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Abstract: Particulate materials, such as sandy soil, are everywhere in nature and form the basis for
many engineering applications. The aim of this research is to investigate the particle shape, size,
and gradation of sandy soil and how they relate to shear strength, which is an essential charac-
teristic that impacts soil stability and mechanical behaviour. This will be achieved by employing
a combination of experimental methodology, which includes the use of a microscope direct shear
apparatus, and machine learning techniques, namely multiple linear regression and random for-
est regression. The experimental findings reveal that angular-shaped sand particles enhance the
shear strength characteristics compared to spherical, rounded ones. Similarly, coarser sand particles
improve these characteristics compared to finer sand particles, as do well-graded particles when
compared to poorly graded ones. The machine learning findings show the validity of both models in
predicting shear strength when compared to the experimental results, showing high accuracy. The
models are designed to predict shear strength of sand considering six input features: mean particle
size, uniformity coefficient, curvature coefficient, dry density, normal stress, and particle regularity.
The most important features from both models were identified. In addition, an empirical equation
for calculating shear strength was developed through multiple linear regression analysis using the
six features.

Keywords: particle size; particle shape; sand; shear strength; machine learning; multiple linear
regression; random forest regression

1. Introduction

Natural particulate materials, such as sandy soil, are found everywhere and are essen-
tial to many engineering applications. Various fields, from civil engineering to materials
science, require an understanding of the mechanical behaviour of particle-to-particle [1,2]
and their interactions with different surfaces [3–6]. Understanding these materials is
strongly reliant on particle morphology, which has a significant influence on the mechanical
response of granular materials such as sand. The term ‘particle morphology’ is used to refer
to particle shape, size, form, sphericity, or surface roughness. With regards to particle size,
the soil size in descending order is boulder, cobbles, pebbles, gravel, sand, silt, and clay.
The scope of this paper will be limited to sand, which is a granular material composed of
individual particles classified into three sizes: coarse, medium, and fine sand, as specified
by the Australian standard [7].

While the particle shape has been a topic that has raised many questions in the
literature, its implication on the behaviour of soil is a major area of study with constant
research progression. The soil particle shape can be graded on three independent properties:
form (sphericity: overall shape), roundness, and roughness, each of which has a different
influence on the behaviour of the material [8]. With regards to the sphericity, the soil
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particles can be bulky, flaky, and needle shaped. Sand particles are considered bulky,
and their shape is mostly set during formation. Researchers often use terms such as
‘well-rounded’, ‘rounded’, ‘sub-rounded’, ‘subangular’, ‘angular’, and ‘very angular’ to
describe the roundness of bulky particles. However, the sand’s surface roughness can
change significantly with mechanical and chemical weathering of rocks and minerals over
geological time [9]. While sphericity and roundness are macro- and medium-scale particle
measurements, particle surface texture is a microscale measurement [10]. With regards to
granular sand, the particle shape, including sphericity, roundness, and roughness, affect the
sand’s stiffness, strength, minimum and maximum void ratio (e min and e max), critical state
friction angle (ϕ c), dilatancy (ψ), dilation, strain localisation, and the evolution of strength
anisotropy [11]. Furthermore, particle shape can significantly influence the compressibility
of granular structures. Experimental studies have found that particle roundness and
sphericity (particle regularity) can affect both packing density and compressibility [2].

The shape of soil particles, including roundness, angularity, and surface roughness,
plays a significant role in determining soil mechanical behaviour. Roundness impacts how
particles interact, affecting soil mass packing and stiffness [12–14]. Angular particles, due
to their enhanced interlocking, exhibit higher friction angles and shear strength [15]. Li [16]
found that as sample convexity decreased, friction angle increased. This statement was sup-
ported by an experimental and numerical study by Peng et al. [17], whose results showed
that angular particles have more shear strength compared to rounded particles. Surface
roughness influences soil stiffness [18] and wave propagation parameters [19]. Angularity
affects the undrained response of fine sands, with more angular particles offering increased
resistance to movement, thereby boosting soil strength [20,21]. The work of researchers like
Miura et al. [22] in studying the impact of these properties on soil behaviour contributes to
more accurate predictive models, directly informing engineering practices.

Particle size has an important effect on the behaviour of individual particles and
the packaging density. Vangla and Latha [23] investigated the effect of particle size on
shear strength characteristics. They attempted to eliminate the effect of morphological
characteristics by selecting three sands with different particle sizes (coarse, medium, and
fine) but similar particle shapes (angularity, roundness, sphericity, and roughness). The
samples were prepared at a similar void ratio, and the test was carried out using direct
shear. The results showed that particle size has a slight influence on the peak friction angle
but not on the mechanism of shearing, with coarse sand particles taking longer to reach
the peak compared to fine sand particles. In contrast, an experiment by Wang et al. [24]
investigated the effect of sand and gravel size on shear strength using both direct shear
and triaxial tests in the laboratory. The results showed that as the mean particle diameter
D50 increased, the angle of shearing resistance also increased, leading to higher shear
strength. Similar results were reported by [16,25,26], who found that peak and residual
shear strength increase as particle size increases, whereas in glass beads, interparticle
friction between two glass beads increases as sphere size increases [27]. Interestingly,
particle size also affects the compressibility of the granular structure, with smaller particles
leading to greater compression compared to larger particles [1].

