
Citation: Bottrighi, A.; Terenziani, P.

META-GLARE: A Computer-

Interpretable Guideline System Shell.

Appl. Sci. 2023, 13, 8164. https://

doi.org/10.3390/app13148164

Academic Editor: Alexander N.

Pisarchik

Received: 5 June 2023

Revised: 30 June 2023

Accepted: 9 July 2023

Published: 13 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

META-GLARE: A Computer-Interpretable Guideline
System Shell
Alessio Bottrighi 1,2,* and Paolo Terenziani 1,2

1 Computer Science Institute, DiSIT, Università del Piemonte Orientale, 15121 Alessandria, Italy;
paolo.terenziani@uniupo.it

2 Laboratorio Integrato di Intelligenza Artificiale e Informatica in Medicina DAIRI, Azienda Ospedaliera SS.
Antonio e Biagio e Cesare Arrigo, Alessandria e DiSIT—Università del Piemonte Orientale,
15121 Alessandria, Italy

* Correspondence: alessio.bottrighi@uniupo.it

Abstract: Computer-interpretable Guideline (CIG) systems are important tools for ensuring health-
care practice quality and standardization. They usually provide a tool to acquire CIGs, and one to
execute them on specific patients. Current CIG systems rely on their own formalism to represent
clinical guidelines, so moving to new phenomena/domains may require substantial extensions. We
propose an innovative approach, providing a “shell” that facilitates system designers to define new
CIG systems (or to update an existing one) through the definition of a new CIG representation
formalism, based on the Task-Network model. We based it on our previous work on META-GLARE,
and we extend it with a general execution tool, able to operate on any CIG representation formalism
acquired through the META-GLARE acquisition tool. Developed with modularity and composi-
tionality principles, the tool exploits an open library of basic execution methods. It offers a general
execution mechanism supporting various CIG formalisms. We successfully applied our approach
to three practical case studies. We have identified a reference CIG formalism (the one currently
supported by the META-GLARE library) and compared its expressiveness to benchmark approaches.
META-GLARE constitutes the first shell in the literature to facilitate the (formalism-based) design
and development of CIG systems, considering both acquisition and execution.

Keywords: decision support systems; computer-interpretable guidelines; knowledge representation
formalisms for clinical guideline; shell to support fast design and prototyping

1. Introduction

Clinical practice guidelines (CPGs) are defined as “systematically developed state-
ments to assist practitioner and patient decisions about appropriate healthcare for spe-
cific clinical circumstances” [1]. They encode large pieces of medical knowledge and
are introduced to optimize the cost of healthcare while improving its quality by putting
evidence-based medicine into practice. Starting from the 1980s, the medical scientific
community has produced thousands of CPGs. For instance, the Guideline International
Network (http://www.g-i-n.net, accessed on 30 May 2023) provides a library consisting
of more than 6500 CPGs and includes more than one hundred organizations all over the
world. Computer programs to acquire, represent, and apply CPGs in the form of computer-
interpretable guidelines (CIGs) have been introduced as a tool to facilitate the adoption of
CPG in clinical practice, providing several advantages (e.g., automatic connection to the
patient databases, and decision-making support). Many different CIG systems have been
developed to this end (consider, e.g., [2–5]). The paper [6] provides a comparison of several
of such systems (i.e., Asbru, EON, GLIF, GUIDE, PROforma, and PRODIGY) and has also
been extended [7] to consider GLARE and GPROVE.

Such works demonstrate that most of the CIG approaches in the literature present
several common aspects. Considering the CIG representation formalism, the Task-Network

Appl. Sci. 2023, 13, 8164. https://doi.org/10.3390/app13148164 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148164
https://doi.org/10.3390/app13148164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9291-128X
http://www.g-i-n.net
https://doi.org/10.3390/app13148164
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148164?type=check_update&version=1


Appl. Sci. 2023, 13, 8164 2 of 36

model (TNM) has been adopted by most approaches. TNM allows one to model the control
flow of CIGs as a (hierarchical) graph (network) in which nodes represent tasks/actions and
arcs represents their flow of control. In turn, nodes and arcs in the TNM are described by a
set of properties, or attributes. From the architectural viewpoint, CIG systems are usually
characterized by two main modules: an acquisition tool, supporting the acquisition (in the
system formalism) of CIGs for the treatment of a disease, and an execution tool, which takes
a CIG (e.g., the CIG for asthma) and a specific patient as inputs and supports the execution
of the CIG on the patient. Each CIG system has its own representation formalism, and
both its acquisition and its execution tools are specifically geared towards the treatment
of such a formalism (see the surveys [6,8] and the description of the execution engines of
different CIG systems in Section 7.1 of this paper).

Such a general approach has a main drawback: whenever the CIG formalism needs to
be updated, the whole system must be revised. The software code of both the acquisition
and the execution tools must be analyzed to find and revise the pieces of code dealing
with the updated part of the formalism. Due to the dimension and complexity of real CIG
systems, such update operations may be quite complex and time-consuming (at least, this
is our long-term experience with the GLARE–-Guideline Acquisition, Representation and
Execution—system [9]). In addition, building a new system based on a different formalism
is even more time-consuming. In this paper, we overcome such a general drawback by
proposing a new methodology and a new architecture to support it (called META-GLARE),
to facilitate the design and the fast prototyping of new CIG systems, or the update of
existing ones, through the definition of a new CIG representation formalism, based on the
Task-Network model.

1.1. The Importance of Fast Design and Prototyping of CIG Systems

Notably, especially in the research field, an approach supporting fast design and
prototyping when changing a CIG formalism, or proposing a new CIG formalism, can
provide crucial advantages, at least in three different types of situations.

First, when approaching new domains or phenomena, the formalism (and conse-
quently the acquisition and execution tools) may need to be extended. Indeed, the history
of many CIG systems in the literature shows the need to evolve from the initial version,
extend the initial formalism, and/or overcome some of its limitations. For instance, the first
version of GLIF (GuideLine Interchange Format) was proposed by a consortium involving
Columbia University, Harvard University, and Stanford University in 1998 [10]. A second
version, called GLIF2, appeared in 1999 [11], enriching GLIF with an execution engine. To
overcome some of the limitations of the expressiveness of GLIF2 formalism, including the
lack of a specification for the logical expressions, and the limited set of decision models, a
third version (GLIF3) was proposed in 2004 [12]. Similarly, Asbru has been continuously
developed, providing different versions (the last one we are aware of is version 7.3) [13].
The same has happened with GLARE. In the original version [14], GLARE supported only
“score-based” decisions, while “Boolean” decisions were only introduced at a later stage.
More recently, when facing guidelines about alcohol-related disorders, we have needed to
tackle the issue that different healthcare agents need to be involved, so that the description
of each action had to be enriched with different attributes, to model, e.g., the role and
qualification required to be the agent in charge of such an action [15]. Recently [16], we
have proposed further constructs, such as the possibility of representing complex action
synchronizations (e.g., n actions will start when m of their predecessors’ end) taken from
workflow patterns [17].

Second, to improve the acceptance and the use of CIG systems (and, more generally,
computer decision support systems) by physicians, goals like formalism suitability and
personalization are of primary importance. When acquiring a new CIG, suitability, intended
as the “intuitive notion of expressiveness which takes the modelling effort into account” [18], is of
primary importance. Notably, there is a trade-off between the expressiveness of a formalism
and its suitability: if the language is not expressive enough, the domain experts cannot



Appl. Sci. 2023, 13, 8164 3 of 36

model the desired phenomena (or have to devolve a lot of efforts to find “tricky ways” to
model them), but if it is too rich, they have to consider and select among many different
(and mostly not relevant for modeling the specific phenomena) constructs, thus devolving
a lot of unnecessary efforts [19].

A very related issue is (formalism) personalization: physicians really appreciate the
possibility of “representing phenomena as they want”, so the possibility of easily prototyp-
ing new systems based on “personalized” formalism provides crucial advantages in the
CIG context.

Last but not least, although the primary goal of most CIG systems (including GLARE) is
decision support for physicians, CIG can also be considered for other tasks (e.g., education—see
Experiment 3 in Section 6; a posteriori cost/quality evaluation of patient treatment performed
at the organization level, etc.), requiring the representation of different aspects (and for which
part of the usual description of CIGs may be irrelevant). In addition, in such cases, the
possibility of easily moving to a different formalism can provide crucial advantages.

1.2. An Approach Supporting Fast Design and Prototyping

New CIG methodologies to support the design/update of CIG systems, achieving fast
prototyping, have been already devised in the area of Artificial Intelligence in Medicine.
A major step forward toward such a goal has been proposed by the Protégé [20] and
DeGeL [21] approaches. Despite relevant differences, both Protégé and DeGeL are char-
acterized by the fact that they support the acquisition and management of more than one
ontology. Such ontologies may have different purposes. Specifically, they can be used to
model CIG formalisms. In such a way, Protégé and DeGeL support the introduction of a
new CIG formalism, or the modification of an existing one, by providing a tool to acquire a
new ontology (in our context, a new CIG formalism). Notably, whenever a new ontology
(CIG formalism) is acquired, Protégé and DeGeL automatically provide the tool to acquire
specific CIG instances formalized in the given ontology (CIG formalism).

As a consequence, if a system designer wants to use Protégé or DeGeL to build a new
CIG system (based on a new formalism), or to change the formalism of an existing system,
s/he can take advantage of the tool to acquire a new ontology to define the new CIG
formalism, and will have the tool to acquire the CIGs described using the new formalism
“for free” (i.e., with no programming effort). As a consequence, changing the CIG formalism
is facilitated. However, while both Protégé and DeGeL support the acquisition phase, they
do not support execution, in the sense that when moving to a new CIG formalism, the
system designers will still have to define/revise the execution tool. Producing a new execution
tool (or modifying an existing one) in response to a change in the CIG formalism is, in
general, complex and time-consuming.

To overcome such a limitation, we move the state of the art a further step forward
by proposing META-GLARE, a wholly innovative approach to CIGs based on the notion
of meta-programming. META-GLARE can be seen as a substantial generalization of
the support provided by Protégé and DeGeL to change the CIG formalism, since it also
considers the issues related to the execution tools. META-GLARE is suited to cover CIG
formalisms based on the general TNM model and following the general assumptions
discussed in Section 2. Basically, META-GLARE can be seen as the first “shell” to facilitate
the design/revision of GIG systems, considering both acquisition and execution.

First of all, META-GLARE provides a tool to acquire such CIG formalisms, and to
explicitly represent and store them. Given any acquired formalism F, META-GLARE
can automatically produce the corresponding tool to acquire the CIGs expressed in F.
However, in META-GLARE, the tool to execute CIGs (expressed in F) is also provided “for
free”. As we will see, in summary, such a result has been achieved by making both the
acquisition and the execution tools of META-GLARE parametric with respect to the TNM-
Based CIG formalism. Thus, there is no need to modify them when the CIG formalism is
changed, except in exceptional cases (see the discussion in Section 9). As a consequence,
META-GLARE achieves fast design and prototyping, both when extending/modifying a



Appl. Sci. 2023, 13, 8164 4 of 36

system (i.e., the system formalism) and when designing and developing a new system (i.e.,
system formalism).

1.3. A Glimpse into the META-GLARE Methodology

The methodology we propose to achieve such a goal is distinguished between two
main parts of the system:

(1) A part to acquire CIG formalisms. It consists of a module that is similar to the ontology
acquisition tools in Protégé and DeGeL, and supports users/system designers in the
acquisition of a new formalism, and in its storage (in XML format) in a dedicated and
structured library.

(2) A part to interpret CIGs. Such a part consists of two main modules: (2.1) a CIG-
acquisition module, which supports users in the acquisition of a specific CIG (e.g., a
CIG for the treatment of asthma) based on the formalism when it is given a formalism
(which is an input for the module); (2.2) a CIG-execution module which supports the
execution of the CIG on the patient when it is given a formalism as input, a specific
CIG in the formalism (e.g., the CIG for asthma), and the data of a patient (e.g., John).

In our previous publications, we have already described META-GLARE modules
(1) and (2.1) [16,22]. On the other hand, the definition of a module like 2.2 is totally new
in the CIG context and is the focus of this paper. The basic feature of the CIG execution
module, which makes it unique in the CIG literature, is that it is parametric with respect to
the CIG formalism. It may operate on any CIG formalism which can be acquired through the
META-GLARE CIG formalism acquisition module. The methodology we propose to devise
such a parametric executor is to enforce strict modularity and compositionality in our
approach. The CIG executor exploits the commonalities between all the CIG formalisms
managed by META-GLARE, i.e., the fact that in all such formalisms, a CIG is a graph of nodes
(actions) and arcs and that each node and arc is described in terms of a set of attributes. Thus,
the core idea is that the execution engine navigates the graph (nodes and arcs), executing
the control attributes for each traversed entity (node or arc) composing it. Importantly, as
we will see later, not all attributes of the nodes/arcs have an impact on the execution of a
CIG (e.g., the attribute “name” contains just a text string and does not affect execution. We
term the attributes that affect execution “control” attributes. In turn, each attribute is typed
and, for each type of attribute, the library (built at the formalism acquisition time) contains
the methods to execute it. Such methods are invoked by the executor. Additionally, we also
propose a library of basic types of attributes, which can be exploited when defining a new
CIG system through META-GLARE.

Thanks to such an innovative methodology, the META-GLARE execution module takes
CIG formalisms as input, which has the major impact that, in case the input formalism
changes, it still works on it without requiring any modification. In such a way, META-
GLARE grants fast design and prototyping whenever the treatment of a new domain
requires an extension of the given CIG formalism or the definition of a new one.

1.4. Organization and Main Contributions of the Paper

In this paper, we focus on META-GLARE, the first shell in the literature to facilitate
the formalism-based design and development of CIG systems, considering both acquisition
and execution. Specifically, in this paper, we focus on the execution engine which we have
not detailed in any previous publication. However, to make the paper understandable and
self-complete, we propose a background section (Section 2), in which we briefly overview
our previous work on this topic (see [16] for more details). Sections 3–5 contain the main
original and new “technical” contributions of the paper:

• Library of control attributes/methods: a rich library of control attribute types (i.e.,
the basic components of the META-GLARE execution engine; Section 3). A main
contribution of our paper is the detailed description of a library of basic methods
(associated with constructs of CIG formalisms) invoked by the general execution
engine. Such a contribution is proposed in Section 3.



Appl. Sci. 2023, 13, 8164 5 of 36

• Execution engine: the algorithms constituting the basis of the META-GLARE execu-
tion engine (Section 4). The preliminary execution algorithm described in Section 3
of [16] (briefly described in Section 2.3 of our paper) is not very detailed and, more
importantly, is very different from the detailed algorithms we now propose in Section 4
(e.g., it is based on the adoption of an execution tree, and such a data structure is not
used any more in the algorithms presented in this paper).

• Evaluation of expressiveness: an evaluation of the expressiveness of our current
formalism (i.e., the more extended formalism supported by our current library) using
the benchmark used in [23] to compare four outstanding research approaches in the
CIG literature (Section 5). This is one of the most significant contributions of our paper
and is entirely new.

Section 6 contains some experiments we ran to evaluate META-GLARE. Section 7
contains related works and comparisons, Section 8 describes our future works, and Section 9
presents conclusions.

2. Background

To make the paper self-contained, in this paper, we briefly overview our previous
work about META-GLARE. In Section 2.1, we sketch META-GLARE’s overall architecture.
In Section 2.2, we describe META-GLARE’s “meta-formalism”. Finally, in Section 2.3, we
briefly discuss the preliminary previous work that we have devoted to the definition of the
execution tool in [16,24].

2.1. META-GLARE Architecture

META-GLARE is based on the general TNM model. Specifically, it supports any CIG
representation formalism based on the main features (1) and (2) below:

(1) CIGs are modeled by hierarchical graphs, composed of nodes and arcs.

Notably, in META-GLARE, any type of nodes and arcs can be used, provided that

(2) each type of node and arc is defined as a list of attributes.

Additionally, META-GLARE does not impose any constraint on the types of attributes
that can be introduced in a specific formalism. For the sake of clarity, however, it dif-
ferentiates attributes into two main categories: the attributes that affect execution (e.g.,
decision attributes), termed control attributes, and the attributes that do not affect it, termed
non-control attributes (e.g., textual attributes).

