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Abstract: The standardization of data from medical studies and hospital information systems to
a common data model such as the Observational Medical Outcomes Partnership (OMOP) model
can help make large datasets available for analysis using artificial intelligence approaches. Com-
monly, automatic mapping without intervention from domain experts delivers poor results. Further
challenges arise from the need for translation of non-English medical data. Here, we report the
establishment of a mapping approach which automatically translates German data variable names
into English and suggests OMOP concepts. The approach was set up using study data from the
Hamburg City Health Study. It was evaluated against the current standard, refined, and tested
on a separate dataset. Furthermore, different types of graphical user interfaces for the selection
of suggested OMOP concepts were created and assessed. Compared to the current standard our
approach performs slightly better. Its main advantage lies in the automatic processing of German
phrases into English OMOP concept suggestions, operating without the need for human intervention.
Challenges still lie in the adequate translation of nonstandard expressions, as well as in the resolution
of abbreviations into long names.

Keywords: OMOP; common data model; mapping; standardization; SNOMED CT; Germany;
healthcare data; TF-IDF; HCHS

1. Introduction

Harmonizing large amounts of patients records in a medical context is a challenging
process. To realize this, the medical information of a patient must be documented in a
structured form, best through the inclusion of suitable data standards in electronic patient
files. The use of data standards enables the possibility for rigid information networks, such
as hospital information systems (HIS), to process the information they receive in the same
way. This is a prerequisite for modern and complex tasks in medical informatics [1].

Data standards can be limited to certain topics or regions, and often differ in the com-
plexity of their structure. For example, in the area of drug encoding, the ATC (Anatomical
Therapeutic Chemical Classification System) standard is primarily used in the European
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context, whereas RxNorm (Medical Prescription Normalized) is the standard in the US
American context. The ICD-10 (International Classification of Diseases) code offers another
example. It is often used as a local version of the ICD-10 standard published by the WHO
in a respective country. Thus, the ICD-10-FR used in France has semantic differences to
the ICD-10-GM, which is used in Germany. The transmission of information between
individual information systems can differ. Additionally, the different data standards can
be structured with varying degrees of complexity. The ICD-10 standard uses a taxonomic
structure, whereas SNOMED CT (SNOMED Clinical Terms)—a standard used, for example,
in the USA for coding diagnoses and procedures—has an ontological structure. Taxonomic
data standards form classes and, thus, structure the data hierarchically. Ontologies are built
on concepts, which are related. Therefore, hierarchical but also non-hierarchical, i.e., logical,
relations can be displayed [2]. Many individual data standards served their purpose in the
past years, but, increasingly, the inclusion of different data standards within an HIS leads
to digital processes being considerably slowed down. In recent years, various approaches
have been explored to address these data management challenges regarding semantic
interoperability.

One approach that allows for a high degree of semantic interoperability is the use
of a common data model (CDM). One well-known CDM is the Observational Medical
Outcomes Partnership (OMOP) model of the Observational Health Data Sciences and
Informatics (OHDSI) community. Local data are assigned to a standardized concept,
which in turn is based on a data standard. The OMOP model is a relational data model.
The clinical data area of the OMOP model stores patient data, whereas the standardized
vocabularies build a large metadata repository within the OMOP model that includes
several data standards such as ICD-10, SNOMED CT, or LOINC (Logical Observation
Identifiers Names and Codes), a well-established standard for laboratory measurements.
The vocabularies have to be actively included during the mapping process in order to
standardize the local data and enable semantic interoperability. For example, the OMOP
standard in the Condition_occurrence domain is SNOMED CT. Institutions that instead use
ICD-10 for coding diagnoses can map their local ICD-10 codes to the respective SNOMED
CT equivalent via the standardized vocabularies. This approach generates a high degree of
semantic interoperability.

The standardization of medical data harbors great potential as it provides the basis
to create large medical datasets through either data pooling or federated learning for
analysis using notoriously data-hungry artificial intelligence methods [3]. Efforts are
already underway to map German medical data to the OMOP CDM by applying the
new Episode Domain to German Cancer Registry data [4], implementing OMOP at eight
German hospitals [5], using HL7 FHIR to integrate German registry data into OMOP [6],
mapping German infection-control-related data across openEHR, FHIR, and OMOP [7],
creating a concept to transfer German drug [8] and procedure data [9] to OMOP, as well as
by the establishment of an ETL (Extraction, Transformation, Loading)-process to OMOP
for all German university hospitals [10]. However, challenges arise for one from medical
data that does not adhere to any established data standard. This is frequently the case
for study data, which is often tailored towards a specific research goal, and especially
within questionnaire data. Furthermore, problems occur from the need for translation of
non-English to English, which becomes necessary if specific vocabularies are not available
in a certain language.

