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Highlights:

What are the main findings?
• A novel species-specific RBP predictor based on a convolutional neural network with short motifs,
• State-of-the-art performance based on simple sequence features,
• Difference in discriminative features for RBP prediction between different species,
What is the implication of the main findings?
• Quick finding of candidate RBPs for further verification through biological experiments,
• Performance improvement of predicting RBP using computational methods,
• Recommendation for species-specific RBP predicting models.

Abstract: RNA-binding proteins (RBPs) play an important role in the synthesis and degradation
of ribonucleic acid (RNA) molecules. The rapid and accurate identification of RBPs is essential for
understanding the mechanisms of cell activity. Since identifying RBPs experimentally is expensive
and time-consuming, computational methods have been explored to predict RBPs directly from
protein sequences. In this paper, we developed an RBP prediction method named CnnRBP based
on a convolution neural network. CnnRBP derived a sparse high-dimensional di- and tripeptide
frequency feature vector from a protein sequence and then reduced this vector to a low-dimensional
one using the Light Gradient Boosting Machine (LightGBM) algorithm. Then, the low-dimensional
vectors derived from both RNA-binding proteins and non-RNA-binding proteins were fed to a
multi-layer one-dimensional convolution network. Meanwhile, the SMOTE algorithm was used to
alleviate the class imbalance in the training data. Extensive experiments showed that the proposed
method can extract discriminative features to identify RBPs effectively. With 10-fold cross-validation
on the training datasets, CnnRBP achieved AUC values of 99.98%, 99.69% and 96.72% for humans,
E. coli and Salmonella, respectively. On the three independent datasets, CnnRBP achieved AUC
values of 0.91, 0.96 and 0.91, outperforming the recent tripeptide-based method (i.e., TriPepSVM)
by 8%, 4% and 5%, respectively. Compared with the state-of-the-art CNN-based predictor (i.e.,
iDRBP_MMC), CnnRBP achieved MCC values of 0.67, 0.68 and 0.73 with significant improvements
by 6%, 6% and 15%, respectively. In addition, the cross-species testing shows that CnnRBP has a
robust generalization performance for cross-species RBP prediction between close species.

Keywords: RNA-binding protein; convolution neural network; short peptide motifs; feature selection
with LightGBM

1. Introduction

RNA-binding proteins (RBPs) are a class of proteins that interact with RNA and
regulate the metabolic process [1,2]. RBPs are involved in many biological processes such
as gene regulation and apoptosis. They mediate the maturation, translocation, localization,
modification, splicing and translation of RNAs through forming nucleic acid protein

Appl. Sci. 2023, 13, 8231. https://doi.org/10.3390/app13148231 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148231
https://doi.org/10.3390/app13148231
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1849-1218
https://doi.org/10.3390/app13148231
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148231?type=check_update&version=2


Appl. Sci. 2023, 13, 8231 2 of 15

complexes [3]. In the absence of RBPs, most RNAs cannot normally regulate and metabolize,
except for a few RNAs that can act alone in the form of nuclease [4]. Moreover, RBPs may
have one or more target RNAs, and their expression defects can cause a variety of diseases,
such as neurodegenerative diseases, cancer and metabolic disorders [5,6]. The efficient
identification of RBPs is important to medical research.

Traditional experimental methods are time-consuming and expensive because they
identify RBPs via RNA interactome capture (RIC), which relies on in vivo UV cross-linking
and oligo(dT) capture. Moreover, these methods may fail in some bacterial species that
lack polyadenylation. The above reasons limit the application of traditional experimental
methods to high-throughput data. The computational methods are time efficient, oligo(dT)-
independent and can make up for the shortcomings of traditional experimental methods.
Therefore, the computational RBP prediction methods have received more and more at-
tention from researchers. The existing methods mainly describe proteins using features
derived from protein primary sequences and then train classification models based on
these features. The most commonly involved features include evolutionary conservation
information, physicochemical properties, predicted structure information, position-specific
scoring matrixes, physicochemical properties, and so on. And the most commonly used
models include support vector machines, convolutional neural networks, and so on. How-
ever, recent studies on RBPs have made progress. Castello et al. [7] found that some short
motifs (e.g., tripeptide or dipeptide) show specific conservation in the internal disordered
regions (IDRs) of RBPs.