Thus, the META-GLARE interpreter (CIG acquisition and execution tools) only assumes
that a CIG is a hierarchical graph, and it is parametrized on the types of nodes and arcs,
and on the types of attributes. Regarding execution, META-GLARE assumes that the
execution of a CIG can be decomposed into the execution of its nodes (in the order defined
by the control arcs) and arcs. In turn, each node/arc is executed by interpreting, in sequence,
all the attributes describing it. To support such a general interpretation mechanism, each
attribute type must specify the methods used to acquire and visualize it and, in the case of control
attributes, also the methods used to execute it. Such methods are then automatically applied
when interpreting a specific CIG. For example, when acquiring a CIG in a given CIG
formalism, the META-GLARE acquisition tool acquires the hierarchical graph representing
it and applies the methods specified in each attribute type definition in order to acquire the
attributes defining each node and arc in the graph. Notably, visualization, acquisition, and
execution methods in META-GLARE can be parametrized along two different dimensions:
tasks and user type. Such a feature supports task/user-dependent methods (e.g., patients
may have different visualization of CIGs with respect to physicians). In the following,
we assume the “standard” task (i.e., decision support) and the “standard” users (i.e.,
physicians). The “testing-for-education” task will be briefly considered in Experiment 3,
Section 6. Figure 1 (adapted from [16]) represents a simplified version of the META-GLARE
architecture (for a more extensive description, see [16]), with a specific focus only on the
execution components. The definition of a new CIG formalism can be provided by system



Appl. Sci. 2023, 13, 8164 6 of 36

designers through the DEFINITION_EDITOR, which supports them in the definition of
its (i) attribute types, (ii) node/arc types, and possibly (iii) graph constraints. The output
of the DEFINITION_EDITOR is an internal XML representation, which is stored in the
system’s libraries. The HG_INTERPRETER (HG stands for “hierarchical graph”) consists of
two components, the HG_ACQUISITION module and the HG_EXECUTION module, and
manages the generalities of TNM models. In particular, META-GLARE can deal with all the
features which are common to all the formalisms. META-GLARE has been implemented
by Java Applets. As a consequence, META-GLARE is a cross-platform application. It can
be embedded into a web page and can be executed through web browsers without any
installation phase. Libraries (see Figure 1) are implemented in PostgreSQL.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 37 
 

supports task/user-dependent methods (e.g., patients may have different visualization of 
CIGs with respect to physicians). In the following, we assume the “standard” task (i.e., 
decision support) and the “standard” users (i.e., physicians). The “testing-for-education” 
task will be briefly considered in Experiment 3, Section 6. Figure 1 (adapted from [16]) 
represents a simplified version of the META-GLARE architecture (for a more extensive 
description, see [16]), with a specific focus only on the execution components. The 
definition of a new CIG formalism can be provided by system designers through the 
DEFINITION_EDITOR, which supports them in the definition of its (i) attribute types, (ii) 
node/arc types, and possibly (iii) graph constraints. The output of the 
DEFINITION_EDITOR is an internal XML representation, which is stored in the system�s 
libraries. The HG_INTERPRETER (HG stands for “hierarchical graph”) consists of two 
components, the HG_ACQUISITION module and the HG_EXECUTION module, and 
manages the generalities of TNM models. In particular, META-GLARE can deal with all 
the features which are common to all the formalisms. META-GLARE has been 
implemented by Java Applets. As a consequence, META-GLARE is a cross-platform 
application. It can be embedded into a web page and can be executed through web 
browsers without any installation phase. Libraries (see Figure 1) are implemented in 
PostgreSQL. 

 
Figure 1. The architecture of META-GLARE. HG stands for “Hierarchical Graph” (adapted from 
[16]). 

In this paper, we focus on the META-GLARE execution engine, i.e., on the description 
of the control attribute types (i.e., the types of attributes that affect execution; see Section 3) 
and on the HG_EXECUTION module (see Section 4). 

Notably, as graphically shown in Figure 2, META-GLARE supports three phases in 
the CIG system life cycle: 
(i) the acquisition of a CIG formalism (see Figure 2A). In such a phase, the system 

designer, possibly together with some domain experts (in case they want to 
“personalize” the CIG formalism; see the discussion in the introduction), can take 
advantage of the DEFINITION_EDITOR module to define a new formalism (e.g., the 
GLARE formalism—see Experiment 1 in Section 6). 
Once a specific formalism has been acquired, META-GLARE provides the support to 

operate as in the case of “standard” CIG systems, supporting phases (ii) and (iii). 
(ii) the acquisition of a specific CIG, using the specific CIG formalism (see Figure 2B). In 

such a phase, knowledge engineers, in cooperation with domain experts, can take 
advantage of the HG_ACQUISITION module to acquire a specific CIG (e.g., to 
acquire the CIG about an ischemic stroke using GLARE formalism—see again 
Experiment 1). 

Figure 1. The architecture of META-GLARE. HG stands for “Hierarchical Graph” (adapted from [16]).

In this paper, we focus on the META-GLARE execution engine, i.e., on the description
of the control attribute types (i.e., the types of attributes that affect execution; see Section 3)
and on the HG_EXECUTION module (see Section 4).

Notably, as graphically shown in Figure 2, META-GLARE supports three phases in
the CIG system life cycle:

(i) the acquisition of a CIG formalism (see Figure 2A). In such a phase, the system
designer, possibly together with some domain experts (in case they want to “person-
alize” the CIG formalism; see the discussion in the introduction), can take advantage
of the DEFINITION_EDITOR module to define a new formalism (e.g., the GLARE
formalism—see Experiment 1 in Section 6).

Once a specific formalism has been acquired, META-GLARE provides the support to
operate as in the case of “standard” CIG systems, supporting phases (ii) and (iii).

(ii) the acquisition of a specific CIG, using the specific CIG formalism (see Figure 2B). In
such a phase, knowledge engineers, in cooperation with domain experts, can take
advantage of the HG_ACQUISITION module to acquire a specific CIG (e.g., to acquire
the CIG about an ischemic stroke using GLARE formalism—see again Experiment 1).

(iii) the execution of a specific CIG on a specific patient (see Figure 2C). In such a phase,
a physician (or a team of physicians) can take advantage of the HG_EXECUTION
module to execute a specific CIG (acquired in a specific formalism) on a specific patient
(e.g., to execute the ischemic stroke CIG on a specific patient—see Experiment 1).

Several experiments have been drawn to test the three phases. Three of them have
been reported in Section 6.



Appl. Sci. 2023, 13, 8164 7 of 36

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 37 
 

(iii) the execution of a specific CIG on a specific patient (see Figure 2C). In such a phase, 
a physician (or a team of physicians) can take advantage of the HG_EXECUTION 
module to execute a specific CIG (acquired in a specific formalism) on a specific 
patient (e.g., to execute the ischemic stroke CIG on a specific patient—see Experiment 
1). 

 
Figure 2. The META-GLARE support to CIG system life cycle: (A) formalism acquisition, (B) CIG 
acquisition, and (C) CIG execution. 

Several experiments have been drawn to test the three phases. Three of them have 
been reported in Section 6. 

2.2. A “Meta-Formalism” for CIGs 
Using META-GLARE, system-designers can design their own CIG formalism starting 

from a very general “meta”-formalism (since it is the formalism that we use to define the 
supported CIG formalisms). In the following, we briefly sketch it (see [16] for more 
details). 

In our approach, we consider TNM-based CIG formalisms (see Section 1): CIGs are 
represented by hierarchical graphs consisting of nodes and arcs. Each possible CIG 
representation formalism is characterized by the definition of its types of nodes and arcs 
(see [16]). In turn, nodes and arcs are characterized by the attributes describing them. In 
the rest of the paper, we focus only on control attributes as non-control attributes do not 
affect execution and thus are out of the scope of this paper. 

  

Figure 2. The META-GLARE support to CIG system life cycle: (A) formalism acquisition, (B) CIG
acquisition, and (C) CIG execution.

2.2. A “Meta-Formalism” for CIGs

Using META-GLARE, system-designers can design their own CIG formalism starting
from a very general “meta”-formalism (since it is the formalism that we use to define the
supported CIG formalisms). In the following, we briefly sketch it (see [16] for more details).

In our approach, we consider TNM-based CIG formalisms (see Section 1): CIGs
are represented by hierarchical graphs consisting of nodes and arcs. Each possible CIG
representation formalism is characterized by the definition of its types of nodes and arcs
(see [16]). In turn, nodes and arcs are characterized by the attributes describing them. In
the rest of the paper, we focus only on control attributes as non-control attributes do not
affect execution and thus are out of the scope of this paper.

2.2.1. Node Types

Each node type represents a general class of actions/tasks (e.g., therapeutic decision),
which is characterized by an ordered list of typed attributes.

In particular, the description of node types must include the following attributes:

• the name attribute, to specify the name of the node type;
• the visualization attribute, to specify the icon graphically representing it;
• the specification of whether the node is atomic (not decomposable) or composed.

Besides such compulsory attributes, an ordered list of typed attributes can be added.
Notice that, in a node, more than one control attribute can be specified.



Appl. Sci. 2023, 13, 8164 8 of 36

2.2.2. Arc Types

Arc types are defined similarly to node types. In our approach, we have two kinds
of arc types: control arc types and non-control arc types. Only control arcs affect the CIG
execution flow and will be considered in the following.

In META-GLARE, each arc type is described by an ordered list of compulsory or
optional attributes. In particular, an arc type has:

• a name attribute, to specify the name of the arc type;
• the visualization attribute, to specify how it must be represented;
• a Boolean attribute, which is true if the arc is oriented, false otherwise;
• an ariety attribute, which specifies the number of nodes connected by such an arc; the

ariety is a pair (n1:n2) specifying the number of input (n1) and output (n2) nodes for
the arc type. The special value “N” can be used to represent a variable number of
nodes n (N stands for a value n ≥ 1).

• a typing attribute which specifies the types of the nodes that may be connected by
such an arc type. The specifications depend on whether the arc is oriented or not, and
on the ariety of the arc.

• A control attribute, consisting of a method that specifies how the arc behaves at
execution time.

Other optional attributes are possible (e.g., cost, textual description). In particular, a
specific type of optional attribute plays a fundamental role during execution: the attribute
temporal constraint. Such an attribute contains the temporal constraints between the start-
ing and ending nodes of the arc. More specifically, bound on differences constraints [25]
between pairs of endpoints (i.e., starting and/or ending times of nodes) are modelled in
META-GLARE, thus supporting a wide range of both qualitative and quantitative temporal
constraints. The description of our formalism to deal with temporal constraints is out of
the scope of this paper and can be found in [26].

2.2.3. Attribute Types

In META-GLARE, attribute types are defined using the DEFINITION_EDITOR ac-
cording to the XML document and are stored as XML files in the library (see Figure 1).
Therefore, attribute types can be re-used in different contexts. For example, the attribute
type booleanCondition can be used to define both pre-conditions and post-conditions of
a node type, or in two different node-type definitions (e.g., to define different types of
decision nodes). In addition, it can obviously be re-used in different formalisms.

In META-GLARE, each attribute type is characterized by a set of compulsory features
defining its name, its properties, and its interpretation. Examples of properties are the mode
(control vs. non-control) and the syntax which describes the BNF of the possible values of
the attribute. The feature “OntologyType” is used to support semantic interoperability, giving
the possibility of linking attribute values to ontological objects. Notably, in META-GLARE,
different ontologies may be used in the same formalism (e.g., SNOMED CT [27] for findings
and actions, ATC for drugs [28]).

The feature interpretation is very important: it contains the pointers to the methods to
be adopted by the HG_INTERPRETER in order to acquire, store, and execute any instance
of such an attribute type.

In the following, we focus on a few attribute types which are particularly relevant to
execution, i.e., the attributes used to define composite nodes (i.e., nesting of actions in CIG)
and the ones used to model cycles of actions.

The attribute type is composed of a control attribute and allows one to specify and store
the sub-graph which describes a composite node. This sub-graph is acquired graphically
via the HG_ACQUISTION module. In particular, sub-graphs are stored as sets of nodes
and arcs in the feature body.

In META-GLARE, we propose three different types of control attributes to model
cycles: cycleBooleanCondition, cycleNumberRepetition (n), and dynamicCycleNumberRepetition.
In cycleBooleanCondition a Boolean condition is used. In the cycleNumberRepetition (n), the



Appl. Sci. 2023, 13, 8164 9 of 36

parameter n specifies the number of repetitions (e.g., six repetitions). In dynamicCycleNum-
berRepetition, the number of repetitions has to be dynamically evaluated during the CIG’s
execution on the basis of a set of patient’s parameters. The feature body of cyclic control
attributes contains a list of control attributes (i.e., the list of operations to be cyclically
executed). Bodies can assume two different forms: they may be composite actions (control
attribute composed), or a list of “simple” (i.e., non-composite, and non-cyclic) operations
specified through a list of control attributes.

2.3. META-GLARE Executor: Previous Work

Although the paper in [16] was only focused on acquisition, for the sake of com-
pleteness we have also sketched, at a general level, how the executor could operate. The
“essence” of the algorithm for execution in [16] is reported in the following.

Given as input a set of current nodes currents in a CIG G, the executor considers
each current node and executes it by sequentially executing all its control attributes. The
execution of an attribute consists of the execution of its execution method. In case such an
execution returns an exception, it is managed. When all the control attributes are executed,
the control arc exiting the node in the CIG is traversed to get the successor nodes in the
CIG. Execution recursively applies to successor nodes. Notably, the “high-level” Algorithm
1 supports the execution of Task-Network models, de-composing the execution of Task-
Networks (which are graphs) into the execution of their components (arc and nodes, while
nodes, in turn, are constituted by attributes).

Algorithm 1: Pseudocode of the META-GLARE executor in [16]

execute_CIG (set_of_nodes currents, CIG G)
{
for each node ∈ currents {
for each control_attribute ∈ node {

out← exec (attribute.ExecutionMethod)
if (out = exception) then manage (out);

}
Newnodes← exec (exit_control_arc(node));
execute_CIG (Newnodes, G)
}
}

In a subsequent conference paper [24], we have proposed a refinement of the above
execution algorithm. However, such a development was from one side quite limited (e.g.,
it did not support features such as synchronization on n:m arcs—see Section 3.2 below,
temporal constraints, etc.) and from the other side unnecessarily complex (e.g., it was
based on a data structure, the execution tree, which is not necessary). As a consequence, the
execution engine presented in Section 4 of this paper is radically different from the one
in [24].

In the following, we present the META-GLARE execution engine “bottom-up”. In
Section 3, we describe the control attributes that we have currently defined in the META-
GLARE library. In Section 4, we elaborate on the high-level idea in Algorithm 2 above,
detailing the algorithms used to execute the formalism that can be designed in META-
GLARE (i.e., the formalism that can be derived from the “meta-formalism” discussed
in Section 2 above). Following the principles of compositionality and modularity, we
propose three main algorithms, one for graph execution, one for node execution, and one
for arc execution.

3. META-GLARE Control Attributes

META-GLARE can be conceived as a shell to facilitate the design and development
of CIG systems and, in particular, of their execution engine (the focus of this paper). One
of the main ingredients of such a shell is a large library of attributes and their control



Appl. Sci. 2023, 13, 8164 10 of 36

methods: as shown by the “high-level” informal Algorithm 1, the control methods of
attributes are the basic constituents of the execution engines. In order to identify the
attributes to be inserted into the META-GLARE Library (for attributes), we have started
from GLARE and extended it, considering the many constructs that we have selected after
an analysis of several approaches in the literature, with a specific focus on PROforma [29]
and Asbru [30]. Additionally, given the similarities between CIG formalisms and workflow
formalisms, and the applicability of such formalisms to model clinical guidelines (e.g., [23]
and the discussion in Section 7.3), we have also considered selected patterns taken from the
Workflow Patterns Initiative [17]. A detailed analysis of the constructs supported by the
META-GLARE current library is proposed in Section 5 below.

In META-GLARE, control attribute types have a pointer to the method which defines
how it must be interpreted by the HG_EXECUTION module (i.e., how their execution
will be performed). On the other hand, the HG_EXECUTION module ignores non-control
attribute types (for details see Section 5).

In our approach, the execution methods of control attribute types are different depend-
ing on whether they can be used to define (i) node types or (ii) arc types. Notably, control
attributes provide as output a characterization of how the control flow has to be continued.
Such a characterization is different, depending on whether the control attribute is related to
a node or an arc.

