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Abstract: Magnetite is a representative ore mineral found in various deposits. The trace element
composition of ore deposits is controlled by several physiochemical factors such as temperature,
pressure, and oxygen or sulfur fugacity. The chemical behavior of Germanium (Ge) is distinct in
different environments. Consequently, the composition patterns of Ge in magnetite can be used
to infer the provenance conditions. This study focuses on the Ge composition in magnetite from
the Wugang banded iron formation (BIF) to understand the compositional characteristics of BIF
sources and reconstruct of origin of Wugang BIF. The magnetite of the Wugang BIF has a porous
texture, indicating high dissolution-reprecipitation processes and easy fluid infiltration, owing to its
increased effective permeability. The Ge in the magnetite of the Wugang BIF was incorporated into
iron hydroxide from the hydrothermal fluid and seawater during precipitation. The formation period
of the Wugang BIF was consistent with significant oxidation events that led to the oxidation of ferrous
ions in the Precambrian Ocean. Certain processes promote the chemisorption and coprecipitation of
Ge into iron hydroxides or oxides.

Keywords: germanium; hydrothermal fluid; paleo-depositional conditions; banded iron formation

1. Introduction

The reconstruction of the early earth conditions is essential for understanding the links
between ocean chemistry and the evolution of the biosphere and atmosphere [1]. Banded
iron formations (BIFs) are Precambrian sedimentary successions defined as laminated
chemical sediments containing >15% Fe, with alternating layers of Fe-rich minerals, and
chert of various scales [2]. It is well known that anoxic and ferruginous marine conditions
occurred in the Archean and Paleoproterozoic eras, and BIFs precipitated until soluble iron
was exhausted, causing their cessation [3]. These are the primary products of marine iron
oxyhydroxides formed via diagenetic bacterial iron reduction [4]. Therefore, BIFs can be
used as essential geological proxies for understanding the tectonic evolution processes,
compositions of the early hydrosphere and atmosphere, and biological activities caused
by their formation at specific geological times and conditions to understand early earth
conditions [5,6].

Previous studies on the reconstruction of early earth conditions have included ther-
modynamic calculations of phase equilibria to understand the Archean subseafloor basalt-
hosted hydrothermal system [7], redox processes in ferruginous anoxic oceanic condi-
tions [1], evidence for ferruginous conditions from geochronological data with mineralogy,
sedimentary features, and REE (rare earth element) systematics from a suite of Fe-rich
chemical sedimentary rocks [3,8], experiments on the simulation of Precambrian ocean
chemistry from marine photoferrotrophs, and marine Fe(III)-reducing bacteria [9].

Recently, numerous studies have focused on the trace element composition of mag-
netite in BIFs because it can be used as a direct or indirect provenance fingerprint of the
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genetic conditions and mineralization styles of ore deposits [10–15]. Magnetite is a rep-
resentative ore mineral found in BIFs, with a hydrothermal origin and an inverse AB2O4
spinel structure [14,16]. Nb5+, Ta5+, Mo4+, W4+, Ti4+, Si4+, Ge4+, Sn4+, V3+, V4+, Cr3+, Al3+,
As3+, Ga3+, Mn2+, Zn2+, Ni2+, Co2+, Cu2+, Mg2+, and Ca2+ can enter the structure of the
magnetite [14]. Specifically, divalent cations such as Mg2+, Fe2+, Ni2+, Mn2+, Co2+, and Zn2+

are present at site A, and trivalent cations such as Al3+, Fe3+, Cr3+, V3+, Mn3+, and Ga3+ are
present at site B. In addition, Ti4+ can enter site B by substituting for a divalent cation [17,18].
Magnetite can crystallize in igneous, metamorphic, and sedimentary environments over a
wide range of pressures and temperatures [14]. Hydrothermal ore deposits usually contain
up to 10 ppm of trace elements, such as Ti, Si, V, Al, Ca, Mg, and Na [19]. Among the trace
elements in magnetite, the distribution and chemical behavior of Ge (belonging to subgroup
VIa of the periodic table) are closely related to ore-forming fluids, such as hydrothermal
fluids, which contribute to the precipitation of magnetite. Ge exists in two oxidation states,
Ge2+ and Ge4+. Ge4+ is more common and stable than Ge2+, and most Ge2+ are unstable
under atmospheric conditions [20]. Ge4+ in silicate minerals can easily substitute Si4+