Although existing methods have made significant progress on RBP prediction, there
is still a lot of room for improvement. Motivated by the work of Castello et al. [7], we
propose a deep model named CnnRBP based on frequencies of the short motif of amino
acid residues in this paper. The proposed method described proteins with short peptide
motifs. A convolutional neural network was trained based on features derived from
these short peptide motifs. Meanwhile, feature selection was carried out via the Light
Gradient Boosting Machine (LightGBM) [8]. The performance of the proposed method
was exhaustively evaluated through cross-validation and independent validation on the
benchmark datasets. The rest of this paper is organized as follows: Section 2 describes the
related works of RBP prediction. Section 3 presents the details of benchmark datasets, the
proposed method and evaluation indexes. Section 4 presents the experimental results and
makes an analysis. Finally, Section 5 makes conclusions.

2. Related Works

In the past decade, several computational methods have been proposed to predict
RBPs. According to their feature representations to proteins, these methods can be roughly
split into two categories, i.e., sequence-based and structure-based methods. Due to fact
that the available structure data of proteins are relatively small, structure-based methods
cannot be widely applied and have lacked attractiveness recently. To the best of our
knowledge, the most recent work was the BindUP [9] proposed in 2016. It was a web
server for the non-homology-based prediction of RBPs. BindUP extracted features, such as
electrostatic surface patches, the molecular weight, surface accessibility and the moment
dipole of the protein chain, from a 3D structure of a protein or a structural model. These
numeric features were then fed to the supervised learning framework to train a support
vector machine (SVM) classifier with a linear kernel function. In contrast, sequence-based
methods are receiving more and more attention. Sequence-based methods derive various
features from protein primary sequences, such as evolutionary conservation information,
physicochemical properties or predicted structure information. Based on these features,
they train classifiers to distinguish RBPs from non-RBPs via supervised learning. Position-
specific scoring matrixes (PSSMs) and physicochemical properties are two kinds of features
that are frequently utilized to predict RBPs. Kumar et al. [10] trained an SVM classifier
denoted as RNAPred based on the PSSMs of proteins. RNAPred firstly identifies RBPs
according to the number of predicted binding residues. If the number exceeds the threshold
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for RBPs, the testing sample will be classified as an RBP. And if the number is less than
the threshold for non-RBPs, the testing sample will be classified as a non-RBP. In other
cases, the trained SVM is responsible for further prediction. The catRAPID [11] signature
computed the Pearson correlation coefficient between physicochemical properties and
annotated RNA-binding domains (RBDs) and trained an SVM with an RBF kernel based on
the fraction of residues with a high correlation and associated RBDs. Similar to catRAPID,
Sharan et al. [12] proposed the APRICOT method that tried to predict RBDs from protein
sequences. They described RBD characteristics using PSSMs, instead of physicochemical
properties. Zhang and Liu integrated physicochemical properties and PSSMs to train
an SVM model named RBPPred [13]. They demonstrated a performance improvement
for the integrated features over any single feature. Besides PSSMs and physicochemical
properties, the structure features predicted from sequences are also used to identify RBPs.
For example, SPOT-Seq-RNA [14] combined template-based structure-prediction software
with binding-affinity prediction software for protein–RNA complexes. Recently, Bressin
et al. [15] introduced a novel sequence-derived feature to train an SVM model, TriPepSVM,
to predict RBPs. They computed frequencies of tripeptide motifs by continuously moving
a sliding window in a protein sequence. On the dataset of three species, experimental
results demonstrated that this feature was computationally efficient and discriminative for
identifying RBPs.

With the wide application of deep learning in bioinformatics fields [16–20], several
works tried to improve the performance of RPB predictors by resorting to deep learning.
Deep-RBPPred [21] combined five physicochemical properties using a global composition
feature encoding method (CTD) to form a 160-dimension feature vector and then train
a convolutional neural network (CNN) with the reshaped 8 × 20 feature tensor as input.
Furthermore, DeepMVF-RBP [22] encoded physicochemical properties using three differ-
ent methods, i.e., CTD, conjoint triad (CT) and parallel correlation pseudo amino acid
composition (PC-PseAAC) and then concatenated them together to train a deep belief
network (DBN). And Zhao and Du [23] clustered amino acids into seven groups according
to physicochemical properties and trained a CNN based on one-hot encoding and a CNN
with a residual block based on conjoint triad encoding. Then, the two CNNs made up
an ensemble classifier named econvRBP. Zhang et al. [24] treated the prediction of RBPs
and DBPs as a multi-label classification problem. Using multi-label learning methods,
they developed a CNN model named iDRBP_MMC based on PSSMs and known motifs to
predict RBPs and DNA-binding proteins (DBPs) simultaneously. In addition, Pan et al. [25]
proposed an LSTM model to identify binding proteins for RNA sequences using multi-label
deep learning. And Niu et al. [26] identified binding proteins for RNA sequences via a
deep learning model with a CNN layer followed by an LSTM layer.

