasets, Data Validation Methods, Approaches, and Tools. Eng. Appl. Artif. Intell. 2022, 111, 104773.
[CrossRef]

11. Khan, M.U.; Sartaj, H.; Iqbal, M.Z.; Usman, M.; Arshad, N. AspectOCL: Using aspects to ease maintenance of evolving constraint
specification. Empir. Softw. Eng. 2019, 24, 2674–2724. [CrossRef]

12. Barisal, S.K.; Dutta, A.; Godboley, S.; Sahoo, B.; Mohapatra, D.P. MC/DC guided Test Sequence Prioritization using Firefly
Algorithm. Evol. Intell. 2021, 14, 105–118. [CrossRef]

13. Suhail, S.; Malik, S.U.R.; Jurdak, R.; Hussain, R.; Matulevičius, R.; Svetinovic, D. Towards situational aware cyber-physical
systems: A security-enhancing use case of blockchain-based digital twins. Comput. Ind. 2022, 141, 103699. [CrossRef]

14. Ami, A.S.; Cooper, N.; Kafle, K.; Moran, K.; Poshyvanyk, D.; Nadkarni, A. Why Crypto-detectors Fail: A Systematic Evaluation
of Cryptographic Misuse Detection Techniques. In Proceedings of the 2022 IEEE Symposium on Security and Privacy (SP),
San Francisco, CA, USA, 22–26 May 2022; pp. 614–631. [CrossRef]

15. Canakci, S.; Delshadtehrani, L.; Eris, F.; Taylor, M.B.; Egele, M.; Joshi, A. DirectFuzz: Automated Test Generation for RTL Designs
using Directed Graybox Fuzzing. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC) 2021,
San Francisco, CA, USA, 5–9 December 2021; pp. 529–534. [CrossRef]

16. Aleman, J.L.M.; Agenjo, A.; Carretero, S.; Kosmidis, L. On the MC/DC Code Coverage of Vulkan SC GPU Code. In Proceedings
of the 41st Digital Avionics System Conference, Portsmouth, VA, USA, 18–22 September 2022. [CrossRef]

17. Tatale, S.; Prakash, V.C. Automatic Generation and Optimization of Combinatorial Test Cases from UML Activity Diagram Using
Particle Swarm Optimization. Ing. Syst. d’Inform. 2022, 27, 49–59. [CrossRef]

18. Avdeenko, T.; Serdyukov, K. Automated test data generation based on a genetic algorithm with maximum code coverage and
population diversity. Appl. Sci. 2021, 11, 4673. [CrossRef]

https://doi.org/10.4018/IJAMC.2022010106
https://doi.org/10.1049/sfw2.12104
https://doi.org/10.3390/sym15010195
https://doi.org/10.1109/TSE.2023.3243522
https://doi.org/10.1371/journal.pone.0242812
https://doi.org/10.1145/3510003.3510165
https://doi.org/10.1007/s00500-019-04444-y
https://doi.org/10.1007/s11334-021-00422-6
https://doi.org/10.1080/1206212X.2020.1711616
https://doi.org/10.1016/j.engappai.2022.104773
https://doi.org/10.1007/s10664-019-09717-6
https://doi.org/10.1007/s12065-019-00322-6
https://doi.org/10.1016/j.compind.2022.103699
https://doi.org/10.1109/SP46214.2022.9833582
https://doi.org/10.1109/DAC18074.2021.9586289
https://doi.org/10.1109/DASC55683.2022.9925766
https://doi.org/10.18280/isi.270106
https://doi.org/10.3390/app11104673

Appl. Sci. 2023, 13, 8252 15 of 15

19. Lemieux, C.; Inala, J.P.; Lahiri, S.K.; Sen, S. CODAMOSA: Escaping Coverage Plateaus in Test Generation with Pre-trained Large
Language Models. 2023, pp. 1–13. Available online: https://github.com/microsoft/codamosa (accessed on 14 March 2023).

20. Fadhil, H.M.; Abdullah, M.N.; Younis, M.I. Innovations in t-way test creation based on a hybrid hill climbing-greedy algorithm.
IAES Int. J. Artif. Intell. 2023, 12, 794–805. [CrossRef]

21. Gupta, N.; Sharma, A.; Pachariya, M.K. Multi-objective test suite optimization for detection and localization of software faults.
J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 2897–2909. [CrossRef]

22. Khaleel, S.I.; Anan, R. A review paper: Optimal test cases for regression testing using artificial intelligent techniques. Int. J. Electr.
Comput. Eng. 2023, 13, 1803–1816. [CrossRef]

23. Barisal, S.K.; Chauhan, S.P.S.; Dutta, A.; Godboley, S.; Sahoo, B.; Mohapatra, D.P. BOOMPizer: Minimization and prioritization of
CONCOLIC based boosted MC/DC test cases. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 9757–9776. [CrossRef]