In the following, we describe the main control attributes in the current version of
META-GLARE, considering the “standard” task (i.e., execution for decision support).
A different task (i.e., execution for testing for education) will be briefly mentioned in
Experiment 3 in Section 6.

3.1. Control Attributes for Node Types

The control attributes for nodes contain a pointer to the execution method, which contains
the Java code to determine the behavior of the node during execution. At the current stage,
we have defined the following control attribute types for node types:

• composed: See description in Section 3.3. The execution of a composed attribute type
consists of the execution of the sub-graph in its body (see for more details Algorithm 3
in Section 4).

• conditionedAbort: the evaluation of such an attribute consists in the evaluation of a
Boolean condition; if the condition holds, the abort modality is returned;

• conditionedGoTo: it evaluates a Boolean condition; if it holds, the goto modality
is returned;

• conditionedSuspend: it evaluates a Boolean condition; if it holds, the suspend modality
is returned;

• conditionedExit: it evaluates a Boolean condition; if it holds, the exit modality
is returned;

• conditionedFail: it evaluates a Boolean condition; if it holds, the fail modality
is returned;

• unconditionedAbort: its execution returns automatically the abort modality;
• unconditionedGoTo: its execution returns automatically the goto modality;
• unconditionedSuspend its execution returns automatically the suspend modality;
• unconditionedExit: its execution returns automatically the exit modality;
• unconditionedFail: its execution returns automatically the fail modality;
• externalnformationAcquisition: It requires external pieces of information (e.g., pa-

tient data from the clinical record). It waits for the availability of the data, or until a
message stating that it is not possible to obtain data is received. A failure (fail modality)
is returned in case the data cannot be obtained;

• cycleBooleanCondition: the body is repeatedly executed until the Boolean condi-
tion holds.

• cycleNumberRepetition (n): the body is executed n times.



Appl. Sci. 2023, 13, 8164 11 of 36

• dynamicCycleNumberRepetition: it operates similarly to cycleNumerCondition; the
difference is that the number of repetitions is not specified during the CIG acquisition
but is evaluated during the CIG execution.

• suggestion: it provides some output message to the user (e.g., the textual description
of the action or a warning).

• dataEnquiry: Looks for one or more data values in the patient database. If values are
absent or obsolete, the execution waits until new values are added into the database.

The output of the execution of a control attribute for nodes is a modality, which may
assume the value “DONE” (in case the execution succeeds; in such a case, no modification
of the control flow must be managed), or values describing how the control flow of the
graph has to change. At the current stage, we have defined the following modalities:

• suspend: the execution (of the CIG) must be suspended until a specific condition
becomes true;

• goto <node>: the execution must continue by executing <node>;
• abort: the execution must be stopped, and terminates;
• exit to <cig, node>: the execution of the current CIG must be stopped. The execu-

tion restarts from the execution of <node>, which is a node belonging to a different
CIG <cig>;

• fail: the execution is stopped because of a failure (for instance, a laboratory test
could not be executed due to the unavailability of the required instrument) and the
HG_EXECUTOR applies the general recovering facility.

Notice that both new control attribute types and new modalities can be defined and
added without changing the execution mechanism since the execution meta-engine (see
Section 4) is very general. To introduce a new modality, the system designer just has
to develop a specific module for it and such a module can be easily integrated into the
execution meta-engine.

3.2. Control Attributes for Arc Types

The arc control attributes contain a pointer to the Java method, which contains the
Java code to evaluate:

(i) when the arc can be executed,
(ii) the execution of the arc, and
(iii) how the CIG flow will continue after the arc execution.

Regarding point (i), an arc can generally be executed when the execution of all its
input nodes is ended. However, we also want to admit more complex cases, e.g., an arc
that has five input nodes but can be executed when the execution of any two of them is
terminated. Thus, META-GLARE implements a waiting mechanism which suspends the
execution until the required number of input nodes has terminated.

Concerning point (ii), the execution of an arc may consist of different types of opera-
tions (e.g., suggestions to the user physicians).

Regarding point (iii), in the case of an arc with multiple output nodes, its control
attribute must specify the procedure to select which one of the output nodes will be
executed after the execution of the arc. A typical situation is an arc representing an
alternative between different output nodes. In this case, the control attribute may model
complex cases in which more than one output node is selected for execution (e.g., “two
out of five” output nodes). At the current stage, META-GLARE consists of the following
control attributes for arc types:

• sequence (for (1:1) arcs). Its execution automatically returns the output node of the
arc and the temporal constraints on its time of execution, see the discussion below.

• booleanDecision (for (1:N) arcs). A Boolean decision consists of a set of alternative
nodes, each one associated with a Boolean condition. It evaluates the Boolean condi-
tions and gives the set of alternatives whose corresponding Boolean condition holds
as an output.



Appl. Sci. 2023, 13, 8164 12 of 36

• booleanSuggestion (n) (for (1:N) arcs). It operates similarly to booleanDecision, the
difference is that the output alternatives are only suggested to the user, who is free to
follow or ignore the suggestions, choosing n of the output alternatives.

• scoredDecision (for (1:N) arcs). A scored decision is a decision based on scores. It
consists of a set of triples <alternative node, Boolean condition, score> plus a threshold
for each alternative which has to be compared with the scores achieved by such an
alternative. It first evaluates the Boolean conditions. If a Boolean condition holds, the
scoredDecision execution method adds score to the support value of the alternative
node. Finally, it compares the score obtained by each alternative with its corresponding
threshold and provides, as output, the set of alternatives whose score is greater or
equal to the threshold.

• scoredSuggestion (n) (for (1:N) arcs). It operates similarly to scoredDecision, the
difference is that the output alternatives are only suggested to the user, who is free
to follow or ignore the suggestions, choosing n of the output alternatives (given as
output with their temporal constraint).

• randomDecision (n): (for (1:N) arcs). The system randomly chooses n of the output
alternatives (given as output with their temporal constraint).

• Decision (n) (for (1:N) arcs). The system asks to the user to choose n of the output
alternatives (given as output with their temporal constraint) and does not provide
any suggestion.

• qualitativeSuggestion (n) (for (1:N) arcs). A qualitativeSuggestion consists of a set of
alternative nodes, each one associated with a set of values for different parameters (e.g.,
effectiveness, cost, time, side effects). It shows to the user the values of such parameters
for each one of the alternatives. The user has to choose n of such alternatives (which
are the output of the arc execution).

• parallelSplit (for (1:N) arcs). Its execution automatically returns all the ending nodes
of the arc.

• Synchronization (n) (for (N:1) arcs). The parameter n indicates the number of input
nodes whose execution must terminate in order to start the execution of the arc (the
number of input nodes must be greater than n). Its execution returns the output node.

• synchronize & Split (n),
• synchronize & booleanDecision (n),
• synchronize & booleanSuggestion (n,m),
• synchronize & scoredDecision (n),
• synchronize & scoredSuggestion (n,m),
• synchronize & qualitativeSuggestion (n,m), (for (N:N) arcs).

Such control attributes, as suggested by their names, are just a combination of the
above operations.

In all cases, the output of the execution of an arc control attribute is a not-empty list of
pairs <outputnode, tc>, where nodes outputnode are the output nodes of the arc which have
been selected for execution and, for each of such nodes, tc is a set of temporal constraints
indicating when their execution has to be performed. In particular, for each output node, a
minimal and a maximal execution time is specified, following the “agenda technique” [31].
Such times are evaluated on the basis of the current time and the temporal constraints on
the arcs of the CIG by a temporal reasoner (described in [26]), which is invoked by the
execution engine. Notably, the execution engine checks that the actual execution time of
nodes respects the temporal constraints, giving appropriate warning to user-physicians.

3.3. Concluding Remark

Before concluding, it is important to stress that we have listed the control attribute
types in the current version of META-GLARE. However, more than emphasizing such a list,
it is really important to highlight the fact that the META-GLARE approach is fully modular
and compositional, so that users (system designers) can define and introduce new control
attributes in the library whenever needed. Very importantly, only “local” programming



Appl. Sci. 2023, 13, 8164 13 of 36

is needed: once a new type of attribute is introduced in the library, it can be used in any
instance of CIG, and the HG_EXECUTION module will automatically execute it whenever
needed. In particular, no modification to the HG_EXECUTION module is needed at all.

4. CIG Execution Meta-Engine

The HG_EXECUTION module provides a “general” execution engine that can be
instantiated for different CIG formalisms. It has three inputs:

(1) A CIG formalism Fi (i.e., a set of arc/node types, each one described as an ordered list
of types of attributes)

(2) A specific CIG (say CIGj), expressed in the formalism Fi

(3) A specific patient Pk (we assume that Pk’s data are stored in the patient DB)

HG_EXECUTION supports the execution of CIGj on the patient Pk and constitutes the
core of the META-GLARE shell to support the definition of different CIG execution engines.
Indeed, it is important to stress that, to the best of our knowledge, all the CIG execution
engines in the literature are specifically designed to cope with a specific CIG formalism.
As a consequence, they take as input only (2) and (3) above. Notably, META-GLARE’s
execution mechanism is much more general since any CIG formalism (definable on the
basis of META-GLARE’s “meta”-formalism) is executable. To enforce such a generality,
HG_EXECUTION also takes as input (1) (i.e., a CIG formalism). Notably, HG_EXECUTION
only assumes that a CIG is a TNM (i.e., hierarchical graph) while it is parametrized on all
the other aspects of the CIG formalisms, i.e., on the types of nodes and arcs, and the types
of attributes describing them.

META-GLARE (meta-) executor is based on a quite simple basic idea:

(i) to execute a CIG CIGj expressed in a formalism Fi, it executes the nodes and arcs in
CIGj, following the control flow of CIGj;

(ii) the execution of each node/arc is obtained through the execution of their attributes,
in the ordering in which they appear in the description of the node/arc type (notably,
each node, arc, and attribute in CIGj must be an instance of a node type, arc type, or
attribute type in Fi).

(iii) Non-control attributes are ignored by HG_EXECUTION. Control attributes are ex-
ecuted by invoking their execution method (i.e., the method associated with the
corresponding attribute type) and managing their output modality.

The execution is parametrized on the selected CIG formalism and the data of the
current patient. For brevity, CIG formalism and patient data are omitted in Algorithms 2–4.
Notably, Algorithms 2–4 are original contributions of this paper, being a substantial re-
finement and improvement of the “high-level” skeleton algorithm sketched in [16] and
reported in Section 2.3 of this paper.

In our approach, the CIG execution is basically the execution of a Task-Network
model (see Algorithm 2 in the following). The exec_graph function is the core of the
HG_EXECUTION module. It takes as input the set of the current nodes paired with their
temporal constraints (variable currents in Algorithm 2; initially the first node of the CIG
and with no temporal constraint) and the hierarchical graph (variable G) representing the
CIG which must be executed.

The execution terminates when currents is empty. Otherwise, the execution is started
in parallel on each pair <n, tc> ∈ currents (line 2). Then, node n is executed, invoking the
exec_node function on the node n and the temporal constraints tc on its execution time
(see Algorithm 3). In the case that the execution of n is completed correctly (i.e., exec_node
returns “DONE”), the executor extracts the exiting control arc a starting from n (line 5).
Note that in our approach, each node has at most one exiting control arc.

Then, the executor waits until the required number of input nodes of the arc a i.e.,
(get_input_card(get_control_attr (a))) is terminated (a counter is used to store the number of
input nodes that have terminated their execution; the function get_finished_input returns
such a counter) (lines 7 and 8). Such a part of the algorithm is necessary in order to support



Appl. Sci. 2023, 13, 8164 14 of 36

the “synchronized” control attributes for the arcs (see Section 3.2) above. Then, the arc a
is executed via the exec_arc function (line 10), which returns the set nexts of next nodes to
be executed paired with their temporal constraint. The function exec_graph is recursively
invoked on nexts (and G). Notably, in the case that p does not have an exit control arc (i.e., a
is set to NULL in line 6), this branch of the parallel execution ends.

The exec_node function (see Algorithm 3) performs the execution of a specific node.
First (line 1), the executor checks whether, at the current time, the temporal constraints

tc associated with the node are satisfied, sending appropriate warnings to user-physicians
(the treatment of temporal constraints is out of the scope of this paper, see [26] for details of
the methodology used). Then, the execution of a node consists of the execution of all its
control attributes, in the ordering in which they appear in the definition of the node. The
non-control attributes are ignored since they do not affect the CIG execution.

First, attr is initialized to the first control attribute of the node N using the get_first_
control_attr function (line 2). Then, a cycle (lines 3–21) is performed to execute all the
control attributes of N using the function get_next_control_attr. If N is a composed node
(i.e., the type of attr is composed), its components are executed by calling the exec_graph
function on the first node of the subgraph representing the component and the subgraph
(extracted through the function get_ components) (lines 4–5).

Otherwise, two different situations must be managed: the node can be cyclic (lines 7–17)
or non-cyclic (lines 19–20).

In the first case (i.e., the type of attr is cyclic), the content of attr (i.e., a non-empty set
of control attributes) is executed while the condition of attr (retrieved through the function
get_condition) holds.

If the content of attr is composed (i.e., the node N is a composed cyclic node), its
components are executed by calling the exec_graph function on the first node of the
subgraph representing the component and the subgraph (extracted through the function
get_components) (lines 10–11).

Otherwise, the control attributes which must be repeated will be extracted and exe-
cuted one at a time (lines 13–17). In line 14, the execution method of the control attribute
a is executed. The output of such an execution is a modality. If it is “DONE”, the cycle
will continue normally on the next control attribute (line 17), otherwise, the execution
modality will be managed properly by calling the specific method defined to deal with such
a modality (line 16), e.g., to manage the suspension or the abortion of the current execution.

Algorithm 2: Pseudocode of a graph execution

(1) exec_graph(set of <node, temporal constraints> currents, graph G)
{
(2) for each <n,tc> ∈ currents do

{
(3) out← exec_node (n,tc)
(4) if (out = DONE) then

{
(5) a← exit_control_arc (n)
(6) if (a 6= NULL) then

{
(7) while (get_finished_inputs (a) < get_input_card(get_control_attr(a)))
(8) do WAIT;
(9) nexts← exec_arc (a,G)
(10) exec_grap h(nexts,G)

}
}

}
}



Appl. Sci. 2023, 13, 8164 15 of 36

Algorithm 3: Pseudocode of a node execution

modality← exec_node (node N, temporal_constraint tc)
{
(1) temporal_check (tc, current_time)
(2) attr← get_first_control_attr(N)
(3) while (attr 6= NULL) do

{
(4) if (attr.type = composed) then
(5) exec_graph (<get_first_node (get_components (attr)), tc>, get_components (attr))
(6) else
(7) if (attr.type = cycle) then
(8) while (eval_condition (get_condition (attr)) do

{
(9) a← get_first_control_attr (attr)
(10) if a.type = composed then
(11) exec_graph (<get_first_node(get_components(a)), tc>,get_components(a))
(12) else
(13) while (a 6= NULL) do

{
(14) modality←execute (get_exec_method(a))
(15) if (modality 6= DONE) then
(16) manage_mod (modality)
(17) a← get_next_control_attr (attr)

}
}

(18) else
{

(19) modality← execute (get_exec_method (a))
(20) if (modality 6= DONE) then

manage_mod (modality)
}

(21) attr← get_next_control_attribute (attr, N)
}

(22) return (DONE)
}

Algorithm 4: Pseudocode of an arc execution

(1) set of <node, temporal constraints>← exec_arc (arc a, graph G)
{
(2) exec_method←get_exec_method (get_control_attribute (a))
(3) next_nodes← execute (exec_method)
(4) nexts← temporal_reasoning (next_nodes, get_temp_constraints (a), G)
(5) return nexts
}

The HG_EXECUTION module contains a set of methods, one for each one of the
modalities described in Section 3.1; however, our approach is open and modular, so that
the addition of new modalities and new methods of coping with them is possible.

On the other hand, if the type of attr is not cyclic (lines 19–20), the execution method of
attr is executed (line 19) and the output modality is managed as described above (line 20).