Although deep learning methods have achieved an exhilarating performance for RBP
prediction, there are still some disadvantages. For example, Deep-RBPPred inputs simple
physicochemical properties and can make decisions quite efficiently but shows a moderate
performance [21], whereas iDRBP_MCC achieves a state-of-the-art performance but is
time-consuming since it inputs PSSMs obtained through sequence alignments on a large
protein database [24]. Meanwhile, iDRBP_MCC has to perform zero padding when the
length of the input protein is different from the preset value, which may lead to a decline in
the case that the length of the test data is distinct from that of the training data.

3. Materials and Methods

The flowchart of CnnRBP is shown in Figure 1. Firstly, the protein sequence is de-
scribed by a feature vector of the frequencies of di- and tripeptide motifs. The frequencies
of di- and tripeptide motifs are calculated directly from protein sequences, which is both
a high-performance method and computationally efficient. The dimension of the feature
vector is constant despite different protein sequence lengths, and therefore zero padding is
avoided. Secondly, LightGBM [8] was utilized to select important features from the initial
sparse high-dimensional feature vector and reduce the dimension of the feature vector.
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Lastly, a convolutional neural network (CNN) with one-dimension convolutional filters
captured more sophisticated relations among the low-dimensional features and made the
final prediction. In addition, to alleviate the harmful effects of class imbalance existing
in training datasets, the Synthetic Minority Oversampling Technique (SMOTE) [27] was
introduced to increase the size of the minority class (positive) data. Based on the proposed
method, three species-specific RBP predictors were trained on the datasets of three species,
humans, E. coli and Salmonella, respectively. The ten-fold cross-validation on training
datasets and the independent validation on testing datasets were carried out to evaluate
the proposed predictors and compare them with existing methods. The cross-species evalu-
ations were also adopted to show the generalization performance of the proposed CnnRBP
for cross-species prediction.

Training 

Data*

Feature 

Representation

(X∈ RN×L)

Feature Subset

(X’∈ RN×K)

Training a 

LightGBM 
model

Selecting the most 

important K 

features{d1,d2,…,dK}

Training a 

CNN model

Testing 

Data*

Feature 

Representation
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Independent 

Validation

10-fold cross

validation

Figure 1. The flowchart of the proposed CnnRBP. * For each species, one model is trained on its
training dataset and then tested on its testing dataset.

3.1. Benchmark Datasets

To evaluate the performance of the proposed CnnRBP, six publicly available
datasets [15] were utilized as benchmark datasets. These datasets contain RNA-binding
and non-RNA-binding proteins from three different species, humans, E. coli and Aal-
monella, with two datasets per species. For each species, one dataset was taken as the
training dataset and the other one was utilized to perform independent validation. For
humans, the training dataset comprises 1625 positive samples (RNA-binding proteins)
and 10,834 negative samples (non-RNA-binding proteins), and the independent validation
dataset comprises 181 positive samples and 1204 negative samples. For E. coli, the training
dataset comprises 460 positive samples and 3404 negative samples, and the independent
validation dataset comprises 52 positive samples and 379 negative samples. For Salmonella,
the training dataset comprises 275 positive samples and 1273 negative samples, and the
independent validation dataset comprises 31 positive samples and 142 negative samples.
Table 1 summarizes the statistics of these above six benchmark datasets. Please refer to the
paper [15] for details of these datasets.

Table 1. Sizes of training and independent validation datasets for all three species.