Researchers in the engineering, geotechnics, as well as the medical field have become
more interested in artificial intelligence (AI) techniques over the last two decades. A variety
of machine learning algorithms have been utilised with significant success, including
multiple linear regression (MLR) and random forest regression (RFR), which we have
adopted in our research. In a study by Xie et al. [28], the two models, MLR and RF, were
compared for estimating soil extracellular enzyme activities in reclaimed coastal saline
land. The authors report that the RF model performed better than the MLR model in
predicting the activities of soil amylase and urease, which are important indicators of
soil carbon and nitrogen cycling. The article also identifies the main factors affecting
soil extracellular enzyme activities, such as soil water content, total nitrogen, and pH.
Another study by Zhang et al. [29], who also used MLR and RF models, investigated the
prediction of soil organic carbon (SOC) in a coastal reclamation zone of eastern China. The
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authors compared the effects of different factors on SOC dynamics and found that soil
pH, chloride, and silt contents were the most important factors influencing SOC. Results
from the study indicated that the RF model also performed better than MLR due to its
superiority in handling non-linear relationships between SOC and the predictors. The
RF model showed substantially reduced error indices (ME, MSE, and RMSE), as well
as a higher R2. Another interesting technique is the Adaptive Neuro-Fuzzy Inference
System (ANFIS) introduced by Jang in 1993. ANFIS integrates the elements of neural
networks and fuzzy logic, demonstrating capabilities of learning and generalisation [30].
The system has found diverse applications across various domains. It has been used
for predicting skin permeability in drug-delivery scenarios [31], controlling quality and
predicting characteristics in food-processing technology [32], determining heavy metal
concentrations in water resources [33], and even predicting the security index of ad hoc
vehicular networks [34]. Moreover, it has shown efficacy in predicting the higher heating
value of biomass [35] and modelling thermal error [36]. In addition, a recent article [37]
presents a method to control the cooling of machine tool spindles using ANFIS. The method
adjusts the coolant pump frequency based on the spindle speed and thermal state, achieving
high accuracy and efficiency in reducing thermal deformation and energy consumption.
While MLR and RFR provide robust and interpretable models, the potential of ANFIS,
given its successful implementation in various studies, indicates it as an intriguing future
direction for predictive modelling research, including predicting the shear strength of
cohesionless soil.

The analysis of shear strength of cohesionless soil such as sand can be influenced
by granular shape, size, and gradation. However, no comprehensive model taking these
parameters into account can be found in the literature. This is because there are many
variables that affect it in non-linear ways. In the geotechnical field, machine learning has
been used successfully for problems such as slope stability [38], soil mechanics [39,40],
soil cracking [41], and soil improvement with recycled materials [42–46]. However, the
application of AI methodologies for predicting the shear strength of cohesionless soil,
considering the combined influence of particle shape, size, and gradation, has not been
sufficiently investigated, indicating a large gap in past research. This research aims to
fill this gap by conducting and analysing a series of direct shear tests across different
granular sizes and shapes. This is followed by the application of both MLR and RFR, which
are based on six input features: mean particle size (D50), coefficient of uniformity (Cu),
coefficient of curvature (Cc), dry density (
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edge in the training and testing data, but MLR secures a slightly higher value in the 10-
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bust predictive capabilities, although RFR generally exhibits stronger performance, par-
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Table 6. Comparative performance of multiple linear regression and random forest regression on 
training, testing, and 10-fold cross-validation datasets. 

Performance 
Metrics 

MLR RFR 
Training 

Data 
Testing 

Data 10-Fold CV 
Training 

Data 
Testing 

Data 10-Fold CV 

MAE 8.31 7.67 9.28 3.79 5.68 9.83 
RMSE 11.87 10.08 13.57 6.55 7.37 15.8 

RMSLE 0.29 0.17 0.35 0.07 0.09 0.19 
R2 0.95 0.94 0.93 0.98 0.97 0.90 

4.4. Importance of Features  
The application of machine learning algorithms (MLR and RFR) in our study involves 

six input features (D50, Cu, Cc, Ꝭd, σn, ⍴ ) and one output which is the shear strength of 
sand. In Figure 17, both MLR and RFR models, when using the train test splits, identified 
normal stress as the principal factor, underlining its essential role in governing shear 
strength, while dry density followed as the second most influential parameter, highlight-
ing its significance in determining the mass per unit volume. However, when using the 
10-fold cross-validation method, mean particle size showed the highest feature im-
portance, followed by coefficient of uniformity. 

d), normal stress (σn), and particle regularity
(ρr), the last of which is the average of roundness and sphericity. The research then presents
an empirical equation for predicting the shear strength of sand, considering the six input
features. Finally, after careful examination of the results derived from the models, the study
presents the most effective model and investigates the significance of the inputs involved
in each model. This study provides a strong base for a deep investigation into a new area
that was not explored before.

2. Materials and Methods
2.1. Material

According to the Australian standard [7], sand sizes range from 2.36 mm to 0.075 mm,
with coarse sand ranging from 2.36 to 0.6 mm, medium sand ranging from 0.6 to 0.212 mm,
and fine sand ranging from 0.212 to 0.075 mm. Particles larger than 2.36 mm are classified
as gravel, while particles smaller than 0.075 mm are classified as silt or clay. Different types
of sand were used in the experiments to examine the effect of particle size and shape. The
sands used in the study are referred to as L-Sand, M-Sand, P-Sand, and B-Sand.

For the particle shape impact, four types of sand were used, namely L-Sand, B-Sand,
M-Sand, and P-Sand, were each sieved and separated into four different sizes (1.18 to
0.6 mm, 0.6 to 0.425 mm, 0.425 to 0.3 mm, and 0.3 to 0.15 mm). Due to the limitation of
the microscope lens, which tends to overlook particles larger than 1.18 mm, only particles
below this size were selected.
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To study the impact of particle size, B-sand was sieved and divided into containers
based on their size (Figure 1), and five different sands were selected for testing. According
to Australian standards [7], four of the selected sands are poorly graded and are considered
to be fine sand (B1-Sand) with D50 of 0.11 mm, low medium sand (B2-Sand) with D50 of
0.23 mm, high medium sand (B4-Sand) with D50 of 0.51 mm, and coarse sand (B6-Sand)
with D50 of 1.77 mm. The fifth one is a mixture of sand to create a well-graded sand (B-Sand)
with D50 of 0.58 mm. Therefore, five different sizes were chosen to examine the differences
between coarse, medium, and fine sands, as well as to study the effect of poorly graded
and well-graded sands.
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Figure 1. The coarse soil (B-sand) is sieved and separated into different containers depending on the
granular size.