because they have similar geochemical signatures [21]. Ge exhibits different chemical
behaviors in various geological environments because it possesses siderophilic, lithophilic,
chalcophilic, and organophilic behaviors [21]. Ge is present in minor quantities in silicate
minerals and is widely distributed in oxides, hydroxides, hydroxysulfates, and sulfides [20].
As Ge is not confined to specific conditions, it can occur as a minor and trace element in
various types of ore deposits [21,22]. The concentration of Ge is largely dependent on the
physicochemical parameters of the magnetite formation system, including the primary
magma/fluid composition, with subordinate influences of oxygen fugacity, sulfur fugacity,
and temperature [22].

The Wugang BIF consists of early Neoarchean basement rock. U–Pb age dating of
Wugang BIF detrital zircons indicates an age of 2.60–2.45 Ga, and it was formed in the near-
shore continental shelf or back-arc basin geological environment. The geochemical data
of the Eu and Ce anomalies and the occurrence of carbonate minerals provide evidence
of the superior-type BIF affinity of the Wugang BIF. In addition, Fe mainly originates
from seawater and hydrothermal fluids, with river flux and minor continental detrital
materials [23]. Although several studies have been conducted, the timing of precipitation,
related tectonic evolutionary processes, and the chemical signatures of hydrothermal
and seawater are poorly understood [23]. Therefore, we focused on the composition of
magnetite from the Wugang BIF, especially the concentration of Ge, to provide further
information on the compositional signatures of the hydrothermal fluid and seawater.
Complementing the results of previous studies, this study provides insights into the
reconstruction of the origin of Wugang BIF based on newly acquired geochemical data.

2. Geological Setting and Methods
2.1. Geological Setting and Samples

The North China Craton (NCC) is the oldest craton in the world and the largest
craton and has experienced several geological events, including the removal of deep
cratonic mantle roots, multiple episodes of continental crust growth, and precipitation
of mineral resources [23–25]. The NCC is composed of the eastern and western blocks
of the Trans-North China Orogen (TNCO) based on lithology, structure, metamorphic
grade, and geochronological data [26,27]. The TNCO is a Paleoproterozoic subduction–
collision belt, and Neoarchean terranes are distributed in the southern areas, including the
Dengfeng, Zhongtiao, and Taihua complexes [26–28]. The Taihua Complex consists mainly
of early Precambrian medium- to high-grade metamorphic rocks, tonalite–trondhjemite–
granodiorite (TTG) gneisses, amphibolites, migmatites, and spracrustal rocks. The Huashan,
Xiaoshan, Luoning, Lushan, and Wugang terranes are distributed from northwest to south-
east (Figure 1a) [23,29]. The Wugang BIF is hosted in the Wugang block, which is located
in the easternmost part of the Taihua complex in the southern part of the NCC, and is
considered a representative iron ore in the Central Plain [23]. The Taihua complex is divided
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into the Paleoproterozoic upper Taihua unit (metapelitic gneisses, marbles, quartzites, and
banded iron formations) and the Neoarchean lower Taihua unit (TTG gneisses and amphibo-
lites) [29]. Two major iron ores, the Tieshanmiao-type iron ore and the Zhaoanzhuang-type
magmatic-origin iron ore, are distributed in the Taihua complex (Figure 1b). These two Fe
deposits have contrasting geochemical and mineralogical signatures. The Zhaoanzhuang-
type magmatic-origin iron ore is spatially and temporally related to ultramafic rocks of
magmatic origin [30]. The Tieshanmiao-type Fe deposits are included in the BIF and display
general geochemical signatures of other BIFs, including low concentrations of Al2O3 and
TiO2, and REE + Y patterns [23,31,32]. Macroscopic and microscopic analyses revealed that
the iron ore from the Wugang BIF exhibited a layered or massive texture (Figure 2). The
banding texture consisted of alternating magnetite–pyroxene-rich and quartz-rich bands at
various scales. The massive texture was composed of pyroxene and magnetite.
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Table 1. Major element abundance of magnetite from Wugang BIF (n = 64, wt. %). 
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Figure 2. Petrographic features of iron ores from Wugang BIF. (a–f) Macroscopic aspect of iron ores
and (g–i) microscopic aspect of magnetite, mt—magnetite. Iron ore has both a distinctive layer texture
and a massive texture. Coarse-grained subhedral magnetite-associated quartz is also observed.