Dataset Training Independent Validation

Positive Negative Pos:Neg Positive Negative Pos:Neg

Human 1625 10,834 1:6.67 181 1204 1:6.65
E. coli 460 3404 1:7.4 52 379 1:7.29

Salmonella 275 1273 1:4.63 31 142 1:4.58
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3.2. Feature Representation Based on Short Peptide Motifs

Sequence motifs are short amino acid composite patterns that are conserved during
protein evolution. Several di- and tripeptides have been found to occur more frequently in
the structural disorders of RBPs [7]. Therefore, we described protein sequences based on
di- and tripeptide motifs. In details, a protein was described as a vector of the frequencies
for di- and tripeptides calculated from the amino acid sequence. As shown in Figure 2, we
moved a sliding window of a 2- and 3-amino-acid size on the protein sequence one amino
acid at a time, and counted the occurrence frequencies of all possible di- and tripeptides. For
example, given a protein sequence of ‘TYSYHKYSYT’, the dipeptide motif of ‘YS’ appears
twice when moving a sliding window of size 2 from left to right, then the place in the
feature vector counting the frequency of the ‘YS’ motif is set to 2. There are 400 dipeptides
and 8000 tripeptides in all, so we obtain an 8400 D feature vector from a protein sequence.
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Figure 2. Feature representation based on di- and tripeptide motifs.

3.3. Feature Selection Using the LightGBM Algorithm

Our feature vectors for proteins are sparse high-dimensional vectors, which may
lead to a negative impact on the training of subsequent CNN models. To improve the
performance of subsequent classification models, it is common to apply feature selection
to the initial feature vectors ahead of the training the classification model. Therefore, we
carried out feature selection by estimating feature importance based on the LightGBM
algorithm [8]. Specifically, we firstly trained a LightGBM model with initial feature vectors
on the training dataset and then calculated the feature importance as the average importance
over all decision trees of the trained LightGBM model, where the importance of a feature
for a decision tree is measured by the sum of the decrease in gini impurity over the
internal nodes that choose the variable (feature) to partition the associated region into two
subregions. The higher the score of the feature, the higher the importance of the feature.
Then, all features are sorted by their gain scores. Finally, the optimal feature subset is
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selected according to the sorted features. As a result, the importance of a feature ` can be
calculated as follows:

I` =
1
M

M

∑
m=1
I`(Tm) (1)

I`(T) =
J

∑
t=1
4Gt I(v(t) = `) (2)

where, I`(T) represents the importance of the feature ` for the tree T,4Gt represents the
decrease in gini impurity in the internal node t, I() is the indicator function, v(t) represents
the chosen variable (feature) for the node t, M is the number of trees in the LightGBM
model and J is the number of internal nodes in the decision tree T.

After feature selection, we use Formula (3) to normalize each feature to a real number
between 0 and 1, where x is the original value of each feature and max and min are the
maximum and minimum values of each feature in the training dataset. In this way, we
eliminated differences in the magnitude for all features and ensured that the convolutional
neural network can correctly capture the potential relationship between features.

x∗ =
x−min

max−min
(3)

3.4. CnnRBP Model

Recently, deep learning has been applied in several problems in the bioinformatics field
and achieved an excellent performance. In this paper,we proposed an RNA-binding protein
prediction model based on a convolution neural network (CNN), as shown in Figure 3.
The CNN has achieved great success in image recognition, image segmentation, video
recognition, pattern recognition, natural language processing and other fields. Inspired
by the success of the CNN in the feature extraction of two-dimensional image data, we
applied a one-dimensional CNN to extract local features from a protein sequence to capture
the relations between adjacent residues.

As shown in Figure 3, our model contains a CNN framework with five one-dimensional
convolutional layers. Each convolutional layer contains 128 convolutional kernels with
different sizes (5, 5, 3, 3 and 1, respectively). These convolutional layers are expected to
extract sophisticated features from sequence motifs. Meanwhile, to make the extracted
features more robust and reduce the size of the representations, there is a max pooling layer
with a window of 3 and a step size of 2 after each of the first 4 convolutional layers and a
max pooling layer with a window of 3 and a step size of 1 after the last convolutional layer.
For feature mapping, the relu function (4) with a small influence function kernel is used as
the activation function of each convolutional neuron.

relu(x) = max(0, x) (4)

The extracted feature vector from the convolutional layer is then fed into a full con-
nection framework of 3 layers to learn relations between features. To prevent over-fitting,
a dropout layer with a parameter of 0.75 is added between two adjacent full connection
layers. In the output layer, two neurons output the probabilities of being an RBP and a
non-RBP, respectively, calculated by the softmax activation function. To train this network,
we use the standard cross-entropy as the loss function, which is shown in Formula (5), to
minimize the training error.

Loss =
1
N ∑−[yi log(pi) + (1− yi) log(1− pi)] (5)

where N is the total number of training samples, yi is the label of the i-th sample, the
positive class is 1, the negative class is 0 and pi is the probability that the i-th sample is
predicted to be positive.
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Figure 3. The framework of the CnnRBP model. L is the length of the feature subset selected by the
LightGBM algorithm.