The exec_arc function (see Algorithm 4) performs the execution of a specific arc a. The
execution of an arc consists of the execution of its unique control attribute. The execution
method of the control attribute of a is extracted (line 2). Then, such a method is executed
(line 3). The output of such an execution is a set next_nodes of nodes (selected among
the output nodes of the arc a). In line 4, temporal reasoning is then performed in order
to infer, given the temporal constraints in the arc (get_temp_constraints (a)) and graph G,



Appl. Sci. 2023, 13, 8164 16 of 36

the constraints on the execution of the nodes next_nodes (for more details about temporal
reasoning, please see [26]). The pairs <node, temporal_constraint> representing the temporal
constraints on its execution time for each node in next_nodes are reported as outputs of
the function.

5. Evaluating META-GLARE

Proposing an evaluation of a tool like META-GLARE is a complex matter since it
is basically a “shell” with which to design and develop CIG systems. To the best of
our knowledge, there are no analogous shells in the literature and, consequently, no
benchmarks, making it impossible to propose “direct” comparisons. Roughly speaking,
META-GLARE is a shell supporting software designers/developers in the modification
or creation of new CIG systems. As such, it is also quite impossible to propose significant
quantitative performance evaluations: designing and developing a new system (with or
without META-GLARE) depends on the complexity of the system and the ability of the
designers/programmers. As a consequence, concerning “usability and performance”, we
could only consider a few case studies in this paper and discuss the suitability of META-
GLARE to cope with them (see Section 6). Indeed, it could be appropriate and interesting
to carry out an experimental evaluation of performance in which two homogeneous groups
of CIG system designers and developers (one using META-GLARE and the other acting as
a control group) have to define a theoretically well-specified new CIG system, in order to
perform a quantitative (time required to build the new system) comparative performance
evaluation. Such an evaluation would be very costly and time-consuming and is out of the
scope of this paper.

Indeed, even the evaluation of CIG systems themselves is quite complex and controver-
sial. They are mostly tools supporting experts and knowledge engineers in the acquisition
of clinical guidelines and supporting physicians in their execution/application on specific
patients. Thus, “standard” computer science evaluations (e.g., verification of correctness,
analysis of performance) do not seem to apply to CIG systems, since both the correctness
of the operations being performed and the time used to carry them out deeply depend
on the users being supported. Indeed, we are not aware of any of such evaluations in the
CIG literature).

In their review, Isern and Moreno have proposed a comparative evaluation of different
CIG systems, considering eleven parameters [8]. Such an evaluation also considers the
GLARE system. Considering the eleven parameters in [8], META-GLARE behaves exactly
like GLARE; the evaluation is reported on the following parameters (here we adopt the
terminology in [8]):

1. existence of a repository of guidelines: Yes
2. presence/absence of a tool offering an editor to create and visualize the guidelines: Yes
3. formal representation language used for the guidelines: Task Network
4. basic elements defined in the guideline representation language: Query, Work, Decision
5. if the tool is designed to be deployed as a distributed system: No
6. presence of complex coordination elements: Yes
7. type of execution engine: Rule-Based
8. connection with an electronic medical record: Yes
9. ability to integrate the execution engine with an existing clinical management sys-

tem: Yes
10. use of any standard terminology or representation language: XML, ICD-9
11. inclusion of security tools to preserve data integrity and authenticate the accesses

to the medical data: No

In the research area of CIGs, there is a wide consensus that the main parameter
along which CIG systems should be evaluated and compared is the expressiveness of the
representation formalism. Several individual or comparative evaluations of CIG formalism
expressiveness have been proposed in the research literature. For instance, ref. [6] provides a
comparative evaluation of Asbru, EON, GLIF, Guide, PROforma, and PRODIGY. Workflow



Appl. Sci. 2023, 13, 8164 17 of 36

patterns are the consensus benchmark to evaluate the expressiveness of the formalisms
offered by workflow systems (see [17]). Recently, such a benchmark has also been applied
to CIG formalism, in the milestone comparative analysis in [23] which assesses the state
of the art in the CIG research area. In Section 5.1 below, we follow such a line of research,
and we analyze the expressiveness of the current version of META-GLARE. However, it is
worth pointing out that:

(1) META-GLARE supports multiple CIG formalisms (in principle, all the formalisms that
can be generated from META-GLARE are “meta-formalisms”). In the evaluation be-
low, we consider the formalism that includes all the features in the library, as described
in Section 3 (we call it META-GLARELib). Since META-GLARE is open, additional
features can be easily added to the library and, therefore, to META-GLARELib.

(2) Although expressiveness is certainly important, we strongly believe that “suitabil-
ity” [19] also plays an important role in the user-friendliness of a CIG formalism (so
it may be the case that user physicians prefer a more restricted formalism that is
more suited to their specific task/domain). The essential advantage of META-GLARE
is that it helps system designers and possibly domain experts in the definition of a
system supporting a “suitable” and “personalized” CIG formalism (see the discussion
in the introductory section).

Finally, before moving to the evaluation of the expressiveness of META-GLARELib,
we want to remark once again that META-GLARE is not a CIG system, but a “shell” to
define/modify CIG systems based on the definition of a CIG representation formalism. As
such, we think that it is important and appropriate to propose a “qualitative” experimental
evaluation of META-GLARE, to analyze the effort needed by system designers to modify
an existing CIG system, or to build a new one using META-GLARE. Such an experimental
evaluation is reported in Section 6.

5.1. Evaluating the Expressiveness of META-GLARELib

In the following, we evaluate the expressiveness of META-GLARELib, considering the
“standard” (i.e., physician decision support) task. Following [23], we use the workflow
patterns as a benchmark. The workflow patterns have been identified by the Workflow
Patterns Initiative [17] and are the most common control constructs provided by the
modeling formalisms used by workflow systems. Workflow patterns are considered a
standard for examining the suitability of a process language offered by workflow systems.
A total of 43 workflow patterns have been identified by the initiative. Their description is
out of the scope of this paper, but an interested reader can find a comprehensive description
in [17] or [32].

The workflow patterns are divided into categories on the basis of their characteristics:

• basic control-flow patterns: describe basic aspects of process control: sequencing, parallel
splitting, synchronizing, exclusive selection and simple merging;

• advanced branching and synchronization patterns: describe in-between behaviors, where
some of the paths in a set of paths can be selected for execution and then different
modes of continuation are possible;

• structural patterns: identify whether the modelling formalism imposes constraints on
how processes are structured;

• multiple instances patterns: refer to situations where more than one instance of a task
may be active at the same time in the same case;

• state-based patterns: describe scenarios in a process where subsequent execution de-
pends on the state of the process instance;

• cancellation patterns: refer to the situation where either a single task or a group of tasks
in a model need to be cancelled.

• new patterns: a set of new patterns and the revised patterns belonging to the previous
categories, covering the concepts such as triggers, path and thread branching and
synchronization, and cancellation.



Appl. Sci. 2023, 13, 8164 18 of 36

Workflow patterns have recently also become a standard benchmark in the evaluation
of CIG formalisms provided by the CIG research community. In this section, we extended
the analysis done in [23], where EON, Asbru, PROforma, and GLIF are considered in the
evaluation of META-GLARE.

To make out analysis more credible, more general, and stronger, we have chosen to
adopt the methodology and criteria proposed by the benchmark approach in [23] “as they
are”, and these are briefly reported below for the sake of completeness.

Analysis criteria/parameters. We consider the 43 workflow patterns proposed in [23]
to evaluate formalism expressiveness.

Rating. As proposed in [23], we rate each pattern as follows:

• supported (Y) if a CIG system satisfies the criteria for the pattern and provides a direct
support for it,

• partial support (Y/N), if a CIG system does not provide a construct that directly
supports the pattern, but it compensates by offering alternative solutions through
elaborate workarounds or by extending its programming capabilities.

• no support (N) if a system does not satisfy the criteria for direct or indirect support.

Rating explanation. As proposed for EON, Asbru, PROforma, and GLIF, and also
for META-GLARE, we propose a brief qualitative motivation for our evaluation of each
pattern, explaining for each control pattern how it is supported in META-GLARELib (in
particular, referring to the META-GLARE control attributes described in Section 3) or the
reasons why it is not supported.

Table 1 in the following shows the extended analyses including META-GLARE and the
supporting comparative analysis of META-GLARELib formalism with some of the milestone
formalisms in the CIG research literature on a commonly accepted benchmark. On the
other hand, for the sake of brevity, the explanations for the ratings for META-GLARELib

formalism are reported in Appendix A.

Table 1. Support for the control–flow patterns.

Asbru EON GLIF PROforma META-GLARELib

Basic control-flow
1. Sequence Y Y Y Y Y

2. Parallel split Y Y Y Y Y

3. Synchronization Y Y Y Y Y

4. Exclusive choice Y Y Y Y Y

5. Simple merge Y Y Y Y Y
Advanced branching and synchronization

6. Multichoice Y Y Y Y Y

7. Structured synchronizing merge Y/N N N Y Y/N

8. Multimerge N N N N Y

9. Structured discriminator Y Y Y Y Y
Structural patterns

10. Arbitrary cycles N Y Y N Y

11. Implicit termination Y Y Y Y Y
Multiple instances patterns

12. MI without synchronization N N N N Y/N

13. MI with a priori design-time knowledge Y/N Y/N Y/N Y/N Y/N

14. MI with a priori run-time knowledge N N N N Y/N



Appl. Sci. 2023, 13, 8164 19 of 36

Table 1. Cont.

Asbru EON GLIF PROforma META-GLARELib

15. MI without a priori run-time knowledge N N N N Y/N
State-based patterns

16. Deferred choice Y N Y Y Y

17. Interleaved parallel routing Y N N N Y

18. Milestone N N N Y N
Cancellation patterns

19. Cancel activity Y Y Y Y N

20. Cancel case Y N Y/N Y N
New patterns

21. Structured loop Y Y Y Y Y

22. Recursion Y N N N Y

23. Transient trigger N N N Y N

24. Persistent trigger N N Y Y N

25. Cancel region N N N N N

26. Cancel multiple instance activity Y N Y Y N

27. Complete multiple instance activity Y N N Y N

28. Blocking discriminator N N N N Y/N

29. Canceling discriminator Y N N Y N

30. Structured N-out-of-M join Y N Y Y Y

31. Blocking N-out-of-M join N N N N Y/N

32. Canceling N-out-of-M join N N N Y N

33. Generalized AND-join N N N N Y/N

34. Static N-out-of-M join for MIs N N N N N

35. Static N-out-of-M join for MIs with cancellation N N N N N

36. Dynamic N-out-of-M join for MIs N N N N N

37. Acyclic synchronizing merge N N N Y N

38. General synchronizing merge N N N N N

39. Critical section Y N Y N N

40. Interleaved routing Y N Y N Y

41. Thread merge N N N N N

42. Thread split N N N N N

43. Explicit termination N N N N Y

In general, all workflows admit multiple concurrent executions (e.g., a workflow
considering the admission procedure of a hospital may be executed on several different
patients concurrently). The term “MI” (multiple instances) is used to indicate that in the
table. On the other hand, by their own nature, CIG executions are regarding a single
patient (e.g., each execution copes with exactly one patient). The workflow patterns 28, 31,
and 33 include conditions about how multiple entities (e.g., patients) must be managed
within the same execution. If we ignore such conditions (which are trivially satisfied in
META-GLARELib since each execution concerns a single entity/patient), such patterns are
covered by META-GLARELib. Nevertheless, we have chosen to classify such conditions
as partially supported to indicate the fact that we (as well as all the other approaches to
CIG) do not consider the concurrent execution of CIGs on multiple patients. Notably, in the



Appl. Sci. 2023, 13, 8164 20 of 36

analysis of [23], Asbru, EON, GLIF, and PROforma have been evaluated as not supportive
of the above patterns (with the motivation that they do not support multiple patients).

Patterns 12, 14, and 15 are ranked as partially supported since they can be obtained
in META-GLARELib, but with some limitations with respect to their general definition
in [17]. In particular, for pattern 12, while META-GLARELib requires that at least one node
representing a MI must be terminated before moving to the execution of the next pattern,
in the general definition [17], the execution can also continue when no MI is concluded. For
patterns 14 and 15, we must assume the availability at the acquisition time of a maximum
bound on the number of MIs (while in [17] there is no bound). Notably, in the analysis
of [23], Asbru, EON, GLIF, and PROforma have been evaluated as not supportive of the
above patterns (since the authors do not consider the possibility of providing “limited”
support to a pattern).

As shown in [23], PROforma offers support to 24 patterns (22 direct supports), Asbru
to 22 patterns (20 direct supports), GLIF to 18 (17 direct supports), and EON to 12 (11 direct
supports); our analysis shows that META-GLARELib supports 25 patterns (17 directly;
consider, however, the discussion above). On the other hand, META-GLARELib provides a
set of features that are not considered in the 43 control patterns:

• Control attributes to manage the interaction (i.e., input/output) with the user (i.e., sug-
gestion, dataEnquiry, externalnformationAcquisition, booleanSuggestion (n), qualitativeSug-
gestion, scoredSuggestion (n), synchronize&booleanSuggestion (n,m), synchronize&scored
Suggestion (n,m), synchronize&qualitativeSuggestion (n,m)). Such an issue is not consid-
ered in the 43 patterns above (except pattern 16, i.e., the deferred choice).

Temporal constraints between nodes. While some of the 43 control patterns impose
specific temporal constraints between nodes (for instance, pattern 17 imposes that node
execution does not overlap in time), we support a generalized treatment of temporal
constraints in META-GLARELib (in the sense that any temporal constraint in the language
specified in [26] can be imposed between nodes).

Our analysis shows that the main limitations in META-GLARELib’s expressiveness are
due to the absence of triggers and exceptions (i.e., eight patterns—18, 19, 20, 23, 24, 25, 26,
27—could be supported in the case that triggers can be supported in META-GLARELib).
This is a deliberate limitation of our current approach, which will be amended in our next
version (see the discussion about future works in the Section 8).

5.2. Some Limitations of the Current Version of META-GLARE

Although it is quite powerful, the current approach has several limitations, some of
which we want to overcome in our future work. First of all, we stress once again that
META-GLARE assumes a Task-Network representation formalism for CIGs. As such, it
cannot help to develop CIG systems based on other representation paradigms such as
Arden Syntax.

Considering the Task Network area, in the current version, the META-GLARE executor
is based on the principles (i)–(iii) discussed at the beginning of Section 4. They are quite
general but do not cover all possible forms of parallelism. In the current version, META-
GLARE can deal with parallelism, but only inside the execution of a single CIG process
(e.g., we can deal with the execution of two concurrent actions in a CIG, but not with the
concurrent execution of two CIGs, or a CIG and an Exception Handler). However, in some
cases, a higher level of parallelism needs to be present to cope with concurrent processes (not
internal to a specific CIG).

(1) Concurrent execution of a CIG with a monitor. In particular, such a level of par-
allelism is needed to monitor patients’ data, in such a way as to be able to trigger
and manage exceptions. In our previous work, we have already extended GLARE
with a monitor triggering the treatment of exceptions (see [33]) and managing the
interactions between the CIG execution and the exception handler execution; we plan
to extend META-GLARE with a proper adaptation of such a mechanism. Notably, the
addition of a monitoring-triggering mechanism will greatly extend META-GLARELib



Appl. Sci. 2023, 13, 8164 21 of 36

expressiveness, to also cover with eight new patterns—18, 19, 20, 23, 24, 25, 26, and 27
in [17]. After such an extension, META-GLARELib would cover 33 out of 43 patterns,
overtaking the Asbru, EON, GLIF, and PROforma approaches.

(2) Distributed and concurrent execution of two or more CIGs. Such an extension is
needed in case more than one CIG must be concurrently executed on a given patient,
e.g., to cope with comorbid patients (see Section 7.1 below). In our previous work,
we have extended GLARE to cope with comorbid patients (see the discussion in
Section 7.1). However, proposing a “meta-level” support to the “merged execution”
of multiple CIGs is a very challenging task that we aim to consider in our future work.

6. Applying META-GLARE

META-GLARE aims at facilitating the design and development of a CIG system to
acquire and execute CIGs for a new formalism or the modification of an existing system
due to a modification of its formalism. In the following, we show three experiments
to demonstrate META-GLARE applicability. The three experiments have an increasing
intrinsic complexity, and have been selected in order to show three relevant uses:

• The application to META-GLARE to add a new node type (not requiring attributes
not already present in the META-GLARE library) in an already existent CIG system
(produced through META-GLARE)

• The application of META-GLARE to build a new CIG system, in case all the required
attributes are already part of the META-GLARE library.