2.2. Analytical Methods

Laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses were
applied to evaluate trace elements used as petrogenetic indicators [12,14,33]. LA-ICP-MS is
a rapid and precise method with a spatial resolution of <0.1 mm and a sub-ppm detection
limit [22]. Many previous studies have focused on trace elements in ore minerals using in
situ LA-ICP-MS analyses [34–38].

Concentrations of major element oxides (FeO, MnO, Cr2O3, MgO, SiO2, K2O, CaO,
TiO2, Na2O, and Al2O3) (Table 1) and trace elements (Mg24+, Al27+, Si29+, Ca43+, Sc45+,
Ti48+, V51+, Cr53+, Mn55+, Co59+, Ni60+, Cu63+, Zn66+, Ga69+, Ge73+, Y89+, Zr90+, Nb93+,
Mo95+, Hf178+, W182+, and Pb208+) (Table 2) were analyzed using field-emission electron
probe microanalyzer (FE-EPMA; JEOL JXA-8530F, JEOL) and quadrupole inductively
coupled plasma mass spectrometry (iCapQ ICP-MS, Thermo Fisher Scientific, Waltham,
MA, USA) equipped with femtosecond laser ablation systems (J200 LA model, Applied
Spectra Inc., West Sacramento, CA, USA), respectively, at the Core Research Facility of
the Pusan National University (Busan, Republic of Korea). The samples were analyzed
at a pulse repetition rate of 10 Hz, and a pulse width of 480 fs for trace element analysis.
An ablated spot size of 70 µm with a laser energy density of approximately 100 µJ cm−2,
for approximately 15 s, was used on the sample. NIST 610 glass was used as an external
standard for the calculation of elemental concentrations in magnetite. Data reduction was
performed using the trace element data reduction scheme of IOLITE4 software. Analyzed
data are presented by Supplementary Tables S1 and S2.
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Table 1. Major element abundance of magnetite from Wugang BIF (n = 64, wt. %).

FeOT MnO Cr2O3 MgO SiO2 K2O CaO TiO2 Na2O Al2O3 Total

Min 89.2 - - - - - - - - - 89.6
Max 94.2 0.2 0.1 0.1 0.3 0.2 - 0.1 0.4 0.1 94.5

Median 92.2 0.1 - - - - - - - - -
Standard deviation 1.0 - - - - - - - - - -

Table 2. Trace element abundance of magnetite from Wugang BIF (n = 140, ppm).

Ge Ti V Mg Al Cr Mn Co Zn Ga Ni

Min 3.3 40 2.5 17 78 0.4 244 0.4 6.8 0.5 <0.01
Max 11 262 17 953 1764 405 4205 22 119 6.5 22

Median 4.7 54 3.9 135 341 4.5 622 1.2 43 0.8 4.0
Standard deviation 1.0 46 3.1 240 356 32 594 5.1 25 1.2 3.9