OHDSI provides a set of software tools to help prepare ETLs of structured data from
common terminologies, vocabularies, and coding schemes called WhiteRabbit and Rabbit-
In-A-Hat. To help map source codes, preferably from standard terminologies, to OMOP
the OHDSI program offers USAGI [11]. It has, for example, recently been used to map
clinical studies by condition to OMOP [12]. Usagi performs similarity mapping using
term frequency-inverse document frequency (TF-IDF). TF-IDF is a statistical measure that
represents term importance. It is a popular method often used by search engines. However,
TF-IDF similarities are based merely on similar occurrences of keywords. Model training as
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in machine learning applications is not possible. Also, USAGI does not provide an option
to translate non-English codes to English but suggests using Google Translate.

Recently, a deep-learning-based approach to terminology mapping to OMOP called
TOKI has been published [13]. In contrast to TF-IDF, TOKI uses embedding-based semantic
similarities where words are embedded into a semantic space defined primarily through
their co-occurrence within text corpora. This makes individual word vectors easily compa-
rable. TOKI reports a greater than ten percent improved matching accuracy compared to
USAGI. Unfortunately, it does not provide a translation function and the source code of
TOKI is not publicly available.

Furthermore, an NLP-based software solution called CLAMP exists [14]. It comprises
a graphical user interface (GUI) to build customized NLP pipelines of sequential NLP tasks
including tokenization, sentence boundary detection, part-of-speech tagger, named entity
recognition, and others. It approaches clinical concept extraction as a supervised named
entity recognition (NER) task and has recently been used to map COVID-19 signs and
symptoms from clinical text to OMOP concepts [15]. NLP-based methods for the mapping
of clinical text to OMOP such as CLAMP and related are being promoted by the OHDSI
Natural Language Processing Working Group [16].

In this study, we use the TF-IDF method similarly to USAGI to map medical data
from the Hamburg City Health Study (HCHS) to OMOP concepts. The HCHS is a large,
population-based cohort study of 45,000 participants from the general population of Ham-
burg, Germany [17]. Participants undergo 18 examinations primarily targeting major organ
system functions and structures including extensive imaging examinations. Additionally,
before, during, and after the baseline visit validated self-report questionnaires asking for a
variety of lifestyle and environmental conditions and habits are filled out.

2. Materials and Methods
2.1. Data

The methodology was developed and tested using two datasets.

2.1.1. HCHS Dataset

The Hamburg City Health Study (HCHS) is an ongoing single-center, prospective, ob-
servational, population-based cohort study of randomly selected residents of the metropoli-
tan region of Hamburg, Germany, between the age of 45 and 74 years, aiming to investigate
the development of chronic diseases [17]. The study is registered at clinicaltrials.gov,
NCT03934957.

The dataset includes all variable names from the study variable manual for examina-
tion data from the hospital information system (n = 1033) as well as from the questionnaires
(n = 1649), which had been provided as csv files from the study variable manual.

To evaluate the mapping pipeline, 100 random HCHS variable names were selected
and mapped to standard concepts of the OMOP standardized vocabularies by a domain
expert for mapping of cancer registry data to OMOP and CDM implementer with 3 years
of experience (Supplementary Table S1). The terms were manually translated into English
using Google Translate. Afterwards, the web application Athena [18] was used as a
reference for the search for suitable OMOP concepts.

For method refinement, each 10 variable names were selected from the examination
and the questionnaire dataset.

2.1.2. Anesthesiology Dataset

A total of 10 variable names were selected from questionnaire data from the VIDIAC
study on videolaryngoscopic intubation and difficult airway classification [19].

A total of 10 variable names were selected from device data readouts of a monitoring
system for hemodynamic parameters.

clinicaltrials.gov
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2.2. Methods
2.2.1. Mapping to OMOP Concepts

The mapping pipeline involves a series of sequential tasks. Initially, medical abbre-
viations in the German input terms are replaced by using a dictionary of 874 common
German medical abbreviations and their long names [20]. This is followed by translation to
English using HuggingFace transformer version 4.25.1 with model ‘Helsinki-NLP/opus-
mt-de-en’ [21]. The translated data are then subjected to the removal of stop words and
punctuation, lowercase conversion, and lemmatization via spaCy version 3.3.1 using model
‘en_core_web_lg’ to generate keywords [22]. Thereafter, the Scikit-learn library version
0.24.2 [23] is utilized to generate TF-IDF vectors for keywords and OMOP SNOMED CT
(and LOINC) concepts, including their synonyms. The vectors are then used to compute
the cosine similarity between words, identifying the top similar concepts for each variable.