Because the data are highly unbalanced, we use the SMOTE algorithm [27] to alleviate
the bias problem in model prediction. Specifically, we apply the SMOTE algorithm on the
feature vector space of the positive class to make the sample number of the positive class
almost equal to that of the negative class. Then, based on the balanced dataset, the feature
selection and training of the CNN model are carried out.

3.5. Performance Evaluation

To evaluate the prediction performance of the proposed model and compare it with
other models, eight evaluation indexes are measured on training datasets and independent
datasets. These indexes include the accuracy (ACC), precision (PRE), sensitivity (SEN),
specificity (SPE), F1 measure (F1), Matthew’s correlation coefficient (MCC), balanced
accuracy (BACC), area under precision recall curve (AUPR) and area characteristic curve
under the prediction receiver operator (AUC), which are defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
. (6)

PRE =
TP

TP + FP
. (7)

SEN =
TP

TP + FN
. (8)

SPE =
TN

TN + FP
. (9)
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F1 =
2× SEN × PRE

SEN + PRE
. (10)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (11)

BACC =
( TP

P + TN
N )

2
. (12)

where P is the number of positive samples, N is the number of negative samples, TP is
the number of positive samples that are correctly predicted, FP is the number of negative
samples that are incorrectly predicted, TN is the number of negative samples that are
correctly predicted and FN is the number of positive samples that are incorrectly predicted.

Considering the imbalance in testing datasets, the ACC cannot accurately evaluate
the performance of classification models. Alternatively, the F1 measure, MCC and BACC
can evaluate the overall performance of a model more appropriately. In addition, the
ROC curve and PR curve are frequently used to assess the overall performance of binary
classification models, so the AUC and AUPR are calculated to compare the performance of
classification models more directly.

4. Experimental Results and Analysis
4.1. Performance on Training Datasets through Cross-Validation

The CNN in the proposed CnnRBP model contains several hyperparameters. To tune
these hyperparameters to achieve the best prediction performance, we carried out 10-fold
cross-validation with different hyperparameters on the training datasets for three species
separately. The details are described as follows:

Firstly, the training dataset is divided into 10 independent subsets, in which the
proportion of the positive to the negative is the same as that in the whole dataset. Then,
one subset is taken as the test set, and the remaining nine subsets are taken together as the
training set. This procedure is carried out 10 times to make each subset the test set once.
Finally, for each validation, we use the SMOTE algorithm to balance the training set to train
a CnnRBP model and then perform predictions on the test set with the trained model. The
averaged prediction results for all 10-time validations are reported.

By means of 10-fold cross-validation, we empirically explore several hyperparameters
including the number of filters in the convolution layer ( f ilters = 32, 64, 128), kernel size
(k = 1, 3, 5), optimizer and learning rate (lr = 0.001, 0.002, 0.003, 0.004). As a result, the
number of filters is set to 128. The kernel sizes of the five convolution layers are set to 5, 5, 3,
3 and 1, respectively. The learning rate is set to 0.001, and the Adam optimizer is selected as
the optimizer. The prediction results with the above settings are shown in Table 2 through
10-fold cross-validation of the training datasets.

Table 2. Performance on training datasets through 10-fold cross-validation.

Dataset ACC (%) PRE (%) SEN (%) SPE (%) F1 (%) BACC (%) MCC (%) AUC (%)

Human 99.91 99.96 99.78 99.98 99.87 99.88 99.81 99.98
E. coli 99.08 99.59 97.65 99.79 98.57 98.72 97.95 99.69

Salmonella 95.34 94.09 92.34 96.86 92.85 94.60 89.79 96.72

As shown in Table 2, our models achieve AUC values over 96% on the three species
datasets. More specifically, our models achieve ACC, MCC and AUC values on the human
dataset of 99.91%, 99.81% and 99.98%, respectively. On the E. coli dataset, the values of
the ACC, MCC and AUC are 99.08%, 97.95% and 99.69%, respectively; On the Salmonella
dataset, the values of the ACC, MCC and AUC are 95.34%, 89.79% and 96.72%, respectively.
In addition, our models achieve BACC values of 99.88%, 98.72% and 94.60% on the three
species datasets, respectively. As a comparison, TriPepSVM reports BACC values of 75.7%
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on the human dataset, 84.1% on the E. coli dataset and 82.7% on the Salmonella dataset
through 10-fold cross-validation in their supplementary materials. This shows that the
proposed method can achieve a great overall performance on unbalanced datasets.