Glass beads were utilised to avoid particle shape influence and concentrate only on
particle size impact on mechanical behaviour. The glass beads are made of silica mixed with
other minerals melted at high temperature to produce a viscous, thick liquid. The liquid is
moulded into spherical shapes and hardens as it cools. The regularity of the particle shape
of the glass beads, as observed under the microscope, was found to be almost one. The
glass beads were separated into two different sizes: GB5 with a D50 of 0.89 mm and GB6
with a D50 of 1.77 mm. The specific gravity of the glass beads ranges from 2.45 to 2.50. The
specifications of used particulate materials including sand and glass beads are presented in
Table 1. The sieve analysis was conducted according to the Australian standard [47], and
the results for the used granular material are shown in Figure 2.

Table 1. Specifications of the used particulate materials: sand and glass beads.

Material Range (mm) Grade Cu Cc D50 (mm) Gs R S ρr
L5-Sand 1.18 to 0.6 PG 1 1.44 0.96 0.89 2.65 0.288 0.589 0.439
L4-Sand 0.6 to 0.425 PG 1.20 0.97 0.51 2.68 0.421 0.546 0.484
L3-Sand 0.425 to 0.3 PG 1.20 0.97 0.36 2.69 0.302 0.591 0.447
L2-Sand 0.3 to 0.15 PG 1.45 0.96 0.23 2.74 0.288 0.578 0.433
L1-Sand 0.15 to 0.075 PG 1.45 0.96 0.11 - 0.289 0.541 0.415
B-Sand 2.36 to 0.075 WG 2 6.16 1.24 0.58 2.67 - - -
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Table 1. Cont.

Material Range (mm) Grade Cu Cc D50 (mm) Gs R S ρr
B6-Sand 2.36 to 1.18 PG 1.45 0.96 1.77 2.66 - - -
B5-Sand 1.18 to 0.6 PG 1.44 0.96 0.89 2.67 0.263 0.557 0.410
B4-Sand 0.6 to 0.425 PG 1.20 0.97 0.51 2.66 0.246 0.538 0.392
B3-Sand 0.425 to 0.3 PG 1.20 0.97 0.36 2.69 0.279 0.584 0.432
B2-Sand 0.3 to 0.15 PG 1.45 0.96 0.23 2.69 0.270 0.583 0.427
B1-Sand 0.15 to 0.075 PG 1.45 0.96 0.11 2.70 0.328 0.580 0.454
M5-Sand 1.18 to 0.6 PG 1.44 0.96 0.89 2.68 0.189 0.551 0.370
M4-Sand 0.6 to 0.425 PG 1.20 0.97 0.51 2.69 0.206 0.565 0.386
M3-Sand 0.425 to 0.3 PG 1.20 0.97 0.36 2.67 0.327 0.597 0.462
M2-Sand 0.3 to 0.15 PG 1.45 0.96 0.23 2.72 0.299 0.542 0.421
M1-Sand 0.15 to 0.075 PG 1.45 0.96 0.11 - 0.389 0.499 0.444
P5-Sand 1.18 to 0.6 PG 1.44 0.96 0.89 2.66 0.246 0.559 0.403
P4-Sand 0.6 to 0.425 PG 1.20 0.97 0.51 2.68 0.203 0.575 0.389
P3-Sand 0.425 to 0.3 PG 1.20 0.97 0.36 2.69 0.233 0.523 0.378
P2-Sand 0.3 to 0.15 PG 1.45 0.96 0.23 2.67 0.286 0.565 0.426
P1-Sand 0.15 to 0.075 PG 1.45 0.96 0.11 - 0.330 0.508 0.419

GB6 * 2.36 to 1.18 PG 1.45 0.96 1.77 2.45 1 1 1
GB5 1.18 to 0.6 PG 1.44 0.96 0.89 2.45 1 1 1

* Where GB is glass beads, 1 PG is poorly graded, and 2 WG is well graded sand.
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Figure 2. Sieve analysis of the used particulate materials, with (a) displaying the sieve analysis for
sand, and (b) showing the sieve analysis for glass beads.

2.2. Experimental

A total of 1068 tests, including microscopy, direct shear, oedometer, and specific grav-
ity tests, were conducted. Out of these experiments, 1000 involved photographing various
types of sand, which include L-Sand, M-Sand, P-Sand, and B-Sand. Each of these sands was
sieved and separated into different containers based on their sizes. Subsequently, micro-
scope analysis was performed on uniformly sized specimens. We considered 50 particles in
each specimen in order to determine particle regularity. Additionally, 46 direct shear tests
were conducted, considering different particle sizes, shapes, and densities. Further, six
tests were carried out to measure compressibility across varying particle sizes and densities
using an oedometer apparatus. Lastly, 16 tests were conducted to determine the specific
gravity of different types of sand of various particle sizes. This was done to investigate the
impact of the mean particle size on specific gravity.