2.2.2. Graphical User Interface

The JavaScript web framework Vue.JS version 3.2.37 was used for programming the
prototype, as Vue.JS is easy to learn with knowledge of JavaScript, TypeScript, and HTML
and can be used to implement single- and multipage web applications. To retrieve the data
from the backend the extension Apollo in version 3.6.9 was used.

For mobile app development Framework7.io was used. Framework7 is a free and
open-source mobile HTML framework that allows you to develop hybrid mobile apps
for iOS and Android. It can potentially be integrated directly into Vue via an extension.
To implement the Swipe-GUI the swipeableCards plugin (https://github.com/elzahaby/
swipeableCards) was used.

To evaluate the usability of created GUIs, expert user testings and interviews were
conducted with physicians and a computer scientist from the Department of Anesthesiology
as well as from the Institute for Applied Medical Informatics. Both senior scientists and
residents with little or no scientific experience were represented. A total of 8 experts
participated in the interview (female = 2, male = 6).

The answers to the interview questions were collected electronically using the web-
based application LimeSurvey. The questionnaire contained 42 questions, 28 of which were
free-text fields. For GUI-related questions of the interview see Supplementary Table S2.

3. Results
3.1. Concept of Mapping Pipeline

The aim of the project was to create a workflow that helps map data that does not
currently adhere to a common data standard such as health study data. Large parts of these
data are commonly not mapped to a standardized vocabulary such as ICD-10, RxNorm, or
ATC. Therefore, mapping of these data to a common data model such as OMOP cannot be
performed in an automated fashion. The current process is to use the USAGI tool which
suggests OMOP concepts based on the relevance of keywords within OMOP concept names
using TF-IDF. When dealing with non-English data this is preceded by manual translation
using a publicly available internet service such as Google Translate as well as some form of
manual simplification of especially long phrases from questionnaire data (Figure 1 top).
Our approach eliminates the need for human–computer interaction during the process of
translation, keyword preprocessing, and concept matching (Figure 1 bottom) as needed in
the current process using USAGI.

The workflow is realized in Python and uses publicly available tools from Hugging
Face (https://huggingface.co), spaCy (https://spacy.io), and scikit-learn (https://scikit-
learn.org).

Firstly, common German medical abbreviations (e.g., ‘KHK’—‘Koronare Herzkrankheit’,
Engl. ‘Coronary Artery Disease’) are automatically transformed into their long names using
a custom dictionary before translation using Hugging Face (Figure 2). The so-obtained
English expressions are automatically preprocessed to remove common words (‘stop words’
like ‘a’, ‘the’, etc.) and punctuation; to remove inflections such as plurals, verb tense, etc.

https://github.com/elzahaby/swipeableCards
https://github.com/elzahaby/swipeableCards
https://huggingface.co
https://spacy.io
https://scikit-learn.org
https://scikit-learn.org
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(‘lemmatization’); and are then put into lowercase using spaCy. These remaining keywords
are used for concept matching via TF-IDF from scikit-learn. The algorithm is publicly
available and fully customizable, and may serve as the foundation for similar tasks in
different contexts.
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One major challenge lies in delivering a meaningful, automated translation of non-
English medical expressions into English. The workflow relies on a popular transformer
model trained on the OPUS-MT open-source parallel corpus [24].

However, medical expressions can be particularly challenging. For one, the training
data of common translation models contains only a few medical texts. Therefore, less
frequent medical terms may be unknown to the model. For example, ‘Luftnot’ translates to
‘air need’ rather than ‘shortness of breath’. Therefore, current efforts of the community aim
to establish a text corpus and model specifically for medical text [25–29].

Additionally, medical expressions, particularly in Germany, often make use of Latin
expressions (e.g., ‘Ulcus cruris’, Engl. ‘leg ulcer’). The use of uncommon abbreviations (e.g.,
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‘RR’ for ‘riva rocci’ which represents ‘blood pressure’) and of colloquialisms or layman’s
terms (e.g., ‘Schaufensterkrankheit’, ‘offenes Bein’ for leg ulcer) hamper the translation task
even further.