• The application of META-GLARE to build a new CIG system, in case new attributes
have to be added to the META-GLARE Library.

Notably, Experiment 2 builds on the result of Experiment 1 (here we have decided
to present examples ordering them on the basis of their intrinsic complexity), and both
Experiments 1 and 2 had been already performed and are also reported in [16]. On the
other hand, Experiment 3 was only discussed as future work in [16].

Experiment 1. To show that META-GLARE facilitates the update of a CIG formalism,
in the second experiment we have extended GLARE (previously designed using META-
GLARE, as discussed in experiment 2 below) by adding a new type of node, consisting
of a set of non-control attributes plus three control attributes, “precondition” (of type
booleanCondition; to specify the action’s preconditions), “body” (of type external_action),
and “postcondition” (of type booleanCondition; to specify the conditions holding after the
execution of the action).

Since all the above attribute types were already present in the META-GLARE library,
the extension was trivial. The system designer has just used the graphical interface of the
DEFINITION_EDITOR to acquire the definition of the new node type in a few minutes. No
other effort was required.

After the acquisition of the new type of node, we modified (using the HG_ACQUISITION
module of META-GLARE, see Figure 1) the CIG about the ischemic stroke to include, when
appropriate, instances of the new type of node. We could then directly execute the updated
ischemic stroke CIG on the data of a patient. The META-GLARE HG_EXECUTION module
correctly executed the CIG on the patient without any need for modification.

Obviously, some programming is needed if a new version of a control attribute must
be introduced to achieve a new task (see Experiment 3, part 1), or if a formalism must
be extended with new features for which new control methods have to be added to the
META-GLARE Library (see Experiment 3, part 2).

Experiment 2. As a first case study, we have applied META-GLARE in order to
produce a new version of our original system, GLARE. A Master’s student, Irene Lovotti,
performed the acquisition of GLARE formalism into META-GLARE, using META-GLARE
DEFINITION_EDITOR (see Figure 1). In Figure 3, we introduce a screenshot showing the
DEFINITION_EDITOR in action, while acquiring the “data request” attribute.



Appl. Sci. 2023, 13, 8164 22 of 36Appl. Sci. 2023, 13, x FOR PEER REVIEW 23 of 37 
 

 
Figure 3. A screenshot of the graphical interface of META-GLARE DEFINITION_EDITOR. The 
screenshot shows a snapshot of the acquisition of the “dataEnquiry” control attribute. Slots (e.g., 
Name) and pop-up windows are used in order to acquire the different properties of the attribute. In 
particular, the tree at the bottom of the figure highlights the acquisition of the control method for 
the “standard” task of “Enquiry”. The proper Java method is selected from the library through the 
pop-up window shown in the right part of the figure. 

Experiment 3. META-GLARE for education. “Traditional” courses and books aim at 
teaching a large body of knowledge to students, e.g., anatomy, disease description and 
treatment, etc. On the other hand, “operational” knowledge concerning how to operate 
(diagnose and treat) specific patients is usually neglected in medical texts, and is learned 
by students only “by practicing” [34]. In recent years, several approaches have been 
proposed to take advantage of computer science to facilitate the teaching of such 
“operational” aspects, with a specific emphasis on simulation [34]. However, until now, 
no approach has tried to exploit the potentialities of CIG systems for education. Indeed, 
given the data of a real patient or of an invented one, a CIG system like GLARE can be 
exploited to simulate the execution of any acquired CIG on the patient, to train medical 
students about how to operate on specific patients. We have started to pursue such a 
research line in the ROPHS (Report on the Piedmont Health System) project. In such a 
project, in cooperation with the physicians in the project, we first used GLARE to acquire 
a guideline for polytrauma. In the second step, the expert physicians have defined a set of 
“typical” polytrauma patients. Finally, GLARE has been used in a medical course to show 
students how the polytrauma guideline recommends operating on such patients [33]. The 
experience has been quite positive and has highlighted the relevance of addressing new 
educational issues, like the use of a CIG system for testing students. 

For testing, given a patient and a CIG, at each step in the diagnosis and treatment of 
the patient, (i) the student should first specify how she would operate on the patient, (ii) 
then the CIG system should compare the student�s choice to the CIG�s recommendation, 
and (iii) propose the student�s discrepancies (if any). In more detail, testing can focus on 

Figure 3. A screenshot of the graphical interface of META-GLARE DEFINITION_EDITOR. The
screenshot shows a snapshot of the acquisition of the “dataEnquiry” control attribute. Slots (e.g.,
Name) and pop-up windows are used in order to acquire the different properties of the attribute. In
particular, the tree at the bottom of the figure highlights the acquisition of the control method for
the “standard” task of “Enquiry”. The proper Java method is selected from the library through the
pop-up window shown in the right part of the figure.

Such an acquisition required less than one day of work. At the time we performed
experiment 1, the META-GLARE library already contained all the attribute types involved
in GLARE formalism. Therefore, no additional effort was needed and no programming
was needed at all. As a result of the one-day acquisition, we got a new version of GLARE
“for free”, consisting of both the acquisition and the execution tools.

To continue with the experiment, we considered one of the specific CIGs we had
previously acquired with the old version of GLARE (specifically, the CIG about ischemic
stroke) and the data of a specific patient and used META-GLARE to execute the CIG on
the patient. The META-GLARE HG_EXECUTION module was used and the execution ran
correctly with no need for any modification of the HG_EXECUTION module.

In our opinion, this experiment is important to highlight that META-GLARE supports
designers in defining a new CIG system (considering both the acquisition and the execution
tools) with minimal effort. Indeed, in this specific experiment, no programming at all was
needed. However, this was because all the attribute types used in GLARE were already
present in the META-GLARE libraries.

Experiment 3. META-GLARE for education. “Traditional” courses and books aim at
teaching a large body of knowledge to students, e.g., anatomy, disease description and
treatment, etc. On the other hand, “operational” knowledge concerning how to operate
(diagnose and treat) specific patients is usually neglected in medical texts, and is learned by
students only “by practicing” [34]. In recent years, several approaches have been proposed to
take advantage of computer science to facilitate the teaching of such “operational” aspects,



Appl. Sci. 2023, 13, 8164 23 of 36

with a specific emphasis on simulation [34]. However, until now, no approach has tried
to exploit the potentialities of CIG systems for education. Indeed, given the data of a
real patient or of an invented one, a CIG system like GLARE can be exploited to simulate
the execution of any acquired CIG on the patient, to train medical students about how to
operate on specific patients. We have started to pursue such a research line in the ROPHS
(Report on the Piedmont Health System) project. In such a project, in cooperation with the
physicians in the project, we first used GLARE to acquire a guideline for polytrauma. In
the second step, the expert physicians have defined a set of “typical” polytrauma patients.
Finally, GLARE has been used in a medical course to show students how the polytrauma
guideline recommends operating on such patients [33]. The experience has been quite
positive and has highlighted the relevance of addressing new educational issues, like the
use of a CIG system for testing students.

For testing, given a patient and a CIG, at each step in the diagnosis and treatment
of the patient, (i) the student should first specify how she would operate on the patient,
(ii) then the CIG system should compare the student’s choice to the CIG’s recommendation,
and (iii) propose the student’s discrepancies (if any). In more detail, testing can focus on
three main aspects: (1) the student’s ability to identify (all and only) the patient’s data
needed in order to take the decisions regarding the patient, and their ability to make the
correct (2) decisions regarding the patient at hand.

To support tasks (i)–(iii), a substantially new (compared to “traditional” systems in the
literature) CIG system has to be developed. However, we are taking advantage of META-
GLARE to implement it, and this choice is greatly facilitating the achievement of our goal,
as sketched below. The implementation of the new system that we have called GLARE-Edu
is currently ongoing, following the highlights discussed in [35,36]). Our implementation is
organized in two parts.

Part 1. In the first (ongoing) phase, we have started from the consideration that, in
general, no modification of the chosen CIG formalism is needed when moving from the
“standard” task (i.e., support to physicians) to testing for education. As a consequence,
we have chosen to maintain GLARE’s formalism and to start our implementation of
GLARE-Edu on top of the re-implementation of GLARE we have discussed in Experiment
1. Notably, since no change in the formalism has to be performed, no changes to the
acquisition methods are needed. Therefore, we have the CIG acquisition tool “for free”
from META-GLARE. On the other hand, in the testing-for-education task, the execution of
CIGs must be radically different (with respect to “standard” execution). However, thanks
to META-GLARE, we do not have to re-implement the whole execution tool. On the other
hand, we can exploit the META-GLARE general execution engine as it is, and operate locally,
focusing our efforts on the definition and implementation of the methods to support a new
task (the testing-for-education task) for the control attributes used for the data request
(i.e., dataEnquiry, see Section 3.1) and decisions (i.e., booleanDecision, scoredDecision,
scoredSuggestion, booleanSuggestion, and qualitativeSuggestion, see Section 3.2).

The execution method for the testing-for-education task of the attribute dataEnquiry does
not directly ask/retrieve patients’ findings. On the other hand, it asks the user to list the
findings needed at that step of the CIG by selecting them from a pre-defined large list of
findings. Such findings are compared with the ones stored in the dataEnquiry attribute at
the acquisition time to detect unnecessary/irrelevant findings or missing ones.

Analogously, the execution methods for the testing-for-education task of decision at-
tributes ask the user to choose between alternative paths on the basis of patients’ findings,
without providing any hint/form of decision support and evaluate their choice. In all the
cases of decisions based on a quantitative evaluation of decision criteria (i.e., booleanDecision,
scoredDecision, booleanSuggestion, scoredSuggestion, synchronize and booleanDecision, synchro-
nize and booleanSuggestion, synchronize and scoredDecision, and synchronize and scoredSugges-
tion), the decision criteria are then shown to the user, and the user’s choice is compared with
the decision/suggestion that would be provided by the system by applying such decision
criteria to the patients’ findings. On the other hand, in the case of qualitativeSuggestion and



Appl. Sci. 2023, 13, 8164 24 of 36

synchronize and qualitativeSuggestion, after the user’s choice, the GLARE-Edu simply shows
them the qualitative evaluation of the different parameters (e.g., effectiveness, cost, time,
side effects) for each one of the alternatives.

Part 2. In the second future step, we plan to extend GLARE-Edu to consider also “fake
alternatives” [35]. Indeed, for the sake of testing, diagnostic and therapeutic problems
might be made more complex for students by adding incorrect alternatives to the clinical
guidelines. Such alternatives, not present in the real guidelines, might be significant
for testing by representing cases of frequent/plausible medical errors. Evidently, “fake”
alternatives must be distinguished from the “correct” ones, and this requires an extension
to the CIG formalism (e.g., with the definition of a new 1:n arc in which the exits can be
partitioned into “fake” and “correct” ones). However, once again, META-GLARE will
support us by allowing us to operate only the new constructs of the formalism locally while
still exploiting the general acquisition and execution mechanisms.

7. Related Work and Comparisons

In this paper, we have described the META-GLARE execution framework. Therefore,
in Section 7.1, we consider some of the CIG execution tools in the literature, with specific
focus on Asbru, PROForma, and GLIF3, and on the recent approaches considering the
execution of multiple CIGs on comorbid patients. However, it is important to emphasize
once again that, while the executors considered in Section 7.1 are specific for a given CIG
formalism, the META-GLARE executor is unique since it operates at a higher level of
abstraction, supporting the execution of CIGs represented using any formalism that can be
generated from META-GLARE’s “meta-formalism”. In Section 7.2, we show the advantages
of our meta-approach with respect to the other approaches in the literature. In Section 7.3,
we consider other related approaches in the literature.

7.1. CIG Execution Tools

Many CIG systems in the literature provide tools to support the execution of the
acquired CIGs. In [8], Isern and Moreno have proposed a comparison between different
CIG systems (including GLARE). However, despite the fact that the title of their paper
explicitly focuses on CIG execution, very few details are provided about the execution
engines of the different systems. Indeed, although most CIG approaches provide an
execution engine, very few in-depth descriptions of such engines can be found in the
specialized literature. In the rest of this subsection, we focus on three execution engines,
which concern three of the most famous CIG approaches in the literature: GLIF, Asbru, and
PROforma.

GLIF (GuideLine Interchange Format) was proposed in 1998 by a consortium in-
volving Columbia University, Harvard University, and Stanford University to provide a
standard guideline representation formalism [10]. Several versions of GLIF have been
proposed, finally leading to GLIF3 [12] (see Section 1.3). The GLIF3 Guideline Execution
Engine, called GLEE, has been described in detail in [37]. GLEE is a client-server system,
in which each GLEE client corresponds to the application of a CIG to a particular patient,
and a GLEE server supports several tasks, particularly the execution of a specific instance
of a guideline on a specific patient. GLEE is based on the “system suggests, user controls”
philosophy: at any time during the execution of a guideline, users are free to deviate
from the guideline recommendations (e.g., not performing the CIG action suggested by
the system).

GLIF3 is based on the TNM model. GLIF3 distinguishes between clinical tasks (the
most important are action steps, decision steps, and patient state steps) and scheduling tasks
(including branch step, synchronization step, sequence step, and subguideline). The execution
of action steps depends on the type of task defined in that step. For instance, the execution
of a medically oriented action consists of a message to notify the local clinical information
system, while a data request task involves data retrieval from the clinical data repository.
Two different types of decision steps (case steps and choice steps) are defined in GLIF3. The



Appl. Sci. 2023, 13, 8164 25 of 36

execution of a decision case step involves the evaluation of the decision criteria associated
with each alternative option until one criterion is satisfied. The corresponding option is then
automatically selected by the system, and the subsequent step in that option is scheduled
for execution. On the other hand, in the case of a decision choice step, the alternatives are
presented directly to the user (GLEE waits for the user’s answer and then schedules the
corresponding step). Finally, a patient state step models a criterion to define the patient’s
status and is executed by GLEE’s execution engine by asking the user whether the patient
meets the criterion or not.

Scheduling tasks basically define the control flow in the execution of GLIF3 CIGs. In
GLEE, the execution of a branch step leads to the scheduling and concurrent or any-order
execution of subsequent steps. A synchronization step in GLIF3 represents a converging
point in a CIG’s algorithm and is associated with a continuation criterion. The execution
of a synchronization step involves the evaluation of such a criterion: the executor waits
until the completion of other converging steps eventually leads to its fulfilment. Sequence
steps simply regulate the order of execution, while the subguideline construct supports the
hierarchical representation and execution of CIGs.

Notably, the execution of steps in GLEE undergoes different execution states: (1) the
prepared state (the execution engine suggests that such a step is executable according to the
CIG under execution), (2) the started state, (3) the stopped state, and (4) the finished state.

Finally, GLEE also supports an event-driven execution model by defining triggering
events for a specific CIG step.

The first version of Asbru [30] was proposed in 1998 by a consortium involving the
University of Newcastle, Stanford University, and the Vienna University of Technology
to provide a time-oriented, intention-based, and sharable language for clinical guidelines.
Asbru then evolved into a series of different versions. Asbru is based on the TNM model
and represents a guideline as skeletal plans. A plan is described by a set of attributes:
preferences, intentions, conditions, effects, and a plan body. Preferences define the criteria of
applicability. Intentions model the goals and are used for critiquing. Conditions describe
the criteria for which a plan can be started, suspended, reactivated, aborted, or completed.
Effects define the expected behavior of a plan’s execution. The effects can be associated
with a probability. The plan body for decomposable (i.e., non-atomic) plans contains the
set of plans, which consist of the plan and the type of plan, which defines the order of
execution of the subplans (i.e., sequence, any order, parallel, unordered, or periodic). Subplans
can be defined asvmandatory or optional for the successful execution of the parent plan.
Moreover, Asbru defines two types of non-decomposable plans: actions and user-performed
plans (see below).

AsbruRTM (Asbru-Run-Time Module) [38] is the execution engine framework of AS-
BRU. AsbruRTM has three core modules: the data abstraction, environment monitoring,
and execution units. Moreover, AsbruRTM provides physicians with a graphical user
interface.