2.2.1. Direct Shear Apparatus

A Mateset direct shear apparatus was used to conduct the experiments, which were
carried out according to the Australian standard [48]. The dimensions of the mould in the
direct shear box were 60 × 60 mm. In each test, different amounts of normal stresses, 25, 50,
100, and 200 kPa, were applied to the sample. Each test was conducted on a dry sample at a
shear rate of 1 mm/min, which is the maximum allowable speed according to the standard.
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The pluviation technique, sometimes called the rainfall method, is employed in the
preparation of granular soil samples, specifically sands, with differing relative densities.
Figure 3 provides a schematic diagram of the pluviation technique. By adjusting the height
from which the sand particles are dropped, the method allows for the creation of samples
with the required density.
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The relationship between drop height versus void ratio and relative density is shown
in Figure 4, with the void ratio decreasing as drop height increases. A loose sample is
achieved by dropping the soil from a low distance between the cone and mould, reducing
the particles’ kinetic energy and enabling them to loosely pack. Conversely, a dense sample
is formed by dropping the particles from a high distance, increasing their kinetic energy, and
causing them to efficiently rearrange and pack densely. Upon dropping the particles from
the selected height, the mould is removed, and the sample can be used for shearing testing.
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In the study, two different densities were considered when preparing the sample:
the loose and dense density states. In the loose density state, the sand was spooned and
dropped from a very low height (zero height). Conversely, in the dense state, the sample
was dropped from a cone with a 5.2 mm opening at a height of 83 cm.

2.2.2. Microscope

In this experiment, we used a Nikon Eclipse MA100 microscope, a valuable tool in
geotechnical laboratories for identifying particle shapes. The microscope comes with a
built-in Progression system, offers high-quality optics that enable accurate and efficient
identification of soil particle shapes and sizes. Several parameters are used to characterize
sand particle shape and quality, including sphericity and roundness (Figure 5).
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(R+S)
2 [2,49].

The sphericity of a particle is a measure of how closely it looks like a circle, while
roundness determines how curved its corners are. A ceramic proppant and high-quality
frac sand are typically both spherical and round, scoring around 0.9 in both metrics. The
same high score is observed in silica sand samples with nearly circular particles, where the
sphericity measure can reach 0.7 or higher. Nonetheless, sand particles featuring angular
edges are expected to have reduced roundness measurements, often falling in the region of
0.2 to 0.5. The schematic representation in Figure 6 shows the method of finding particle
shape parameters including roundness, sphericity, and regularity.

2.3. Mathematical Model

The mathematical model was implemented in the Python programming language.
The research objectives entailed testing two models: a simple model via multiple linear
regression (MLR), and a complex model through random forest regression (RFR). In ad-
dition, MLR was specifically applied to model linearity, while RFR was used to navigate
nonlinearity. In both implemented models (MLR and RFR) the following libraries were
utilised: pandas for data manipulation and analysis, NumPy for numerical computations,
scikit-learn for machine learning tasks including data splitting, normalisation, regression
modelling, and metric evaluation, and finally matplotlib for data visualisation. The work-
flow diagram below (Figure 7) outlines the different processes performed for the machine
learning algorithm implementation. Further details of these processes are discussed in the
following subsections.
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Figure 7. Workflow of the applied machine learning algorithm.

2.3.1. Pre-Process Data

The pre-processing of data involved two steps: normalisation and splitting the dataset.
Normalisation in machine learning is a vital process that standardizes numerical data in
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your dataset, similar to converting measurements from feet, inches, and yards all into
metres, so everything is on the same scale. This process ensures that the machine learning
models treat all features fairly and do not overvalue one feature while undervaluing
another [50]. When all of the features are on the same scale, the model can learn and make
predictions more effectively and efficiently. Techniques like min-max normalisation, Z-
score normalisation, and robust scaling are commonly used. In other words, normalisation
makes the data neat and uniform, helping machine learning models perform at their best.

In the results analysis, the min-max Normalisation method was followed, which
rescales the data to a range between 0 and 1. The formula for this is as follows:

X′ =
(X− X min)

(X max − X min)
(1)

where X is the original value, and X min and X max are the smallest and largest values in
the data.

Following normalisation is the splitting of the dataset. Data splitting is a popular
method for model validation in which we divide a given dataset into two distinct sets:
training and testing. Following that, the statistical and machine learning models are fitted
to the training set and validated using the testing set. By separating a portion of the data
for validation purposes, independent of the training process, we can effectively assess and
compare the predictive performance of various models. The most used ratio of data splitting
is 80:20, where 80% of the data is used for training and 20% for testing. This conventional
method relies on a single random split of the data. The 80:20 split draws its justification
from the well-known Pareto principle, which states that roughly 80% of the effects come
from 20% of the causes or inputs [51]. The train–test split, although commonly used, has
been found to have potential biases and limitations in assessing model performance. To
overcome these challenges, we implemented the k-fold cross-validation method.

The k-fold cross-validation is a popular statistical method that provides a more com-
prehensive, robust, and reliable approach to assess the model’s performance and reduce
computation time without any bias resulting from random dataset splitting [52,53]. This
technique enables a more rigorous evaluation of the model’s effectiveness compared to the
train_test_split approach.

In our own dataset, we incorporated both the train_test_split and the k-fold cross-
validation (10 folds) methods. For the k-fold cross-validation, the dataset was divided into
10 sections, with nine sections used for training the model and the remaining section for
testing. In each fold, a different section was designated for training, while the remaining
sections were used for testing. This process was repeated across all folds until each section
was used for both training and testing. The final result obtained from our 10-fold cross-
validation was an average of the performance across all folds.

2.3.2. Statistical Parameters

Several metrics, each with its own strengths and limitations, can be used to compare
the performance of various AI models. The following are some common metrics:

• Mean absolute error (MAE) is a measure that captures the average absolute disparity
between predicted and true values. By focusing solely on the magnitude of the error,
irrespective of its direction, it provides an evaluation of the model’s effectiveness in
accurately forecasting the actual values.

• Root mean square error (RMSE) is a performance metric like MAE, but it considers
the square of the errors, thus placing more penalty on larger discrepancies. RMSE is
typically employed when substantial errors pose a greater problem than minor ones.