3. Results and Discussion
3.1. Geochemical Properties of Ge in Magnetite in Various Ore Deposits

Ge is used as a direct or indirect geochemical factor to evaluate the genetic condition of
ore deposits because its concentration and chemical behavior are controlled by hydrother-
mal fluids, partition coefficients, and physicochemical conditions, such as temperature, and
oxygen and sulfur fugacity [14,39]. Meng, Hu, Huang and Gao [22] summarized the con-
centration and chemical behavior of Ge in magnetite from the Fe–Ti–(V) oxide deposit in the
Emeishan large igneous province of SW China containing Taihe, Baima, Hongge, Panzhi-
hua, and Anyi intrusions with Fe–Ti–P deposits [39]; Bushveld complex of South Africa,
Sept-Iles intrusive Suite of Canada, and St. Charles de Bourget of Canada; Ni–Cu–platinum-
group elements (PGE) deposits of the Sudbury igneous complex in Canada [40]; Voisey’s
Bay anorthosite complex in Canada [41]; Noril’sk-Talanakh intrusion in Siberia [42]; Huang-
shandong intrusion in China [43,44]; Sokoman iron formation in the Labrador Trough of
Canada [11]; Skarn Fe deposits of the Nanling Range, South China [38]; in Tongling, Eastern
China [45]; and Vegas Peledas of Argentina [39]; IOCG deposits in the Kangdian metallo-
genic province of SW China [46,47]; igneous derived hydrothermal Fe deposits of the Cihai
Fe deposit in the Beishan terrane of NW China [48]; and Heifengshan, Shuangfengshan,
and Shaquanzi Fe deposits in the Eastern Tianshan Orogenic Belt of NW China [49]. These
studies provided information on the chemical behavior of Ge in each ore deposit. In the
case of Fe–Ti–P deposits, the concentration of Ge in magnetite varies from 0.69 to 26.6 ppm,
and its wide range is indicative of different degrees of magmatic evolution [39,50]. High
Ge content magnetite is enriched in Zn and Ga and depleted in Cr, Co, and Ni [39]. In
Ni–Cu–PGE deposits, magnetite occurs as an accessory mineral with a concentration of
0.15–1.27 ppm of Ge with an average of 0.74 ppm [33]. The geochemical affinity of Ge is
similar to those of Cr, Ti, V, Al, Mn, and Ga and is compatible with iron oxide in sulfide
melts [33]. The concentration of these lithophilic elements in iron oxide gradually decreases
during the continuous crystallization of iron oxide from the sulfide liquid [33]. Chung
et al. [11] investigated three types of magnetite (primary, altered, and volcanic breccia) in
the Sokoman Iron Formation in the Labrador Trough of Canada, to compare trace element
composition trends. The three types of magnetite exhibited different trends in trace element
composition. The primary, altered, and volcanic breccia magnetites contain Ge concentra-
tions of 13–39 ppm (average 23 ppm), 3.8–110 ppm (average 25 ppm), and 12.1–247 ppm
(average 59 ppm), respectively [11]. The trace element composition of primary magnetite
is homogeneous, whereas that of altered magnetite varies widely, indicating the role of
exhalative volcanic processes and hydrothermal fluids in modifying the trace element com-
position of magnetite [11,22]. The magnetite in the Fe–Ti–(V) oxide ore deposits exhibited
extensive trellis or sandwich exsolution lamellae of ilmenite and spinel, and had variable
trace element concentrations owing to their crystallography (such as the affinity of the ionic
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radius and the overall charge balance), oxygen fugacity, magma composition, and coex-
isting minerals [50]. Liu, Zhou, Chen, Gao, and Huang [50] investigated the relationship
between the oxygen fugacity and concentration of Ge using quartz–ulvöspinel–ilmenite–
fayalite (QUILF) equilibrium modeling. They concluded that the Panzhihua and Baima
intrusions crystallized under high oxygen and possessed a slightly higher concentration of
Ge compared to other intrusions in the Emeishan large igneous province, indicating that
Ge can easily enter the magnetite structure at higher oxygen fugacities.