AsbruRTM executes a plan by executing all its subplans. In AsbruRTM, the successful
execution of parent plans is defined on the basis of which or how many subplans have to
be completed successfully. AsbruRTM schedules the subplans on the basis of the parent
plan’s type and the attributes of the subplans. Concerning non-decomposable plans,
actions are executed automatically by AsbruRTM while the execution of user-performed
plans is performed through an interaction with the user, to register if and when the plan
is ended and if it was successful. AsbruRTM provides two mechanisms to implement
the decision between alternative plans: (i) in the case of decomposable plans, their filter
conditions (i.e., conditions about plan applicability) are automatically evaluated to trigger
their execution; (ii) in the case of non-decomposable plans, an “if then else” mechanism
is adopted: AsbruRTM automatically evaluates the condition and executes the proper
branch. Notably, the execution of a plan in Asbru undergoes different states, regarding
plan applicability (i.e., considered, possible, rejected, ready) and plan execution (i.e., activated,
aborted, suspended, completed).



Appl. Sci. 2023, 13, 8164 26 of 36

PROforma was proposed by Imperial Cancer Research Fund UK in 1998 [29]. In
PROforma, a guideline is modelled as a set of tasks (hierarchically organized into plans) and
data items. The TNM model is adopted, in which nodes represent tasks (and plans) and arcs
model the scheduling constraints between them. PROforma distinguishes among three
main basic types of tasks (plans are sets of tasks): actions (representing external procedures,
such as medications or drug administrations), enquiries (data requests), and decisions.

The PROforma formalism has been the basis of different system implementations,
including Arezzo (commercialised by InferMed Ltd.) and Tallis (by Imperial Cancer
Research Fund UK). In particular, Tallis consists of a set of Java components, including an
Engine which performs the execution of PROforma CIGs. We are not aware of any direct
description of any specific implementation of an execution engine for PROforma. However,
in [39], an accurate definition of the semantics of PROforma has been given, providing
an abstract and formal specification of the properties of the operations that any execution
engine for PROforma must satisfy. Specifically, operational semantics is adopted: the
semantics of PROforma are expressed in terms of state transitions of an abstract machine
(called an abstract execution engine). In particular, the state of the abstract engine is
described through four components: (i) the Properties Table, modelling the current value
of the properties of all the components of the guideline, (ii) the Changes Table, containing
new values for such properties, obtained as a result of the operations performed on the
guideline, (iii) a logical flag Exception, to signal the occurrence of an abnormal event in the
guideline execution, and (iv) an EngineTime.

In such semantics, a PROforma guideline is modelled through a set of components:
Data Items, Candidates, Arguments, Warning Conditions, Parameters, Sources, and Tasks.
In particular, during execution, tasks may assume different states (dormant, in_progress,
discarded, and completed—the possible transitions between states are defined in [39]).

The basic operation to model the execution of a PROforma guideline is runEngine,
which repeatedly updates the Properties Table to reflect the consequences of performing
operations and following the scheduling constraints (e.g., sequence of tasks) in the CIG. For
example, after the confirmation of a task, the runEngine operation may cause other tasks
to enter the in_progress state as a result of their scheduling constraints being satisfied.
Technically speaking, runEngine achieves the above effect by repeatedly performing a Burst
operation and then an enactChanges operation until the Changes Table becomes empty. Burst
and enactChanges are not public operations (i.e., they cannot be directly performed by
external systems). The Burst operation examines each task through the reviewTask operation
and determines whether any changes to the guideline are implied by the state of that
task. reviewTask evaluates the conditions through the initialiseConditions, startConditions,
discardConditions, and CompleteConditions operations for the state changes of a task T, and,
if satisfied, updates the Changes Table accordingly through the operations of initialise, start,
discard, and complete, referring to T. enactChanges updates the state of the execution engine
(specifically the Properties Table) in accordance with the changes recorded in the Changes
Table and removes such changes from the Changes Table.

Among the most recent approaches to CIG executions, we mention [40–42]. In particu-
lar, ref. [40] addresses the problem of extending the executor to support the coordination of
multiple agents in the execution of a CIG on a specific patient, also considering phenomena
such as task delegation.

Since META-GLARE supports formalisms based on the Task-Network model, its
executor has several similarities to the ones of GLIF, Asbru, and PROforma, such as the
computation of the control flow of the execution, which is determined by the arcs in the CIG
graph. Additionally, META-GLARE’s treatment of modality partly encompasses the state
transition model for CIG actions used in GLIF, Asbru, and PROforma. However, there is a
fundamental difference between META-GLARE’s executor and all the other CIG execution
engines in the literature: while the executors of the other approaches are specific to a
given CIG formalism, META-GLARE’s executor is not. It is designed in such a way that it
compositionally operates on the general constructs of the Task-Network model (i.e., nodes,



Appl. Sci. 2023, 13, 8164 27 of 36

arcs, and attributes), and is parametric with respect to the specific formalism. In particular,
the methods used to execute the specific types of attributes in the formalism are imported
from the formalism definition. As a consequence, the overall META-GLARE approach can be
conceived as a shell to support the design of new CIG systems, based on a CIG formalism
or a modification of an existing one. The advantages of adopting such a “high-level” shell
are discussed below, also taking into consideration Examples 1–3 in Section 6 above.

Finally, it is worth mentioning that, in the last few years, a new type of CIG execution
engines has started to appear in the specialized literature, aiming at supporting physicians
in the management of comorbid patients [43]. Comorbid patients are patients affected
by multiple diseases, so multiple CIGs (one for each disease) should be executed on
them. However, unfortunately, there may be interactions between the effects of the actions
of different CIGs, and such interactions may be dangerous for the patients. Therefore,
a “simple” in-parallel execution of multiple CIGs is not a feasible option, and several
approaches have been devised to detect and manage possible interactions and to produce a
“merged” therapeutic plan for comorbid patients, avoiding dangerous interactions. While
the main focus of [44] is the knowledge-based automatic detection and management of
interactions [45–52], there is also a focus on the definition of CIG execution mechanisms
supporting the run-time application of multiple CIGs to a comorbid patient. Ref. [46]
focuses on the generation of an “interaction-free” therapeutic plan for comorbid patients
through the mitigation of possible interactions via pre-defined rules based on a logical
framework. In [45], the authors propose a different implementation of their approach,
on top of PDDL, and also supporting patient preferences. In the approach in [46], the
run-time executor performs (when interaction can occur) the “merge” of CIGs locally only,
and in a dynamic way, in order to take into account the evolution of the patient and of
the contexts (e.g., availability of resources). A similar approach has been also proposed
in GLARE-SSCPM [48,49], an extension of GLARE in which physicians can interact with
the execution mechanism to choose among possible alternative ways of performing “local”
merges of the CIGs, also taking advantage of CSP mechanisms to merge CIG constraints [50].
Constraint satisfaction is also used by MuCIGREF [51]. MuCIGREF is a tool for multiple
CIG representation and execution which generates personal care plans from CIGs applied
to comorbid patients. It supports the concurrent execution of multiple CIGs, managing
concurrency or synchronization relations between activities possibly taken from different
CIGs, to avoid care conflicts. MuCIGREF supports dynamic constraint satisfaction over
CIG models (through the development of a CSP-solving algorithm).

In the current version, META-GLARE does not provide support for the execution of
multiple CIGs on comorbid patients. Such an issue will be addressed in our future work.

7.2. The Advantages of META-GLARE’s “Meta”-Approach

In the following, we highlight the advantages provided by the adoption of META-
GLARE with respect to (1) “traditional” CIG systems (e.g., Asbru [30], EON [53], GLIF [12],
GPROVE [54], GUIDE [55], PRODIGY [56], PROforma [29]), and (2) Protégé [20] and
DeGeL [21]).

First of all, it is important to emphasize commonalities: META-GLARE, Protégé, and
DeGeL can be used in different ways to define a new CIG system based on a specific CIG
formalism. However, the behavior of such systems, as well as the “traditional” systems, in
terms of how to acquire and execute a specific guideline, is basically the same.

On the other hand, META-GLARE is clearly different from the other approaches in case
(i) a new CIG system has to be defined on the basis of a new CIG representation formalism,
or (ii) an existing system has to be modified in order to update its representation formalism.

(1) “traditional” CIG approaches. Traditional CIG systems are based on a specific CIG
representation formalism. The software code of the acquisition and execution tools
provided by such a system has been specifically developed to manage the chosen
representation formalism. Such systems do not provide any facility to change the
representation formalism. Therefore, if some change to the formalism is required



Appl. Sci. 2023, 13, 8164 28 of 36

(e.g., in order to face new phenomena that had not been considered in the original
formalism), the system designer has to operate directly on the software code of the
acquisition and the execution tools, inspecting it and identifying where changes have
to be performed before appropriately changing/extending such a code. Notably, such
an approach may be quite difficult and time-consuming in real CIG systems, whose
code dimensions and complexities are quite high, even in the case of limited changes
in the formalism.

(2) Protégé and DeGeL approaches. Protégé and DeGeL support a mechanism for the
acquisition and management of multiple ontologies, which can be exploited to acquire
different CIG representation formalisms. For each acquired CIG formalism, they
automatically provide a tool to acquire CIG instances expressed in such a formalism.
As a consequence, Protégé and DeGeL facilitate designers in the definition of a new
CIG system based on a new formalism, or in the update of an existing one to update
its formalism: the designer can use their formalism acquisition tool to define the
new/updated formalism and gets the tool to acquire CIG instances automatically.
However, Protégé and DeGeL do not support the system designer with regard to the
execution tool. When changing the CIG formalism or defining a new formalism, the
system designer has to operate directly on the software code of the execution tool,
inspecting it, identifying where changes have to be performed, and appropriately
changing/extending such a code.

(3) META-GLARE approach. As shown by Experiments 1–3 above, META-GLARE
further generalizes the support provided by Protégé and DeGeL to also consider
the execution tool. The META-GLARE DEFINITION_EDITOR module supports
system designers in the definition of a new CIG formalism, or in the update of an
already acquired one. Since both META-GLARE’s tool to acquire specific CIG in-
stances (HG_ACQUISITION module; see Figure 1) and the tool to execute them
(HG_EXECUTION module; see Figure 1) are parametric with respect to the input
formalism, the definition/update of a CIG formalism does not require any modifi-
cation to them. No inspection of their code and no modifications are needed at all.
Therefore, programming is needed only in case a new component has to be added
to the component library (see Experiment 3 above). Notably, our approach is fully
modular, since the system designer has only to program the additional component
without taking care of the rest of the system. Therefore, META-GLARE supports fast
prototyping of the new or extended system.

7.3. Other Related Approaches in Computer Science

The idea underlying the META-GLARE approach is both simple and powerful: to
develop a “meta-CIG-system”, i.e., a shell to define or modify CIG systems on the basis of
the CIG representation formalism one wants to provide. Roughly speaking, the input of
META-GLARE is a description of a representation formalism for CIGs and the output is
a new CIG system to acquire, represent, and execute CIGs described in such a formalism.
Notably, similar ideas have already emerged in computer science. For instance, consider the
development of the so-called “compilers of compilers”, like YACC (Yet Another Compiler
of Compilers [57]) in the 1970s. However, while YACC takes grammar denoting a context-
free language as the input and produces a compiler for it as the output, META-GLARE
operates on CIG formalisms (input) and provides CIG acquisition and execution tools as
output. More recently, Model-Driven Software Engineering (MDSE) has emerged as a
new methodology for developing software systems in general, and healthcare systems
in particular (e.g., the International Workshop on Metamodeling for Healthcare Systems
has existed since 2014 (http://mmhs.hib.no/2014/, accessed on 30 April 2022)). Like the
Unified Modeling Language (UML), MDSE relates to models for software development.
However, while UML concerns documentation, MDSE models are considered equivalent
to code since their implementation is (semi)automated. As in MDSE, we use three levels of
models (the meta-formalism level, the formalism level, and the CIG-instance level). How-

http://mmhs.hib.no/2014/


Appl. Sci. 2023, 13, 8164 29 of 36

ever, in our approach, the model is not used to generate new code: the HG_INTERPRETER
is already provided by META-GLARE, which automatically “instantiates” it to support the
input formalism (which takes the place of the “model” in MDSE).

In practice, CIGs are a way to model and manage clinical processes. As such, they
belong to the very large field of computer science approaches to process management, for
which many different families of models and methodologies have been and are being de-
vised. For example, different workflow formalisms such as BPMN [58] and BPEL [59] have
been devised to deal with processes (e.g., in the business process context). Although differ-
ent workflow formalisms have been devised in the literature, one of the common focuses of
most of them is process orchestration and resource management [60]. The Workflow Man-
agement Coalition has not proposed a specific standard for the workflow engines but has
stated that the workflow enactment service may be considered as a state transition machine,
where individual process or activity instances change states in response to external events
(e.g., completion of an activity) or specific control decisions (e.g., navigation to the next
activity step within a process) [61]. For instance, Egon Borger and Bernhard Thalheim [62]
propose a modelling of BPMN workflows into the Abstract State Machine model and its
execution through a special-purpose ASM simulator. In the last few years, specific attention
in the area has been devoted to considering two important types of processes: web services
and human tasks (i.e., “work which has to be accomplished by people”). BPEL [59] was
one of the first workflow approaches aiming at providing a common execution framework
and language to manage distributed business processes based on multiple web services.
The Web Services Human Task (WS-Human Task) [63] and the BPEL4People [64] proposals
have focused on the additional modelling and management of human tasks. Specifically,
the WS-Human Task model has been proposed as an extension of Web Services to manage
human tasks in a distributed environment, with specific emphasis on coordination and task
assignment. BPEL4People has been proposed by the OASIS WS-BPEL Extension for People
Technical Committee as an extension of BPEL to enable the definition of human tasks and
human interactions as Web Services [65]. A comparative analysis of the WS-Human Task
and the BPEL4People has been proposed in [66].

Since both workflow and CIG frameworks are devoted to managing processes, they
are closely related. Indeed, in a milestone paper, the workflow patterns identified by the
Workflow Patterns Initiative have been adopted in order to evaluate the expressiveness of
several CIG formalisms (see [23] and also Section 5). Within the CIG literature, it has been
shown that PROForma [29] can manage hospital workflows as well as patient careflows [67],
and GUIDE is based upon a workflow-based formalism and engine [53]. Within the
workflow literature, Van der Aalst et al. [68] have shown that the Workflow patterns
are expressive enough to also cope with CIG patterns, and [69] proposes the adoption
of workflows for healthcare tasks. Notably, although we are not aware of any direct
implementation of a CIG execution engine as a state transition machine, the operational
definition of the semantics of PROforma (see Section 7.1) can certainly be interpreted as a
step towards such a direction. Despite many commonalities, however, CIG and Workflow
frameworks also present relevant differences. For instance, in [70], a real-world case study
(i.e., a comparative analysis of the workflow and the CIG adopted by a real hospital to
manage vinorelbine treatment for advanced non-small cell lung cancer) has been used as a
starting point to identify and abstract the main differences between workflows and CIGs.
The paper shows that workflows and CIGs differ along five different dimensions: contents, focus,
goals, users, and editors. Other works in the literature emphasize the differences between
workflows and CIGs, particularly the fact that while workflows mostly focus on patterns of
processes, CIGs are mostly centered on the modelling and the execution of knowledge-based
decisions to support evidence-based medical decision-making [71]. Given such differences,
in [70], the authors suggest that workflows and CIGs should be represented and executed
by different frameworks which need to interact, in case both of them are used as a support
to treat patients in healthcare organizations.



Appl. Sci. 2023, 13, 8164 30 of 36

8. Future Works

The implementation of the META-GLARE execution engine (HG_EXECUTION mod-
ule in Figure 1) is almost completed. In particular, the current implementation is more
focused on management control flows and not on issues concerning the interaction with
the users/physicians. After the next implementation works, we plan to start an extensive
experimental evaluation of our approach as soon as possible.

Notably, the current approach shows some limitations as discussed in Section 5.2. In
our future work, we also aim to further extend it to support new control structures and to
overcome these limitations.

We plan to exploit META-GLARE for fast prototyping and the possibility of sharing
attributes in our research and to develop CIG systems addressing new CIG tasks. In
particular, we plan to exploit the META-GLARE approach in the field of CIG education;
see Experiment 3 in Section 6. We plan to build GLARE-Edu by exploiting META-GLARE
(see considerations in Section 6). This research will be done in the AI-LEAP project, a
project founded by the Fondazione Compagnia di San Paolo and by Fondazione CDP,
Bando Intelligenza Artificiale 2. In addition, META-GLARE will allow us to support
“personalized” CIGs in our projects with physicians. This means not only making the
CIG systems (built using META-GLARE) more appealing, but META-GLARE will allow
us to respond more easily and quickly to specific requests and issues which are domain-
dependent and task-dependent.