• Root mean square log error (RMSLE) is a useful metric when dealing with a target
variable that spans a broad range of values. It employs the logarithms of both predicted
and actual values, which lessens the effect of substantial discrepancies between these
values. When the distribution of the target variable is skewed, employing this metric
can be particularly beneficial.
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• R-squared (R2) is a statistical measure that measures the degree to which the model
matches the data, relative to a simple, baseline model. R2 values can range from 0 to 1,
with higher values signifying a better fit. However, it is important to note that R2 can
provide a skewed perspective if the underlying baseline model is unfitting, or the data
are contaminated with outliers. Equations (2)–(5) show these metrics:

MAE =
∑N
(
Xm − Xp

)
N

(2)

RMSE =

√
∑N
(
Xm − Xp

)2

N
(3)

RMSLE =

√
∑N
(
log (X m + 1)− log

(
Xp + 1

))2

N
(4)

R2 =

[
∑N

i=1
(
Xm − Xm

)(
Xp − Xp

)
∑N

i=1
(
Xm − Xm

)2
∑n

i=1
(
Xp − Xp

)2

]2

(5)

where N is the number of datasets, Xm and Xp are actual and predicted values, and Xm, Xp
are the average of actual and predicted values, respectively. The model should ideally have
an R2 value of 1 and MAE, RMSE, and RMSLE values of 0.

2.3.3. Multiple Linear Regression

In the realm of statistical modelling, multiple linear regression (MLR) is a powerful
method that is used to understand the relationship between multiple predictors and a single
response variable. This method, which extends the principles of simple linear regression,
allows us to uncover complex dependencies and valuable insights hidden within the
data. MLR aims to establish a linear relationship between the predictors and the response
variable, capturing their combined effect on the result. This method becomes useful in
real-life situations where there are multiple factors that simultaneously influence the target
variable. Multiple linear regression makes several assumptions to ensure the validity of the
regression model. These assumptions include linearity, independence, homoscedasticity
(constant variance), and normality of residuals. Any deviations from these assumptions
can affect the accuracy and reliability of the regression model and may require additional
measures to address them. The MLR code utilises the scikit-learn library with the default
hyperparameter values. Furthermore, the numerical hyperparameters that were set for pre-
processing data, feature importance estimation, and the visualisation process are displayed
on Table 2.

Table 2. Numerical hyperparameters for the multiple linear regression code, including parameters
for both with and without the application of 10-fold CV.

Phase Parameter Value
test_size 0.2

Train and Test Sets random_state 0
n_splits 10

random_state 0K-Fold Cross-Validation
shuffle True

Feature Importance Estimation n_repeats 10
start_point 0

Visualisation boundary_shift 20%

2.3.4. Random Forest Regression

Random forest regression (RFR) has several advantages that make it a popular choice
for regression tasks, including its robustness in dealing with many input features, both
numerical and categorical variables, and its ability to deal with outliers and missing values
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in the data, reducing the need for extensive data preprocessing. Furthermore, RFR is capable
of capturing complex non-linear correlations between input data and the target variable,
making it appropriate for applications where linear models are insufficient. Random forest
regression also provides useful insights on feature importance, which aids in finding the
underlying relationships in the data. Because of its versatility, it can be used in a variety of
regression tasks and can effectively handle large datasets, making it a useful technique for
a wide range of applications. The RFR code utilises the scikit-learn library with the default
hyperparameter values. Furthermore, the numerical hyperparameters that were set for
pre-processing data, model, and the visualisation process are displayed in Table 3.

Table 3. Numerical hyperparameters for the random forest regressor code, including parameters for
both with and without the application of 10-fold CV.

Phase Parameter Value
test_size 0.2

Train and Test Sets random_state 0
n_splits 10

random_state 0K-Fold Cross-Validation
shuffle True

n_estimators 100
Model random_state 0

start_point 0
Visualisation boundary_shift 20%

3. Results
3.1. Experimental Results
3.1.1. Packing Density

The structure of a sand sample (skeleton) plays a crucial role in determining the
mechanical behaviour, which can be controlled by density and anisotropy. The packing
density of sand can depend on multiple factors, such as the particle shape, size, and
gradation along with the arrangement of particles. A sample consisting of particles with
high regularity has a higher density and low void ratio compared to a sample with low
regularity particles [2].

Sand gradation can be poorly graded, well graded, or gap graded. A poorly graded
sand represents sand that has similar grain sizes; in contrast, the well-graded sand has a
percentage of each size when the Cu is greater than 6 and when the Cc lies between 1 and 3.
The gap-graded sand represents sand that has two different mixed sizes, in other words,
two different poorly graded sands mixed together [9]. A well-graded sample will have a
high density and a lower void ratio compared to a poorly graded sample.

According to Burmister [54], when the particle size range is coarser, the density
increases and the void ratios decrease. In the poorly graded sand used, it was shown that
as the mean particle size increases, the density also increases, and the coefficient of volume
compressibility decreases, as demonstrated in Figure 8. These findings are consistent with
the works of Burmister [54] and Lafata [1].

In terms of shape, there is a strong correlation between particle shape and packing
density. A complete sphere shape has the densest possible structure compared to other
shapes [1]. Spherical shapes require less compressive force to achieve a dense state be-
cause they are easier to reorient compared to less spherical shapes [1]. However, further
studies [55] have shown that for particles of similar sizes, the optimal shape for achieving
maximum packing fraction is not necessarily a perfect sphere. A comparison between
a marble-ball model and M&M candies (which have an elongated and flattened shape)
showed that the M&M candy shape has a higher packing fraction of C = 71% compared to
a sphere shape with C = 64%. When examining the relationship between particle shape
and void ratio, Cho, Dodds and Santamarina [2] found that as particle roundness, spheric-
ity, and regularity approach one (indicating complete rounded and spherical shape), the
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difference between the maximum and minimum void ratio decreases. Similar results were
found by Maroof et al. [56], where the void ratio decreased as regularity increased.
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Figure 8. The relationship between the mean particle size and (a) initial dry density and (b) coefficient
of volume compressibility.