4.2. Performance Analysis with Different Feature Dimensionalities

Another key parameter is the feature dimensionality for feature selection via the
LightGBM algorithm. To find out the optimal value of the feature dimensionality, we
explored the AUC values with different dimensionalities through 10-fold cross-validation.
Firstly, we set the feature dimensionalities as 50, 500, 1000, 2000, 3000 and 5000, respectively,
and found that the optimal value should be between 1000 and 2000. Then, we varied the
values from 1000 to 2000 with a step size of 100 and recorded AUC values in all cases. At
last, the AUC values versus the feature dimensionalities are plot in Figure 4 through 10-fold
cross-validation on the training datasets of three species.

Figure 4. AUC values of different species datasets under different feature dimensions.

As shown in Figure 4, the AUC values fluctuate similarly with different feature di-
mensionalities on the three training datasets. Specifically, the optimal value is 1500 for
feature dimensionalities on the datasets of the three species. When the feature dimen-
sionality is less than 1500, the AUC values mainly increase with increases in the values of
feature dimensionality. On the contrary, the AUC values gradually decrease with feature
dimensionality over 1500.

To further explore the correlation between different species, we examined the selected
features. We found that the overlapping rate of selected features between human and
E. coli species was 28.9%. The overlapping rate of selected features between the human
and Salmonella species was also only 30.7%. In contrast, the overlapping rate of selected
features between Salmonella and E. coli species reached 45.1%. Table 3 summarizes the top
10 and last 10 selected features for different species. It can be found that humasn and E.
coli species shared 2 features in the top 10 features. Human and Salmonella species also
only shared 3 features in the top 10 features, while E. coli and Salmonella species shared
5 features. However, no two species shared features in the last 10 features. The above
results indicate that RBPs of different species have different characteristics. Meanwhile, the
RBPs of closer species have more similar characteristics. This also explains the difference in
cross-species prediction performance in Section 4.4.
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Table 3. The top and last selected features for different species.

The Top 10 Features

Human KK SS SL LLL CC GK GRG FF LL RV
E. coli RV RK KG RL AL KR SL PF RR RTK

Salmonella RK KV AL RR RV TL KR LL IK KK

The Last 10 Features

Human DAQ DAW DVV DAD DAE DAK ACQ DAR DAH DAP
E. coli NHI NHL DLN CSV NRP NRI NRL NRV NRA NRG

Salmonella DGR DGK FW DGE DGD DGQ DGN DGM QHL TF

4.3. Comparison with Other RBP Prediction Methods on Independent Validation Datasets

To further evaluate the performance of the proposed CnnRBP method, we com-
pare our method with existing RBP prediction methods, including SPOT-Seq-RNA [14],
RNAPred [10], RBPPred [13], Deep-RBPPred [21], TriPepSVM [15] and iDRBP_MMC [24].
Among the six methods, TriPepSVM is an SVM model based on the same short sequence
motifs as ours. Deep-RBPPred is a CNN model with features derived from five physico-
chemical properties. iDRBP_MMC is a multi-label learning model with a CNN based on
PSSMs and structural motifs. For each species, we train a CnnRBP model on the training
dataset with the hyperparameters optimized by the 10-fold cross-validation and then per-
form predictions on the independent validation dataset. For SPOT-Seq-RNA, RNAPred,
RBPPred and TriPepSVM, their evaluation data are cited from the paper that proposed
the method TriPepSVM. For Deep-RBPPred, we executed the publicly released source
code to make an evaluation on the independent validation dataset. For iDRBP_MMC, we
fed testing samples into its web server and then calculated evaluation indexes from the
prediction results. The evaluation indexes for all methods are shown in Table 4.

Table 4. Comparison with existing RBP prediction methods on independent validation datasets.