9. Conclusions

The overall goal of our work is the definition of META-GLARE, the first shell in the
literature to facilitate the formalism-based design and development of CIG systems. While
the general architecture of META-GLARE has already been published in [16], in this paper
we focus on its execution engine. From the “technical” point of view, the main original
contributions of our paper are:

• The algorithms constituting the basis of the META-GLARE execution engine
• The library of control attribute types
• An evaluation of the expressiveness of our current formalism (META-GLARELib) using

the benchmark in [23]

Additionally, some experiments that we ran to apply META-GLARE to case studies
are also presented.

In general, our approach operates in the context of providing information support to
the treatment of clinical practice guidelines (CPGs), which are one of the major tools that
have been introduced to optimize and standardize healthcare practice, taking advantage of
the medical knowledge and evidence-based information about the “best” procedures to
cope with diseases. Many Computer-Interpretable Guidelines (CIG) have been developed
to support the adoption of CPGs in clinical practice. In this paper, we propose an innovative
methodology for the design and development of new CIG systems (or the update of
existing ones), and a software framework to support it, META-GLARE, focusing on its
execution module (HG_EXECUTION in Figure 1). In our approach, the notion of “meta-
programming” has been adopted to achieve a “system to design and develop CIG systems”.
Indeed, META-GLARE supports easy and fast design and prototyping in the definition of
new CIG systems (e.g., Experiment 2 in Section 6) and in the extension of existing systems
(e.g., Experiments 1 and 3 in Section 6), as well as the sharing of attribute types (and arc and
node types) between different CIG systems (for instance, Experiment 3).

Second, although we have demonstrated the “power” (or, in other words, the “expres-
siveness”) of META-GLARELib in Section 5, we aim to overcome the limitations as stated in
Section 8. However, it is even more important to stress that the current expressiveness of
META-GLARELib is not the true cue point. What is really important is that new control pat-
terns can be easily added to META-GLARE in a modular way. To do so, system developers
do not need to modify META-GLARE but just have to define new control attributes (and
their execution methods) and add them to META-GLARE’s library of attributes. After that,



Appl. Sci. 2023, 13, 8164 31 of 36

the new attributes can be easily used in the definition of new nodes and arcs in different
CIG formalisms (e.g., Experiments 2 and 3 in Section 6).

Author Contributions: Conceptualization, A.B. and P.T.; Methodology, A.B. and P.T.; Writing—
original draft, A.B. and P.T. The authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research had financial support from the Fondazione Compagnia di San Paolo and
from the Fondazione CDP, Bando Intelligenza Artificiale 2, AI-LEAP project.

Acknowledgments: The authors are also very indebted to Yuval Shahar for highlighting many
insights and discussions about our approach and, more generally, about the expressiveness of CIG
execution modules.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Explanation of support for the control–flow patterns in META-GLARE. Control attributes
have been detailed in Section 3.

Pattern Explanation
Basic control-flow

1. Sequence It is supported via an arc type with ariety (1:1) having the control attribute sequence

2. Parallel split It is supported via an arc type with ariety (1:N) and having the control attribute parallelSplit

3. Synchronization It is supported via an arc type with ariety (N:1) and having the control attribute synchronization
(n). The parameter n has to be set exactly to the number of input nodes of the arc

4. Exclusive choice
It is supported via an arc type with ariety (1:N) having a control attribute which specifies the
decision criteria which has to be evaluated (e.g., scoredDecision, booleanDecision in Section 3).
Notice that, to model the exclusive choice, the decisional must be mutually exclusive.

5. Simple merge It is modeled by multiple arcs pointing to a single node.
Advanced branching and synchronization

6. Multichoice

It is supported via an arc type with ariety (1:N) having a control attribute specifying the
choice criteria (e.g., through a scoredDecision, or a booleanDecision. Notice that the decisional
criteria must not mutually exclusive, to support the possible selection of more than one
output node.

7. Structured synchronizing merge
META-GLARE does not support this pattern, since META-GLARE control attributes for
synchronization require to specify at acquisition time (and not at execution time) the
number of nodes to be waited.

8. Multimerge It is modeled by multiple arcs pointing to a single node.

9. Structured discriminator It is supported via an arc type with ariety (N:1) and having the control attribute
synchronization (n). The parameter n has to be set to 1.

Structural patterns
10. Arbitrary cycles It is supported, since the graph representing a CIG has no structural constraints.

11. Implicit termination It is supported, since the execution of a CIG in META-GLARE implicitly terminates after
that all the enabled nodes have been executed

Multiple instances patterns

12. MI without synchronization

It is partially supported, through the adoption of more than one construct. The number k of
MI (multiple instances) is known at acquisition time. Thus, we can explicitly represent k
different instances of action in the CIG. This pattern can be represented through an arc with
ariety (1:N) and control attribute parallelSplit. Such an arc will have k output nodes, each one
representing the same activity. In turn, all such nodes are input nodes for an arc with ariety
(N:1) and with control attribute synchronization (n), where n is set to 1. Notably in
META-GLARE the execution goes on when the execution of at least one node is ended.



Appl. Sci. 2023, 13, 8164 32 of 36

Table A1. Cont.

Pattern Explanation

13. MI with a priori design-time knowledge

It is partially supported. The number k of MI (multiple instances) is known at
acquisition time. Thus, we can explicitly represent k different instances of action in
the CIG. We can model the pattern with an arc with ariety (1:N) and the control
attribute parallelSplit. This arc has k output nodes, each one representing an
instance of the same activity type. In turn, all such nodes are input nodes for an arc
with ariety (N:1) and with control attribute synchronization (n), where n is set to k.

14. MI with a priori run-time knowledge

We partially support this pattern (see discussion in Section 5.1). In META-GLARE,
there is no specific construct for multiple instances (of nodes): each instance has to
be explicitly represented in the CIG. Thus, the case in which the number of
instances is not known at CIG acquisition time (but it is only known at execution
time, as in the case of pattern 14) can only be modeled indirectly, through a set of
constructs. First of all, a bound b on the maximum number of instances must be
assumed (this is reasonable, since, anyway, one cannot have an infinite number of
instances). Then, a decision (decision (1)) between b alternatives must be modeled
(leading to b “dummy” nodes, used only for the purpose of the construction, but
not influencing the execution). Each branch i of the alternative represents the
concurrent execution of i ≤ b instances (to model the fact that one can execute one,
or two, or . . . . or b instances). In each case, the instances can run concurrently. This
is modeled by introducing a parallelSplit arc starting from a dummy node and
ending in i ≤ b node instances. Then, the different alternative branches must be
“merged”. This result is achieved in two steps. First, for each branch i, we
introduce a synchronization(i) arc (requiring the termination of each one of the i
instances), ending on a “dummy” node. In turn, a synchronization(1) arc is
introduced, starting from each one of the b “dummy” nodes, and requiring the
termination of exactly one of the alternative branches (i.e., the selected one).

15. MI without a priori run-time knowledge

It is partially supported, similarly to pattern 14 above. Differently from pattern 14,
in Pattern 15 the number of instances is not even known at execution time. We
model this case as a random choice between the b alternatives (where b is the
maximum bound on the number of instances; randomDecision(1) arc).

State-based pattern

16. Deferred choice

It is supported via an arc with ariety (1:N) having a control attribute, which
specifies the interaction with the user. The following control attributes can be used
to this purpose: scoredSuggestion (n), booleanSuggestion (n), qualitativeSuggestion (n),
decision (n).

17. Interleaved parallel routing
It is supported using META-GLARE temporal constraints. Using constraints, we
can easily specify that concurrent nodes must be executed in any order but
without overlapping in time.

18. Milestone It is not supported, since META-GLARE does not support triggers on the state of
the execution of nodes/arcs

Cancellation patterns
19. Cancel activity It is not supported, since META-GLARE does not support triggers.

20. Cancel case It is not supported, since META-GLARE does not support triggers.
New patterns

21. Structured loop It is supported via a node having one of the following control attributes:
cycleBoolenanCondition, dynamicCycleNumberRepetition, cycleNumberRepetition (n).

22. Recursion It is supported via a node having a control attribute conditioned/unconditionedGoTo
which points to the node itself

23. Transient trigger It is not supported, since in META-GLARE does not support triggers

24. Persistent trigger It is not supported, since in META-GLARE does not support triggers

25. Cancel region
It is not supported. This pattern could be realized using a trigger which can
activate a cancel action on a region (a set of nodes). However, META-GLARE does
not support triggers.



Appl. Sci. 2023, 13, 8164 33 of 36

Table A1. Cont.

Pattern Explanation

26. Cancel multiple instance activity It is not supported. This pattern could be realized using a trigger that can activate
a cancel action, but META-GLARE does not support triggers

27. Complete multiple instance activity It is not supported. This pattern can be realized using a trigger that can activate a
cancel action. However, META-GLARE does not support triggers

28. Blocking discriminator

It is partially supported: the pattern is supported by META-GLARE, but only
considering a single patient (see Section 1.3). It can be supported via an arc with
ariety (1:N) and with control attribute parallelSplit; then all the output nodes of this
arc are synchronized via an arc with ariety (1:N) and control attribute
synchronization (n), where n is set to the number of input nodes of the arc.

29. Canceling discriminator It is not supported, since in META-GLARE the execution of a branch cannot
influence the execution of the other parallel branches

30. Structured N-out-of-M join It is supported via an arc with ariety(N:1) and with control attribute
synchronization (n).

31. Blocking N-out-of-M join It is partially supported: the pattern is supported similarly to pattern 30, but only
considering a single patient (see discussion in Section 5.1).

32. Canceling N-out-of-M join It is not supported, since in META-GLARE the execution of a branch cannot
influence the execution of the other concurrent branches

33. Generalized AND-join

It is partially supported. Indeed, the pattern is supported, but only considering a
single patient (see discussion above). An arc with ariety (1:N) and control attribute
parallelSplit is used to start the concurrent branches; such branches are then
synchronized using an arc with ariety (N:1) and with control attribute
synchronization (n).

34. Static N-out-of-M join for MIs
It is not supported, since pattern 34 requires that both the number of concurrent
instances to be executed and the number of executed instances to be waited for
before the execution can go on is unknown at acquisition time.

35. Static N-out-of-M join for MIs with
cancellation

It is not supported, similarly to 34. In addition, instance cancellation is required
(and not supported in META-GLARE).

36. Dynamic N-out-of-M join for MIs It is not supported, similarly to 34. With respect to 34, here the number of instances
can randomly vary at execution time.

37. Acyclic synchronizing merge
It is not supported, since in 37 the number of branches to be merged depends on
the number of branches previously activated at execution time (only
acquisition-time values can be managed in META-GLARE).

38. General synchronizing merge It is not supported, similarly to 37.

39. Critical section
It is not supported, since META-GLARE does not support the concept of critical
section. META-GLARE does not allow to specify conditions on an arbitrary groups
of nodes (i.e., nodes not structurally related)

40. Interleaved routing It is supported via temporal constraints which allow to specify that the nodes
belonging to different concurrent branches must be executed without overlapping.

41. Thread merge It is not supported, since META-GLARE does not support threads. Notice that the
concept of thread is not related to the context of CIGs.

42. Thread split It is not supported, since META-GLARE does not support thread. Notice that the
concept of thread is not related to the context of CIGs.

43. Explicit termination It is supported via the control attribute unconditionedExit

References
1. Field, M.J.; Lohr, K.N. Clinical Practice Guidelines: Directions for a New Program; Institute of Medicine, National Academy Press:

Washington, DC, USA, 1990.
2. ten Teije, A.; Miksch, S.; Lucas, P. Computer-Based Medical Guidelines and Protocols: A Primer and Current Trends; IOS Press:

Amsterdam, The Netherlands, 2008.
3. Lucas, P.; Hommerson, A. Foundations of Biomedical Knowledge Representation; Springer: Berlin/Heidelberg, Germany, 2015.



Appl. Sci. 2023, 13, 8164 34 of 36

4. Peleg, M. Computer-interpretable clinical guide-lines: A methodological review. J. Biomed. Inform. 2013, 46, 744–763. [CrossRef]
[PubMed]

5. Riaño, D.; Peleg, M.; ten Teije, A. Ten years of knowledge representation for health care (2009–2018): Topics, trends, and challenges.
Artif. Intell. Med. 2019, 100, 101713. [CrossRef] [PubMed]

6. Peleg, M.; Tu, S.; Bury, J.; Ciccarese, P.; Fox, J.; Greenes, R.A.; Hall, R.; Johnson, P.D.; Jones, N.; Kumar, A.; et al. Comparing
computer-interpretable guideline models: A case-study approach. J. Am. Med. Inform. Assoc. 2003, 10, 52–68. [CrossRef] [PubMed]

7. Bottrighi, A.; Chesani, F.; Mello, P.; Montali, M.; Montani, S.; Storari, S.; Terenziani, P. Analysis of the GLARE and GPROVE
Approaches to Clinical Guidelines. In Knowledge Representation for Health-Care. Data, Processes and Guidelines; LNCS 5943; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 76–87.

8. Isern, D.; Moreno, A. Computer-based execution of clinical guidelines: A review. Int. J. Med. Inform. 2008, 77, 787–808. [CrossRef]
[PubMed]

9. Terenziani, P.; Montani, S.; Bottrighi, A.; Molino, G.; Torchio, M. Applying Artificial Intelligence to Clinical Guidelines: The
GLARE Approach. Stud. Health Technol. Inform. 2008, 139, 273–282.

10. Ohno-Machado, L.; Gennari, J.H.; Murphy, S.N.; Jain, N.L.; Tu, S.W.; Oliver, D.E.; Pattison-Gordon, E.; Greenes, R.A.; Shortliffe,
E.H.; Barnett, G.O. The guideline interchange format: A model for representing guidelines. J. Am. Med. Inform. Assoc. 1998, 5,
357–372. [CrossRef]

11. Boxwala, A.A.; Greenes, R.A.; Deibel, S.R. Architecture for a multipurpose guideline execution engine. Proc. AMIA Symp. 1999,
1999, 701–705.

12. Peleg, M.; Boxwala, A.A.; Tu, S.; Zeng, Q.; Ogunyemi, O.; Wang, D.; Patel, V.L.; Greenes, R.A.; Shortliffe, E.H. The InterMed
approach to sharable computer-interpretable guidelines: A review. J. Am. Med. Inform. Assoc. 2004, 11, 1–10. [CrossRef]

13. Seyfang, A.; Kosara, R.; Miksch, S. Asbru 7.3 Reference Manual, Technical Report; Vienna University of Technology: Vienna,
Austria, 2002.

14. Terenziani, P.; Molino, G.; Torchio, M. A modular approach for representing and executing clinical guidelines. Artif. Intell. Med.
2001, 23, 249–276. [CrossRef]

15. Bottrighi, A.; Molino, G.; Montani, S.; Terenziani, P.; Torchio, M. Supporting a distributed execution of clinical guidelines. Comput.
Methods Programs Biomed. 2013, 112, 200–210. [CrossRef]

16. Bottrighi, A.; Terenziani, P. META-GLARE: A meta-system for defining your own computer interpretable guideline system—
Architecture and acquisition. Artif. Intell. Med. 2016, 72, 22–41. [CrossRef]

17. Workflow Patterns Initiative. Available online: https://www.workflowpatterns.com (accessed on 16 April 2023).
18. van der Aalst, W.M.P. Pi Calculus Versus Petri Nets: Let us eat “humble pie” rather than further inflate ‘”Pi hype”. BPTrends 2005,

3, 1–11.
19. Kiepuszewski, B. Expressiveness and Suitability of Languages for Control Flow Modelling in Workflows. Ph.D. Thesis, Queens-

land University of Technology, Brisbane, Australia, 2003.
20. Protégé Homepage. Available online: https://protege.stanford.edu (accessed on 20 April 2023).
21. Shahar, Y.; Young, O.; Shalom, E.; Galperin, M.; Mayaffit, A.; Moskovitch, R.; Hessing, A. A framework for a distributed,

hybrid, multiple-ontology clinical-guideline library, and automated guideline-support tools. J. Biomed. Inform. 2004, 37, 325–344.
[CrossRef]

22. Terenziani, P.; Bottrighi, A.; Lovotti, I.; Rubrichi, S. META-GLARE: A Meta-System for Defining Your Own CIG System: Architec-
ture and Acquisition. In Knowledge Representation for Health Care; KR4HC@VSL 2014, LNCS 8903; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 95–110.