The mineral composition of a soil is one of its essential characteristics. Mineralogy
influences properties such as specific gravity, Young’s modulus, shear modulus, and the
Poisson ratio [12,57]. The dry unit weight and specific gravity of sand are important, as
they can influence the sample’s void ratio, as shown in the following equation:

e =
Gs γw

γd
− 1 (6)

where Gs represents the specific gravity, γw indicates the unit weight of water, and γd
represents the dry unit weight of the sample. According to the equation, when the specific
gravity increases, the void ratio also increases. Similarly, when the dry unit weight de-
creases, the void ratio increases. The specific gravity of sand typically ranges from 2.65–2.67,
while that of inorganic clay ranges from 2.70–2.80 [58]. Based on the lab experiment, it
was observed that among the four types of sand, as the D50 (mean particle size) of the
sand increases, the dry unit weight of the sample also increases, while the specific gravity
decreases, even within the range of sand particles (2.36 mm to 0.075 mm according to the
Australian standard [7]). Consequently, the void ratio decreases as the mean particle size
increases, as shown in Figure 9.
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Figure 9. The mean particle sizes of different sands in relation to (a) specific gravity and (b) maximum
void ratio.
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3.1.2. Shear Strength

The shear strength of the sand can depend on multiple factors related to the specimen,
such as the particle shape, size, and gradation of the sand particles. Upon comparing the
poorly graded fine, medium, and coarse sand, it was found that the coarse sand exhibited a
higher shear strength compared to the others, as shown in Figure 10.
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Figure 10. Shear strength versus mean particle size for B-Sand in (a) a loose density state and (b) a
dense density state.

Furthermore, by examining the impact of gradation, the well-graded sand exhibits a
higher density and shear strength when compared to fine and medium poorly graded sand,
as shown in Figure 11. The well-graded sand had a higher shear strength value, though
not as high as the coarse, poorly graded sand. This can be related to the particle shape,
size, and surface roughness. Coarse sand particles, particularly those that are angular, can
achieve higher shear strength due to particle interlocking. Furthermore, particles with
high surface roughness can induce even greater shear strength due to the interlocking of
asperities between the particles.
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Figure 11. The particle size and gradation impact on the shear strength at different normal stresses
(25, 50, 100, and 200) at different densities: (a) loose state, and (b) dense state.
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3.2. Machine Learning Models
3.2.1. Multiple Linear Regression

After conducting multiple linear regression (MLR) analyses, the most suitable regres-
sion model was identified. The comparison between the predicted values generated by the
MLR model for training, testing, and 10-fold CV data and the actual experimental values of
shear strength in the direct shear tests is presented in Figure 12. Based on the findings, it
can be concluded that the MLR model has a high level of accuracy.
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The usage of an MLR model for the objective of predicting the shear strength of sand
showed high accuracy, as shown by the varied metrics gathered from the training, testing,
and 10-fold CV data (Table 4).

Table 4. The performance of MLR model to predict shear strength.

Training Database Testing Database 10-Fold CV
Observations 36 10 46

MAE 8.31 7.67 9.28
RMSE 11.87 10.08 13.57

RMSLE 0.29 0.17 0.35
R2 0.95 0.94 0.93

The training database included 36 observations, with an MAE of 8.31, RMSE of
11.87, RMSLE of 0.29, and R2 value of 0.95, indicating a high level of prediction accuracy.
The model was then tested on a separate dataset consisting of 10 observations, where it
demonstrated a slightly improved MAE of 7.67 and a reduced RMSE of 10.08, and an
impressive decrease in RMSLE to 0.17, maintaining a high R2 value of 0.94. Furthermore, a
10-fold cross-validation (CV) was performed on all 46 observations, yielding an MAE of 9.28,
RMSE of 13.57, and RMSLE of 0.35, along with an R2 of 0.93. The model performance across
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the training, testing, and cross-validation demonstrates its robust predictive capability for
shear strength. This outcome promotes confidence in the predictive capability of the model
and its applicability to new data. Thus, an empirical equation was generated to predict the
shear strength of sand with high level of accuracy. The empirical equation is as follows:

τ = 15.57 + (7.28×D50) + (6.75× Cu)− (24.53× Cc)+(
53.90× ρdry

)
+ (121.64× σn)− (36.45× ρr)

where D50 is the mean particle size, Cu is the coefficient of uniformity, Cc is the coefficient
of curvature, ρdry represents the dry density, σn is the normal stress, and ρr refers to the
sand particle shape regularity.

3.2.2. Random Forest Regression

The comparison between the actual values of shear strength in direct shear testing
and the predicted values for training, testing, and 10-fold CV data produced by the RFR
model is shown in Figure 13. Based on the results, it can be concluded that the RFR model
is highly accurate.
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The Python-based RFR model has demonstrated remarkable accuracy in predicting
the shear strength of sand, as evidenced by the metrics calculated for the training, testing,
and 10-fold CV data (Table 5).

The training database used contained 36 observations, with an MAE of 3.79, RMSE
of 6.55, RMSLE of 0.07, and an impressive R2 value of 0.98, signifying an excellent fit of
the model. In the testing phase, using a distinct database of 10 observations, the model
demonstrated slightly higher MAE and RMSE values of 5.68 and 7.37, respectively. The
RMSLE also slightly increased to 0.09, yet the R2 value remained high at 0.97, indicat-
ing strong prediction performance. A 10-fold CV performed on the complete dataset of
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46 observations resulted in an MAE of 9.83, RMSE of 15.8, RMSLE of 0.19, and an R2 value
of 0.90. Despite the slight increase in error values during cross-validation, the RFR model
demonstrated robust and reliable performance in predicting shear strength. These metrics
serve as evidence of the model’s outstanding predictive performance and its ability to
deliver consistent results on new data.