Predictor ACC (%) PRE (%) SEN (%) SPE (%) F1 (%) BACC (%) MCC AUC

Human dataset

SPOT-Seq-Pred 85.70 38.89 23.20 94.52 29.07 58.86 0.22 -
RNAPred 49.67 18.74 87.57 44.09 30.88 65.83 0.22 0.72
RBPPred 65.63 24.08 75.69 64.12 36.53 69.91 0.27 0.70

Deep-RBPPred 30.25 14.73 90.61 21.18 25.35 55.90 0.10 0.69
TriPepSVM 88.95 58.75 51.93 94.45 55.13 73.23 0.49 0.83

iDRBP_MMC 89.29 56.57 78.45 90.93 65.73 84.69 0.61 0.92
CnnRBP * 92.64 72.07 71.27 95.85 70.67 83.56 0.67 0.91

E. coli dataset

SPOT-Seq-Pred 87.28 100.00 29.03 100.00 45.00 64.52 0.50 -
RNAPred 66.67 32.00 80.00 63.83 45.71 71.91 0.34 0.75
RBPPred 80.92 47.73 67.74 83.80 56.00 75.77 0.45 0.77

Deep-RBPPred 61.02 20.71 78.85 58.58 32.80 68.72 0.24 0.72
TriPepSVM 92.34 69.39 65.38 96.04 67.32 80.71 0.63 0.92

iDRBP_MMC 92.57 75.00 57.00 97.36 64.77 77.18 0.62 0.90
CnnRBP * 93.04 69.64 75.00 95.51 72.22 85.26 0.68 0.96

Salmonella dataset

SPOT-Seq-Pred 92.11 100.00 34.15 100.00 51.43 67.31 0.56 -
RNAPred 49.18 17.25 86.27 44.18 28.76 65.23 0.20 0.79
RBPPred 81.44 35.11 63.46 83.91 45.21 73.68 0.37 0.81

Deep-RBPPred 60.12 27.38 74.19 57.04 40.00 65.62 0.24 0.70
TriPepSVM 90.17 85.00 54.83 97.89 66.66 76.36 0.63 0.86

iDRBP_MMC 87.86 67.85 61.29 93.66 64.41 77.48 0.58 0.90
CnnRBP * 92.49 84.62 70.97 97.18 77.19 84.08 0.73 0.91

* Training one model per species.
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From the results in Table 4, it can be found that our method CnnRBP achieves the
best overall prediction performance among all methods. Specifically, on the human dataset
we can find that two deep-learning-based methods (i.e., CnnRBP and iDRBP_MMC) are
significantly superior compared to other shallow methods, according to the overall per-
formance indexes, such as the F1 measure, BACC, MCC and AUC. Among the shallow
methods, TriPepSVM performs best with an AUC of 0.83, MCC of 0.49 and BACC of
73.23%. RNAPred and SPOT-Seq-Pred appear to have a large disparity in SEN and SPE,
leading to a poor performance in BACC and MCC, which shows that they cannot deal
with the class imbalance problem. In the three deep-learning-based methods, our method
CnnRBP performs slightly worse than iDRBP_MMC in the AUC and BACC by about 1%.
However, CnnRBP achieves a significantly better performance than iDRBP_MMC in the
other two overall indexes of the F1 measure and MCC with improvements of 4.9% and 6%.
Meanwhile, CnnRBP significantly outperforms iDRBP_MMC in the ACC, PRE and SPE. It
is worth noting that CnnRBP only makes use of statistical information directly from amino
acid sequences, while iDRBP_MMC takes as input more complicated PSSMs obtained via
sequence alignments. Another deep-learning-based method (i.e., Deep-RBPPred) performs
poorly, maybe due to the feature representation being too simple.

On the E. coli dataset, our method performs best among all methods with significant
improvements in the ACC and all overall indexes, such as the F1 measure, BACC, MCC
and AUC. Compared with another deep model, iDRBP_MMC, our method achieves im-
provements of 6%, 6% and 8.08% in the AUC, MCC and BACC, respectively. It can be
found that our method performs slightly worse than iDRBP_MCC in SPE but achieves a
significantly better performance in SEN, which shows that our method has advantages
over iDRBP_MMC in identifying RBPs. On this dataset, the shallow method TriPepSVM
performs similarly or even better than iDRBP_MMC, which shows the effectiveness of
short motifs as protein representation for RBP detection.

On the Salmonella dataset, our method performs best in almost all indexes. Specifically,
our method achieves an AUC of 0.91, MCC of 0.73, F1 measure of 77.19% and BACC of
84.08%, respectively. Compared with iDRBP_MMC, our method makes improvements in
all indexes. Our method outperforms iDRBP_MMC with improvements of 12.78%, 6.6%,
15% and 1% in the F1 measure, BACC, MCC, and AUC, respectively. Compared with
TriPepSVM, our method achieves significant improvements in the F1 measure, BACC,
MCC and AUC by 10.53%, 7.72%, 10% and 5%, respectively. These results show that the
prediction performance of our method is better than other existing methods with the help
of the deep learning framework.