24. Sartaj, H.; Iqbal, M.Z.; Jilani, A.A.A.; Khan, M.U. A Search-Based Approach to Generate MC/DC Test Data for OCL Constraints.
In Proceedings of the Search-Based Software Engineering: 11th International Symposium, SSBSE 2019, Tallinn, Estonia, 31
August–1 September 2019; Lecture Notes in Computer Science. Springer International Publishing: Berlin, Germany, 2019;
Volume 11664, pp. 105–120. [CrossRef]

25. Zafar, M.N.; Afzal, W.; Enoiu, E. Evaluating System-Level Test Generation for Industrial Software: A Comparison between
Manual, Combinatorial and Model-Based Testing. In Proceedings of the 3rd ACM/IEEE International Conference on Automation
of Software Test, Pittsburgh, PA, USA, 17–18 May 2022; pp. 148–159. [CrossRef]

26. Jha, P.; Sahu, M.; Isobe, T. A UML Activity Flow Graph-Based Regression Testing Approach. Appl. Sci. 2023, 13, 5379. [CrossRef]
27. Tiwari, R.G.; Pratap Srivastava, A.; Bhardwaj, G.; Kumar, V. Exploiting UML Diagrams for Test Case Generation: A Review. In

Proceedings of the 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM), London, UK, 28–30
April 2021; pp. 457–460. [CrossRef]

28. Liu, Y.; Li, Y.; Deng, G.; Liu, Y.; Wan, R.; Wu, R.; Ji, D.; Xu, S.; Bao, M. Morest: Model-Based RESTful API Testing with Execution
Feedback; Association for Computing Machinery: New York, NY, USA, 2022; Volume 2022-May. [CrossRef]

29. El-Attar, M.; Abdul-Ghani, H.A. Using security robustness analysis for early-stage validation of functional security requirements.
Requir. Eng. 2016, 21, 1–27. [CrossRef]

30. Afrose, S.; Xiao, Y.; Rahaman, S.; Miller, B.P.; Yao, D. Evaluation of Static Vulnerability Detection Tools With Java Cryptographic
API Benchmarks. IEEE Trans. Softw. Eng. 2023, 49, 485–497. [CrossRef]

31. Ribeiro, V.; Cruzes, D.S.; Travassos, G.H. Understanding Factors and Practices of Software Security and Performance Verification.
In Proceedings of the 19th Brazilian Symposium on Software Quality, Sbcopenlib, Brazil, 1–4 December 2020.

32. Szűgyi, Z.; Porkoláb, Z. Comparison of DC and MC/DC Code Coverages. Acta Electrotech. Inform. 2013, 13, 57–63. [CrossRef]
33. Marques, F.; Morgado, A.; Fragoso Santos, J.; Janota, M. TestSelector: Automatic Test Suite Selection for Student Projects. In

Proceedings of the Runtime Verification: 22nd International Conference, RV 2022, Tbilisi, GA, USA, 28–30 September 2022;
Lecture Notes in Computer Science. Springer International Publishing: Berlin, Germany, 2022; Volume 13498, pp. 283–292.
[CrossRef]

34. Senjyu, T.; Mahalle, P.N.; Perumal, T.; Joshi, A. ICT with Intelligent Applications; Springer: New York, NY, USA, 2020; Volume 1.
35. Yang, Y.; Xia, X.; Lo, D.; Grundy, J. A Survey on Deep Learning for Software Engineering. ACM Comput. Surv. 2022, 54, 1–73.

[CrossRef]
36. Elyasaf, A.; Farchi, E.; Margalit, O.; Weiss, G.; Weiss, Y. Generalized Coverage Criteria for Combinatorial Sequence Testing.

IEEE Trans. Softw. Eng. 2023, 1–12. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/microsoft/codamosa
https://doi.org/10.11591/ijai.v12.i2.pp794-805
https://doi.org/10.1016/j.jksuci.2020.01.009
https://doi.org/10.11591/ijece.v13i2.pp1803-1816
https://doi.org/10.1016/j.jksuci.2021.12.007
https://doi.org/10.1007/978-3-030-27455-9_8
https://doi.org/10.1145/3524481.3527235
https://doi.org/10.3390/app13095379
https://doi.org/10.1109/ICIEM51511.2021.9445383
https://doi.org/10.1145/3510003.3510133
https://doi.org/10.1007/s00766-014-0208-9
https://doi.org/10.1109/TSE.2022.3154717
https://doi.org/10.15546/aeei-2013-0050
https://doi.org/10.1007/978-3-031-17196-3_17
https://doi.org/10.1145/3505243
https://doi.org/10.1109/TSE.2023.3279570

	Introduction
	Literature Review
	Research Methodology
	Experiment Design
	Test Combinations Identified by MC/DC:
	Acceptance Test Case Design

	Results and Discussion
	Conclusions and Future Work
	References