Table 5. The performance of RFR to predict shear strength.

Training Database Testing Database 10-Fold CV
Observations 36 10 46

MAE 3.79 5.68 9.83
RMSE 6.55 7.37 15.8

RMSLE 0.07 0.09 0.19
R2 0.98 0.97 0.90

4. Discussion
4.1. Particulate Shape and Size

Particle morphology can be identified at larger scales, such as that of the particle itself,
as spherical, rounded, blocky, bulky, platy, elliptical, elongated, and so on. On a smaller
scale, texture is essential because it reflects local roughness properties such as surface
smoothness, roundness of edges and corners, and asperities. As shown in Figure 14, there
is no direct correlation between particle size and particle shape.
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Figure 14. Mean particle size versus the regularity.

Polydispersity, a key concept in materials science and chemistry, refers to the distri-
bution of particles with varying sizes or masses within a sample. Unlike monodisperse
systems, where all particles are of the same size, polydisperse systems are characterized
by non-uniform particles. It significantly influences the physical properties and behaviour
of materials like soil samples, polymers, and colloids [59]. A shear test was conducted on
glass beads of two different sizes. Each sample had a monodisperse size. Despite both
samples having the same shape regularity, valued at 1, it was observed that the larger
beads, with a D50 value of 1.77, exhibited higher shear strength at normal stresses of 25,
50, and 100 kPa, as shown in Figure 15. This was in comparison to the finer beads, which
had a D50 value of 0.89. Therefore, we can conclude that larger particles can induce higher
shear strength compared to finer particles.
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4.2. Active Lateral Earth Pressure

The effects of particle size, density, and confining pressure on the active lateral earth
pressure within a uniform type of sand, sorted into different mean particle sizes, are
explored in Figure 16. The active lateral earth pressure increases as the mean particulate
size increases. This result is because larger particles will have a higher dry density than
smaller particles, which will increase the lateral earth pressure. Also, the active lateral earth
pressure increases equally with increasing sample density; this increase is most likely due
to an increase in particle content, as the number of particles in compact samples is greater
than in loose samples. Therefore, the active lateral earth pressure is greater for denser
samples. A similar correlation exists between an increase in normal stress and an increase
in active lateral earth pressure. This phenomenon is related to the increased force applied
perpendicular to the soil particles, which increase the active lateral earth pressure. In
conclusion, the study highlights the importance of mean particle size, density, and normal
stress on the active lateral earth pressure, where the active lateral earth pressure increases
as the particle size, density, and confining pressure increase.
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Figure 16. Comparison of active lateral earth pressure and dry density for different particle sizes of
various sands under different normal stresses.
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4.3. Method Comparison

Multiple linear regression (MLR) is a widely used method in supervised learning,
especially for understanding and predicting linear relationships between variables. Owing
to its optimal modelling strategy within the linear causal category, MLR often outperforms
other standard models [60]. The motivation for using MLR stems from its established
reputation as a simple, traditional model. Its strength lies in its capacity to capture linear
relationships effectively between multiple predictors (independent variables) and a single
response (dependent variable), making it particularly appealing for data analysis [29].
Additionally, MLR can provide an empirical equation for calculating shear strength using
multiple inputs, offering utility in geotechnical engineering applications and practices.

Despite these strengths, MLR has its limitations, including its inability to handle
nonlinear correlations or complex interactions between input data and the target variable.
In response to these limitations, random forest regression (RFR) was employed. This
robust and versatile technique navigates these challenges, offering high prediction perfor-
mance [61]. The RFR model is an ensemble of regression trees, building a large number
of these trees before combining them for a final prediction [62]. Moreover, RFR provides
insights into feature importance, thereby helping to unravel underlying relationships in
the data.

A comparison of the results and performance of both models can offer valuable insights
into their respective strengths and weaknesses. This allows for an evaluation of how well
each model captures the underlying patterns in the dataset and a determination of which
model yields better results.

Table 6 presents a comparative performance analysis of MLR and RFR models applied
to training, testing, and 10-fold cross-validation datasets. When comparing MAE values,
the RFR model shows superior performance, particularly with the training data, where it
achieved an MAE of 3.79, compared to 8.31 with MLR. This trend of enhanced performance
continues in the testing data, but not in the cross-validation, where MLR produced a slightly
better MAE result. For RMSE and RMSLE, RFR consistently outperforms MLR across all
datasets, but not in the cross-validation, where MLR outperformed RFR in RMSE. In terms
of R2 values, which indicate the goodness of fit, RFR shows a slight edge in the training and
testing data, but MLR secures a slightly higher value in the 10-fold cross-validation data.
Despite some minor variances, both models demonstrate robust predictive capabilities,
although RFR generally exhibits stronger performance, particularly on the training and
testing datasets.

Table 6. Comparative performance of multiple linear regression and random forest regression on
training, testing, and 10-fold cross-validation datasets.

MLR RFRPerformance
Metrics Training Data Testing Data 10-Fold CV Training Data Testing Data 10-Fold CV

MAE 8.31 7.67 9.28 3.79 5.68 9.83
RMSE 11.87 10.08 13.57 6.55 7.37 15.8

RMSLE 0.29 0.17 0.35 0.07 0.09 0.19
R2 0.95 0.94 0.93 0.98 0.97 0.90

4.4. Importance of Features

The application of machine learning algorithms (MLR and RFR) in our study involves
six input features (D50, Cu, Cc,
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d, σn, ρr) and one output which is the shear strength of sand.
In Figure 17, both MLR and RFR models, when using the train test splits, identified normal
stress as the principal factor, underlining its essential role in governing shear strength, while
dry density followed as the second most influential parameter, highlighting its significance
in determining the mass per unit volume. However, when using the 10-fold cross-validation
method, mean particle size showed the highest feature importance, followed by coefficient
of uniformity.
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cross-validation.