The magnetite in this study contained concentrations of 3.3–11.2 ppm of Ge (average
5.1 ppm), 40.1–261.5 ppm of Ti (average 80.6 ppm), 2.5–17.2 ppm of V (average 5.3 ppm),
17.0–952.5 ppm of Mg (average 211.7 ppm), and 77.7–1763.8 ppm of Al (average 404.5 ppm)
(Table 2, Figure 3). Magnetites from the Wugang BIF have enriched concentrations of Ge
with values higher than those of the bulk continental crust [51]. In the Ti + V and Al + Mn
discrimination diagrams [12], the trace element compositions of magnetite plot slightly
outside the BIF field owing to lower Ti + V and Al + Mn values, which reflect the complex
genetic conditions of the Wugang BIF (Figure 4). The dissolution–reprecipitation processes
(DRP) process can be deduced using the textural and compositional data of magnetite,
which is evidence of the hydrothermal origin of magnetite. Magnetite affected by DRP has
distinct textural features of secondary magnetite intergrown with relict primary magnetite,
and this secondary magnetite exhibits a porosity-rich texture [52]. The magnetite in the
Wugang BIF had low Al and Si contents with abundant porosity, and it can be assumed
that geological events and subordinate variations in oxygen and sulfur fugacity in the
fluid caused the DRP in magnetite in the Wugang BIF. The porous texture might be related
to volume loss and lead to easy fluid infiltration owing to an increase in the effective
permeability; therefore, magnetite dissolution occurs [52].

The narrow ranges of trace elements with respect to the composition of Ge in magnetite,
as shown in Figure 3, are indicative of an original fluid source of the Wugang BIF. The
partition coefficients of trace elements are primarily controlled by temperature [53], with
increasing and decreasing trends in trace-element concentrations [14]. In addition, the
concentration of Ge in water positively correlates with temperature [54]. However, there is
still no clear evidence of a relationship between the Ge concentration in magnetite and the
crystallization temperature [22]. The Ge in magnetite was positively correlated with Cr,
Ni, Zn, Al, Ti, Mg, Ga, and V and slightly negatively correlated with Co (Figure 4). The
chemical behavior of Ge was assumed to be similar to those of Cr, Ni, Zn, Al, Ti, Mg, Ga,
and V. In addition, the positive correlations between these trace elements and Ge indicated
the compatibility of Ge with magnetite [33]. In conclusion, the textural, compositional, and
geochemical data for magnetite from the Wugang BIF confirm its hydrothermal origin and
indicate the compositional signatures of the original hydrothermal fluids.

3.2. Controlling Factor of Ge in Magnetite in the Hydrothermal System

The Wugang BIF is appropriate for reconstructing its origin because (1) the alternating
banding texture (Figure 2a,b,d) indicated that the Wugang BIF precipitated under stable
depositional conditions [23]; (2) the preserved fine-grained magnetite (euhedral to sub-
hedral) indicates the preservation of the original signatures [11]; and (3) the relatively
narrow range of trace element composition of magnetite can provide insights into the
original signature of magnetite-precipitation conditions. Non-altered magnetite and altered
magnetite show different compositional trends, with the former having a homogenous
compositional trend and the latter having a wide variation [11]. Therefore, according to
the relict banding texture, euhedral to subhedral magnetite, and homogenous magnetite
trace element composition, the Wugang BIF and magnetite can be used as proxies for
paleo-depositional reconstruction, even though they have experienced post-depositional
metamorphism and deformation.
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Figure 3. Plots of Ge versus selected trace elements of (a) Zn, (b) Ni, (c) Co, (d) Al, (e) Mg, (f) Ti,
(g) Cr, and (h) V of magnetite from Wugang BIF (red dot). The chemical behavior and correlation are
given by the dashed line. The Ge concentration of magnetite from the Wugang BIF was not high and
can be considered its chemical signature.
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water positively correlates with temperature [54]. However, there is still no clear evidence of 

a relationship between the Ge concentration in magnetite and the crystallization temperature 

[22]. The Ge in magnetite was positively correlated with Cr, Ni, Zn, Al, Ti, Mg, Ga, and V and 

slightly negatively correlated with Co (Figure 4). The chemical behavior of Ge was assumed 

to be similar to those of Cr, Ni, Zn, Al, Ti, Mg, Ga, and V. In addition, the positive correlations 

between these trace elements and Ge indicated the compatibility of Ge with magnetite [33]. In 

conclusion, the textural, compositional, and geochemical data for magnetite from the 

Figure 4. Plots of Ti + V versus Al + Mn of magnetite from Wugang BIF [12]. The decreasing
temperature trend is indicative of the estimated formation temperature of each ore deposit. Ti + V
and Al + Mn concentrations of magnetite are proportional to temperature [14]. The magnetite
composition is plotted inside and outside the BIF field due to the complex genetic conditions of the
Wugang BIF. The symbol is same as Figure 3.