To compare the performances of different methods more intuitively, the ROC curves
and PR curves are drawn in Figures 5–7 for the compared methods on the independent
validation datasets of the three species.

As shown in Figure 5, the two deep models, i.e., CnnRBP and iDRBP_MMC, are
close to each other for both the ROC curves and PR curves on the human dataset, signif-
icantly outperforming other shallow models. Furthermore, based on the same features,
the proposed CnnRBP is superior to TriPepSVM, which shows that the deep model can
achieve a better performance than the shallow model. Deep-RBPPred and the other three
shallow models show poor performances on this dataset, probably due to weak feature
representations.

As shown in Figures 6 and 7, a similar conclusion to the one above can be found,
which is that the deep models outperform the shallow models. Specifically, our method
outperforms another deep model (i.e., iDRBP_MMC) significantly on these two datasets,
indicating the advantages of species-specific models. Our method trained species-specific
models for different species, which took into account the diversity of species.
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Figure 5. Comparison of AUPR and AUC values of the proposed CnnRBP with other methods on
human independent validation dataset.
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Figure 6. Comparison of AUPR and AUC values of the proposed CnnRBP with other methods on E.
coli independent validation dataset.
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Figure 7. Comparison of AUPR and AUC values of the proposed CnnRBP with other methods on
Salmonella independent validation dataset.

In conclusion, benefiting from the strong representation ability of deep learning, our
method achieved a significantly greater performance improvement compared to the shallow
models. Meanwhile, our method was quite competitive when compared to the other deep
model, despite using simpler features.
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4.4. Cross-Species Prediction

In this section, we explore the cross-species performance of our method experimentally.
We trained a model on the training dataset of one species and then evaluated it on the
independent test datasets of all three species. The results are shown in Figure 8. It can be
found that the models trained on E. coli and Salmonella datasets achieved MCC values of
0.50 and 0.52, respectively, when testing on the human test dataset, which shows a much
worse performance than that trained on the human dataset with an MCC value of 0.67.
Moreover, when testing on E. coli and Salmonella testing datasets, the model trained on the
human dataset performed poorly with MCC values of 0.38 and 0.45, respectively. However,
the models trained on the E. coli and Salmonella datasets had similar performances on all
testing datasets of the three species. The AUCs of cross-species prediction also show that
the models trained on the E. coli and Salmonella datasets had closer AUCs. It is worth
noting that the model trained on E. coli had a slightly higher MCC on Salmonella than
E. coli. However, the model trained on E. coli still had a significantly higher AUC on E.
coli than Salmonella. These results demonstrate that the proposed CnnRBP method has
a robust performance for cross-species prediction between close species, i.e., E. coli and
Salmonella. When two species are quite different, the performance of the model decrease
significantly, which suggests the necessity of a species-specific prediction model.
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Figure 8. Performance on cross-species prediction: (a) MCC; (b) AUC.

5. Conclusions

The accurate prediction of RBPs based on sequences has been a challenging problem.
In this paper, we have proposed a deep model (i.e., CnnRBP) based on short sequence
motifs to improve the performance of RBP prediction. Cross-validation and independent
validation tests on the datasets of three species demonstrated the effectiveness of our
method and its superiority over existing shallow and deep learning based methods. The
short motifs are easily computed and discriminative, as shown by experimental results. The
LightGBM algorithm was utilized to select important features and the convolution neural
network found relations among features, which contributes to performance improvements
for our RBP prediction method. Our method can help to quickly find candidate RBPs for
further verification through biological experiments.

In summary, experimental results on the benchmark datasets show that our method
achieved a fairly competitive prediction performance. Compared with other deep models,
the features used by our method were computationally efficient. In addition, species-
specific predictions can capture unique features of different species. However, our method
still has some disadvantages. When the protein is too short, the statistical features may
be too sparse to make correct decisions. The CNN captures local features but cannot find
out the context information. The contributions are summarized below: We proposed a
novel species-specific RBP predictor. We also verified that the discriminant features for
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RBP prediction differed between species. In addition, we introduced LightGBM to select
optimal features.

Although deep learning has been applied to improve the performance of species-
specific RBP prediction in this paper, there is still room for further improvement. In some
species, such as E.coli and Salmonella, the number of RBP samples is relatively small, which
limits the advantages of deep learning. Next, we will further explore transfer learning
to improve the performance for species with small RBP samples by transferring from the
models trained on the datasets of species with large RBP samples.
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