5. Conclusions

This study investigated the influence of sand particulate morphology on the shear
strength characteristics using experimental and machine learning approaches. The findings
can be summarized in the following points.

• Across the range of poorly graded sand sizes, the large sand sample exhibits higher
density and shear strength compared to both medium and fine sand.

• The shear strength of well-graded sand is higher than that of poorly graded medium
and fine sand, but not as high as that of poorly graded coarse sand.

• The particle shape regularity, including its roundness and sphericity, is not related to
the mean particle size.

• In a monodisperse system of glass beads with a similar shape and size, larger particles
contribute to greater shear strength compared to their smaller counterparts.

• As the mean particle size of sand decreases, the specific gravity increases and the
density decreases, leading to a sample with a higher void ratio. Therefore, finer sand
has a higher coefficient of volume compressibility compared to coarse sand.

• The active lateral earth pressure increases as the particle size, density, and confining
pressure increases.

• The machine learning models (MLR and RFR) show excellent accuracy in predicting
the shear strength of sand based on different particle shapes, sizes, and gradations.
In the case of MLR, the R-squared accuracy is 0.95 for the training data, 0.94 for the
testing data, as well as 0.93 when using the entire dataset with 10-fold CV method.
Similarly, for RFR, the R-squared accuracy is 0.98 for the training data, 0.97 for the
testing data, and 0.90 when employing the entire dataset with the 10-fold CV method.

• When using the train–test split, the machine learning models (MLR and RFR) agree
on the importance of the following input features in sequence: normal stress and dry
density. However, when using the 10-fold CV, the importance of the input features
shifts to mean particle size and coefficient of uniformity.
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• Future research could address different types of soil (silt and clay), different parameters
that could influence the shear strength (moisture content, temperature, strain rate, and
stress history), as well as different machine learning algorithms for further exploration.
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Nomenclature

AI Artificial Intelligence
MLR Multiple Linear Regression
RFR Random Forest Regression
ANN Artificial Neural Network
SVM Support Vector Machine
ANFIS Adaptive Neuro-Fuzzy Inference System
ME Mean Error
MAE Mean Absolute Error
MSE Mean Square Error
RMSE Root Mean Square Error
RMSLE Root Mean Square Log Error
CV Cross-validation
R2 R-squared
D50 Mean Particle Size
Cu Coefficient of Uniformity
Cc Coefficient of Curvature
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established reputation as a simple, traditional model. Its strength lies in its capacity to 
capture linear relationships effectively between multiple predictors (independent varia-
bles) and a single response (dependent variable), making it particularly appealing for data 
analysis [29]. Additionally, MLR can provide an empirical equation for calculating shear 
strength using multiple inputs, offering utility in geotechnical engineering applications 
and practices.  

Despite these strengths, MLR has its limitations, including its inability to handle non-
linear correlations or complex interactions between input data and the target variable. In 
response to these limitations, random forest regression (RFR) was employed. This robust 
and versatile technique navigates these challenges, offering high prediction performance 
[61]. The RFR model is an ensemble of regression trees, building a large number of these 
trees before combining them for a final prediction [62]. Moreover, RFR provides insights 
into feature importance, thereby helping to unravel underlying relationships in the data. 

A comparison of the results and performance of both models can offer valuable in-
sights into their respective strengths and weaknesses. This allows for an evaluation of how 
well each model captures the underlying patterns in the dataset and a determination of 
which model yields better results.  

Table 6 presents a comparative performance analysis of MLR and RFR models ap-
plied to training, testing, and 10-fold cross-validation datasets. When comparing MAE 
values, the RFR model shows superior performance, particularly with the training data, 
where it achieved an MAE of 3.79, compared to 8.31 with MLR. This trend of enhanced 
performance continues in the testing data, but not in the cross-validation, where MLR 
produced a slightly better MAE result. For RMSE and RMSLE, RFR consistently outper-
forms MLR across all datasets, but not in the cross-validation, where MLR outperformed 
RFR in RMSE. In terms of R2 values, which indicate the goodness of fit, RFR shows a slight 
edge in the training and testing data, but MLR secures a slightly higher value in the 10-
fold cross-validation data. Despite some minor variances, both models demonstrate ro-
bust predictive capabilities, although RFR generally exhibits stronger performance, par-
ticularly on the training and testing datasets. 

Table 6. Comparative performance of multiple linear regression and random forest regression on 
training, testing, and 10-fold cross-validation datasets. 

Performance 
Metrics 

MLR RFR 
Training 

Data 
Testing 

Data 10-Fold CV 
Training 

Data 
Testing 

Data 10-Fold CV 

MAE 8.31 7.67 9.28 3.79 5.68 9.83 
RMSE 11.87 10.08 13.57 6.55 7.37 15.8 

RMSLE 0.29 0.17 0.35 0.07 0.09 0.19 
R2 0.95 0.94 0.93 0.98 0.97 0.90 

4.4. Importance of Features  
The application of machine learning algorithms (MLR and RFR) in our study involves 

six input features (D50, Cu, Cc, Ꝭd, σn, ⍴ ) and one output which is the shear strength of 
sand. In Figure 17, both MLR and RFR models, when using the train test splits, identified 
normal stress as the principal factor, underlining its essential role in governing shear 
strength, while dry density followed as the second most influential parameter, highlight-
ing its significance in determining the mass per unit volume. However, when using the 
10-fold cross-validation method, mean particle size showed the highest feature im-
portance, followed by coefficient of uniformity. 

d Dry Density
σn Normal Stress
R Roundness
S Sphericity
ρr Particle Regularity
Dr Relative Density
e Void ratio
emin Minimum Void Ratio
emax Maximum Void Ratio
Gs Specific Gravity
γw Unit Weight of Water
γd Dry Unit Weight of The Sample
τ Shear Strength
SOC Soil Organic Carbon
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