23. Mulyar, N.; van der Aalst, W.M.P.; Peleg, M. Research Paper: A Pattern-based Analysis of Clinical Computer-interpretable
Guideline Modeling Languages. J. Am. Med. Inform. Assoc. 2007, 14, 781–787. [CrossRef]

24. Bottrighi, A.; Rubrichi, S.; Terenziani, P. META-GLARE: A Meta-Engine for Executing Computer Interpretable Guidelines. In
Knowledge Representation for Health Care; AIME 2015, LNCS 9485; Springer: Berlin/Heidelberg, Germany, 2015; pp. 37–50.

25. Dechter, R.; Meiri, I.; Pearl, J. Temporal Constraint Networks. Artif. Intell. 1991, 49, 61–95. [CrossRef]
26. Anselma, L.; Terenziani, P.; Montani, S.; Bottrighi, A. Towards a comprehensive treatment of repetitions, periodicity and temporal

constraints in clinical guidelines. Artif. Intell. Med. 2006, 38, 171–195. [CrossRef]
27. SNOMED International. Available online: http://www.snomed.org/ (accessed on 30 March 2023).
28. ATC Structure and Principles. Available online: http://www.whocc.no/atc/structure_and_principles/ (accessed on 30 March 2023).
29. Fox, J.; Johns, N.; Rahmanzadeh, A. Disseminating medical knowledge: The PROforma approach. Artif. Intell. Med. 1998, 14,

157–182. [CrossRef]
30. Shahar, Y.; Miksch, S.; Johnson, P.D. The Asgaard project: A task-specific framework for the application and critiquing of

time-oriented clinical guide-lines. Artif. Intell. Med. 1998, 14, 29–51. [CrossRef]
31. Terenziani, P.; Anselma, L.; Bottrighi, A.; Montani, S. Advanced treatment of temporal phenomena in clinical guidelines. AMIA

Annu. Symp. Proc. 2006, 2006, 1117.
32. Russell, N.; ter Hofstede, A.H.M.; van der Aalst, W.M.P.; Mulyar, N. Workflow Control-Flow Patterns: A Revised View; BPM

Center Report BPM-06-22; BPM Center: San Pedro, Costa Rica, 2006; Available online: http://www.workflowpatterns.com/
documentation/documents/BPM-06-22.pdf (accessed on 29 March 2023).

https://doi.org/10.1016/j.jbi.2013.06.009
https://www.ncbi.nlm.nih.gov/pubmed/23806274
https://doi.org/10.1016/j.artmed.2019.101713
https://www.ncbi.nlm.nih.gov/pubmed/31607346
https://doi.org/10.1197/jamia.M1135
https://www.ncbi.nlm.nih.gov/pubmed/12509357
https://doi.org/10.1016/j.ijmedinf.2008.05.010
https://www.ncbi.nlm.nih.gov/pubmed/18639485
https://doi.org/10.1136/jamia.1998.0050357
https://doi.org/10.1197/jamia.M1399
https://doi.org/10.1016/S0933-3657(01)00087-2
https://doi.org/10.1016/j.cmpb.2013.04.003
https://doi.org/10.1016/j.artmed.2016.07.002
https://www.workflowpatterns.com
https://protege.stanford.edu
https://doi.org/10.1016/j.jbi.2004.07.001
https://doi.org/10.1197/jamia.M2389
https://doi.org/10.1016/0004-3702(91)90006-6
https://doi.org/10.1016/j.artmed.2006.03.007
http://www.snomed.org/
http://www.whocc.no/atc/structure_and_principles/
https://doi.org/10.1016/S0933-3657(98)00021-9
https://doi.org/10.1016/S0933-3657(98)00015-3
http://www.workflowpatterns.com/documentation/documents/BPM-06-22.pdf
http://www.workflowpatterns.com/documentation/documents/BPM-06-22.pdf


Appl. Sci. 2023, 13, 8164 35 of 36

33. Leonardi, G.; Bottrighi, A.; Galliani, G.; Terenziani, P.; Messina, A.; Della Corte, F. Exceptions Handling within GLARE Clinical
Guideline Frame-work. AMIA Annu. Symp. Proc. 2012, 2012, 512–521.

34. Gaba, D.M. The future vision of simulation in health care. Qual. Saf. Health Care 2004, 13 (Suppl. 1), i2–i10. [CrossRef] [PubMed]
35. Bottrighi, A.; Molino, G.; Piovesan, L.; Terenziani, P. Towards an “Operational” Educational Model in Healthcare: Exploiting

Computer-Interpretable Guidelines. In Proceedings of the Healthinf 2019: 12th International Conference on Health Informatics,
Prague, Czech Republic, 22–24 February 2019; pp. 402–409.

36. Bottrighi, A.; Molino, G.; Piovesan, L.; Terenziani, P. Simulating Clinical Guidelines for Medical Education. In Proceedings of the
ICEI 2019, ACM, Purworejo, Indonesia, 27–28 September 2019; pp. 66–72.

37. Wang, D.; Peleg, M.; Tu, S.W.; Boxwala, A.A.; Ogunyemi, O.; Zeng, Q.; Greenes, R.A.; Patel, V.L.; Shortliffe, E.H. Design and
implementation of the GLIF3 guideline execution engine. J. Biomed. Inform. 2004, 37, 305–318. [CrossRef] [PubMed]

38. Fuchsberger, C.; Miksch, S. Asbru’s Execution Engine: Utilizing Guidelines for Artificial Ventilation of Newborn Infants. In
Proceedings of the IDAMAP 2003, Protaras, Cyprus, 19–22 October 2003; pp. 99–125.

39. Sutton, D.R.; Fox, J. The syntax and semantics of the PROforma guideline modeling language. J. Am. Med. Inform. Assoc. 2003, 10,
433–443. [CrossRef] [PubMed]

40. Bottrighi, A.; Piovesan, L.; Terenziani, P. Supporting the distributed execution of clinical guidelines by multiple agents. Artif.
Intell. Med. 2019, 98, 87–108. [CrossRef] [PubMed]

41. Novais, P.; Oliveira, T.; Satoh, K.; Neves, J. The Role of Ontologies and Decision Frameworks in Computer-Interpretable Guideline
Execution. Synergies Between Knowledge Engineering and Software Engineering. In Advances in Intelligent Systems and Computing;
Nalepa, G., Baumeister, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; p. 626.

42. Silva, A.; Oliveira, T.; Gonçalves, F.; Neves, J.; Satoh, K.; Novais, P. A Unified System for Clinical Guideline Management and
Execution. Trends and Advances in Information Systems and Technologies. WorldCIST’18 2018. In Advances in Intelligent Systems
and Computing; Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; p. 746.

43. Van Woensel, W.; Tu, S.W.; Michalowski, W.; Raza Abidi, S.S.; Abidi, S.; Alonso, J.-R.; Bottrighi, A.; Carrier, M.; Edry, R.; Hochberg,
I.; et al. A community-of-practice-based evaluation methodology for knowledge intensive computational methods and its
application to multimorbidity decision support. J. Biomed. Inform. 2023, 142, 104395. [CrossRef]

44. Zamborlini, V.; Da Silveira, M.; Pruski, C.; ten Teije, A.; Geleijn, E.; van der Leeden, M.; Stuiver, M.; van Harmelen, F. Analyzing
interactions on combining multiple clinical guidelines. Artif. Intell. Med. 2017, 81, 78–93. [CrossRef]

45. Michalowski, M.; Wilk, S.; Michalowski, W.; Carrier, M. MitPlan: A Planning Approach to Mitigating Concurrently Applied
Clinical Practice Guidelines. Artif. Intell. Med. 2019, 2019, 93–103.

46. Wilk, S.; Michalowski, M.; Michalowski, W.; Rosu, D.; Carrier, M.; Kezadri-Hamiaz, M. Comprehensive mitigation framework for
concurrent application of multiple clinical practice guidelines. J. Biomed. Inform. 2017, 66, 52–71. [CrossRef]

47. Jafarpour, B.; Raza Abidi, S.; Van Woensel, W.; Raza Abidi, S.S. Execution-time integration of clinical practice guidelines to
provide decision support for comorbid conditions. Artif. Intell. Med. 2019, 94, 117–137. [CrossRef]

48. Piovesan, L.; Terenziani, P.; Molino, G. GLARE-SSCPM: An Intelligent System to Support the Treatment of Comorbid Patients.
IEEE Intell. Syst. 2018, 33, 37–46. [CrossRef]

49. Bottrighi, A.; Piovesan, L.; Terenziani, P. Supporting physicians in the coordination of distributed execution of CIGs to treat
comorbid patients. Artif. Intell. Med. 2023, 135, 102472. [CrossRef]

50. Piovesan, L.; Terenziani, P. A Constraint-Based Approach for the Conciliation of Clinical Guidelines. In Proceedings of the
Advances in Artificial Intelligence—IBERAMIA 2016, San José, Costa Rica, 23–25 November 2016; pp. 77–88.

51. Bilici, E.; Despotou, G.; Arvanitis, T.N. Concurrent Execution of Multiple Computer-interpretable Clinical Practice Guidelines and
Their Interrelations. In Health Informatics Vision: From Data via Information to Knowledge; IOS Press: Amsterdam, The Netherland,
2019; pp. 7–10.

52. Kogan, A.; Tu, S.W.; Peleg, M. Goal-driven management of interacting clinical guidelines for multi-morbidity patients. Artif.
Intell. Med. 2018, 2018, 690–699.

53. Tu, S.W.; Musen, M.A. Modeling data and knowledge in the EON guideline architecture. Stud. Health Technol. Inform. 2001, 84,
280–284.

54. Chesani, F.; Lamma, E.; Mello, P.; Montali, M.; Storari, S.; Baldazzi, P.; Manfredi, M. Compliance checking of cancer-screening
careflows: An approach based on computational logic. Stud. Health Technol. Inform. 2008, 139, 183–192.

55. Quaglini, S.; Stefanelli, M.; Cavallini, A.; Miceli, G.; Fassino, C.; Mossa, C. Guideline based care-flow systems. Artif. Intell. Med.
2000, 20, 5–22. [CrossRef]

56. Johnson, P.D.; Tu, S.W.; Booth, N.; Sugden, B.; Purves, I.N. Design and implementation of a framework to support the development
of clinical guidelines. Proc. AMIA Symp. 2000, 2000, 389–393.

57. Johnson, S.C. Yacc: Yet Another Compiler-Compiler; Bell Laboratories: Murray Hill, NJ, USA, 1975; Volume 32.
58. Object Management Group Business Process Model and Notation. Available online: http://www.bpmn.org/ (accessed on 8 May 2023).
59. Web Services Business Process Execution Language Version 2.0. Available online: http://docs.oasis-open.org/wsbpel/2.0/

wsbpel-v2.0.html (accessed on 8 May 2023).
60. Georgakopoulos, D.; Hornick, M.; Sheth, A. An overview of workflow management: From process modeling to workflow

automation infrastructure. Distrib. Parallel Databases 1995, 3, 119–153. [CrossRef]

https://doi.org/10.1136/qshc.2004.009878
https://www.ncbi.nlm.nih.gov/pubmed/15465951
https://doi.org/10.1016/j.jbi.2004.06.002
https://www.ncbi.nlm.nih.gov/pubmed/15488745
https://doi.org/10.1197/jamia.M1264
https://www.ncbi.nlm.nih.gov/pubmed/12807812
https://doi.org/10.1016/j.artmed.2019.05.001
https://www.ncbi.nlm.nih.gov/pubmed/31204191
https://doi.org/10.1016/j.jbi.2023.104395
https://doi.org/10.1016/j.artmed.2017.03.012
https://doi.org/10.1016/j.jbi.2016.12.002
https://doi.org/10.1016/j.artmed.2019.02.003
https://doi.org/10.1109/MIS.2018.2886697
https://doi.org/10.1016/j.artmed.2022.102472
https://doi.org/10.1016/S0933-3657(00)00050-6
http://www.bpmn.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
https://doi.org/10.1007/BF01277643


Appl. Sci. 2023, 13, 8164 36 of 36

61. Workflow Management Coalition—The Workflow Reference Model. Available online: http://www.workflowpatterns.com/
documentation/documents/tc003v11.pdf (accessed on 8 March 2023).

62. Borger, E.; Thalheim, B. Modeling Workflows, Interaction Patterns, Web Services and Business Processes: The ASM-Based
Approach. In Abstract State Machines, B and Z; LNCS 5238; Springer: Berlin/Heidelberg, Germany, 2008; pp. 24–38.

63. Agrawal, M.; Amend, M.; Das, M.; Ford, C.; Keller, M.; Kloppmann, D.; König, F.; Leymann, R.; Müller, O.G.; Pfau, K.; et al. Web
Services Human Task (WS-HumanTask), Version 1.0 A. Available online: http://svn.apache.org/repos/asf/incubator/hise/site/
publish/WS-HumanTask_v1.pdf (accessed on 9 April 2021).

64. Available online: http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html (accessed on 9 April 2021).
65. Available online: https://www.oasis-open.org/committees/bpel4people/charter.php (accessed on 8 April 2021).
66. Russell, N.; van der Aalst, W.M.P. Evaluation of the BPEL4People and WS-HumanTask Extensions to WS-BPEL 2.0 using the

Workflow Resource Patterns. In Bpm Center Report; Department of Technology Management, Eindhoven University of Technology:
Eindhoven, The Netherlands, 2007; p. 142.

67. Fox, J.; Black, E.; Chronakis, I.; Dunlop, R.; Patkar, V.; South, M.; Thomson, R. From Guidelines to Care-flows: Modelling and
Supporting Complex Clinical Processes. Stud. Health Technol. Inform. 2008, 139, 44–62.

68. Mulyar, N.; Pesic, M.; van der Aalst, W.M.P.; Peleg, M. Towards the Flexibility in Clinical Guideline Modelling Languages; BPM Center
Report BPM-07-04; BPM Center: San Pedro, Costa Rica, 2007.

69. Reijers, H.A.; Russell, N.; Van der Geer, S.; Krekels, G.A. Workflow for Healthcare: A Methodology for Realizing Flexible Medical
Treatment Processes. In Proceedings of the International Conference on Business Process Management BPM 2009: Business
Process Management Workshops, Ulm, Germany, 8–10 September 2009; pp. 593–604.

70. Terenziani, P.; Femiano, S. Towards an Integration of Workflows and Clinical Guidelines: A Case Study. In Proceedings of the
Advances in Artificial Intelligence—IBERAMIA 2016, San José, Costa Rica, 23–25 November 2016; pp. 3–13.

71. Mans, R.S.; Russell, N.C.; van der Aalst, W.M.P.; Bakker, P.J.M.; Moleman, A.J.; Jaspers, M.W.M. Proclets in healthcare. J. Biomed.
Inform. 2010, 43, 632–649. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.workflowpatterns.com/documentation/documents/tc003v11.pdf
http://www.workflowpatterns.com/documentation/documents/tc003v11.pdf
http://svn.apache.org/repos/asf/incubator/hise/site/publish/WS-HumanTask_v1.pdf
http://svn.apache.org/repos/asf/incubator/hise/site/publish/WS-HumanTask_v1.pdf
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
https://www.oasis-open.org/committees/bpel4people/charter.php
https://doi.org/10.1016/j.jbi.2010.03.010

	Introduction 
	The Importance of Fast Design and Prototyping of CIG Systems 
	An Approach Supporting Fast Design and Prototyping 
	A Glimpse into the META-GLARE Methodology 
	Organization and Main Contributions of the Paper 

	Background 
	META-GLARE Architecture 
	A “Meta-Formalism” for CIGs 
	Node Types 
	Arc Types 
	Attribute Types 

	META-GLARE Executor: Previous Work 

	META-GLARE Control Attributes 
	Control Attributes for Node Types 
	Control Attributes for Arc Types 
	Concluding Remark 

	CIG Execution Meta-Engine 
	Evaluating META-GLARE 
	Evaluating the Expressiveness of META-GLARELib 
	Some Limitations of the Current Version of META-GLARE 

	Applying META-GLARE 
	Related Work and Comparisons 
	CIG Execution Tools 
	The Advantages of META-GLARE’s “Meta”-Approach 
	Other Related Approaches in Computer Science 

	Future Works 
	Conclusions 
	Appendix A
	References