The primary sources of iron in the BIFs were hydrothermal fluid and seawater, and
magnetite in the BIFs was shown to be of hydrothermal origin [14]. BIFs are mainly com-
posed of oxide, silicate, carbonate, and sulfide sedimentary facies [5,6]. Among these, the
oxide facies contained higher concentrations of Ge than the other facies [55]. The (ferro-) fer-
ric oxyhydroxides, including ferrihydrite (Fe(OH)3), greenalite ((Fe)3Si2O5(OH)4), siderite
(FeCO3), and amorphous silica (SiO2 · nH2O) are the precursor mineral phases of mag-
netite. Ge is incorporated into (ferro) ferric oxyhydroxide during its precipitation from
aqueous solutions [20]. The concentrations of Ge in the magnetites in BIFs are relatively
higher than those in other ore deposits and are 10–100 times higher than those in the
bulk continental crust [22,51]. It is generally accepted that the absorption of Ge in BIFs
results from its incorporation into iron hydroxides during precipitation from aqueous solu-
tions [20]. Ge in hydrothermal fluids is mainly controlled by two sources: (a) concentrated
in evolved magmatic-hydrothermal fluids through fractional crystallization, or (b) country
rock through migrating fluids. Therefore, the concentration of Ge in magnetite is essentially
controlled by the composition of the hydrothermal fluids and the degree of the fluid-rock
reaction [54].

Ge enrichment processes are closely linked to Earth’s evolutionary processes [21]. The
great oxidation event (GOE) at 2.3 to 2.4 Ga has led to an increase in fO2 and influenced the
Fe oxidation process (ferrous iron to ferric iron) [5]. Fe3+ hydroxide was formed, and the
chemisorptive concentration of Ge is promoted [21]. Ge has a high affinity for iron hydroxides
or oxides and can coprecipitate into iron hydroxides or oxides through sorption processes at
pH > 6 [21,56]. In addition, the “missing Ge sink” in the ocean was due to the sequestration
of Ge into authigenic Fe-oxyhydroxides in marine sediments [57], which might be one of
the reasons for the absorption of Ge in the magnetite in the Wugang BIF. Considering the
environmental conditions of the Precambrian (during the Neoarchean–Paleoproterozoic) and
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the genetic processes of the Wugang BIF, it can be assumed that the magnetite of the Wugang
BIF preserved its original precipitation signatures.

4. Conclusions

This study focused on the concentration of Ge in magnetite from the Wugang BIF.
The textural, compositional, and geochemical features of magnetite indicate depositional
conditions that were prevalent during the formation of the Wugang BIF. The Ge composition
of magnetite has a relatively narrow range and has a similar chemical behavior to Zn, Ni,
Al, Mg, Ti, Cr, and V. Combined with the results of previous studies; this study showed
the Wugang BIF precipitated under Ge-rich near-shore continental shelf or back-arc basin
conditions. Therefore, it is assumed that the contributing hydrothermal fluids and seawater
are also enriched in Ge. The depositional timing of the Wugang BIF is consistent with
that of the GOE. The subsequent chemical processes occurring in the Paleo-ocean were
influenced by an increase in f O2, which led to the formation of Fe3+ hydroxide. Ge is
absorbed by Fe hydroxides or oxides owing to its high affinity. The magnetite can be used
as a proxy for the depositional condition of the Wugang BIF.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/app13148246/s1, Table S1: Major elemental compositions
(in wt.%) of magnetite in the Wugang BIF; Table S2: Trace elemental compositions (in ppm) of
magnetite in the Wugang BIF.
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