Medical expressions, which fail an appropriate translation from German to English,
subsequently fail to generate useful OMOP concept suggestions at the end of the workflow.

3.2. Code Refinement

The initially created workflow performed inferiorly to the manual method using US-
AGI. Especially, medical synonyms such as ‘coronary arteriosclerosis’ instead of ‘coronary
artery disease’ were not recognized.

To refine the mapping algorithm to improve suggestion results, we selected a small
set of variable names to evaluate results in detail and modify code to improve them. The
original code (ORI) underwent three rounds of refinement: Firstly, we applied minor
changes to cosine similarity score calculation and package use (MIN). Thereafter, a major
change was applied to also use OMOP concept synonyms for term matching (SYN). Finally,
duplicate concepts from synonym matching were removed from the list of results (DUP).

A comparison of the final results from our algorithm with the standard USAGI method
showed comparable results in 12 of 20 cases. In 4 of 20 cases it delivered improved results;
in 2 of 20 cases the results were worse. In 2 of 20 cases the translation itself failed to return
meaningful expressions which could then be mapped to OMOP concepts.

The different cases are represented in Table 1. The identified concepts are color-coded
qualitatively based on if they are a good match to the German source term (dark green—good
match, light green—acceptable match, orange—poor match, red—no match). For a full list
of results for all 20 terms see Supplementary Table S3.

Table 1. Comparison of mapping results during code refinement with USAGI.

Comparison Keywords ORI MIN SYN DUP Similarity USAGI Concept Name

SI
M

IL
A

R
(6

0%
)

diagnose atrial
fibrillation

1 Lone atrial fibrillation
1 Atrial fibrillation

0.89 Atrial fibrillation detected
0.87 H/O: atrial fibrillation
0.85 Permanent atrial fibrillation

BE
TT

ER
(2

0%
)

diagnose heart
attack

1 Myocardial infarction
0.81 Diagnosis
0.78 Diagnostic proctoscopy
0.63 Diagnostic procedure on heart
0.61 Age at diagnosis

W
O

R
SE

(1
0%

)

artery detect

0.64 Arterial structure
0.63 Procedure to identify antibody
0.6 Metal detector
0.53 Not detected
0.49 Cervical artery dissection

FA
IL

(1
0%

)

diagnose open leg
ulcus cruris

0.69 Prior diagnosis
0.49 Diagnostic Doppler ultrasonography
0.44 Diagnostic procedure on ulna
0.43 Hematuria of undiagnosed cause
0.41 Caregiver unaware of diagnosis

ORI: original implementation; MIN: minor changes; SYN: concept synonyms added; DUP: duplicates removed;
Colors: dark green—good match, light green—acceptable match, orange—poor match, red—no match.

For a thorough evaluation of our refined mapping algorithm, we applied it to all
HCHS examination and questionnaire variable names (Figure 3, Supplementary Table S4).
When considering the top similarity score for the best concept suggestion for each term, we
observe that examination terms extracted from the hospital information system perform
better than those from questionnaires (p-value = 1.717 × 10−11, Welch Two Sample t-test),
with mean similarity scores for examinations of 0.6717 (first quartile: 0.5486, median:
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0.6572, and third quartile: 0.7781), whereas for questionnaires of 0.6509 (first quartile:
0.5173, median: 0.6293, and third quartile: 0.7636).
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Figure 3. Distribution of top similarity scores of suggested OMOP concepts for all HCHS vari-
able names. Variable names from the HCHS examinations dataset (left) map better based on
keyword to concept similarity score than those from the HCHS questionnaires dataset (right).
(p-value = 1.717 × 10−11, Welch Two Sample t-test).

A total of 0.96% of examination variable names did not have any mapping suggestions
(mean similarity score = 0), as did 0.75% of questionnaire variable names.

In a random subset of variable names, the algorithm identified the same concept as
one of its top five concept suggestions as an OMOP mapping expert in 56 percent of cases
(50 of 90) (Supplementary Table S1, highlighted concepts).

3.3. Application to Independent Datasets

In order to evaluate the performance of our algorithm when mapping other datasets,
we applied the refined code to a small dataset of variable names from an anesthesiology
study as well as to abbreviated variables from anesthesiology measurements. The first set
of study variables is used to measure the direct applicability of our code to other datasets
of similar structure. The abbreviated set was chosen for one to evaluate the mappability
of abbreviations (mostly via synonyms), as well as the use of an expanded list of OMOP
concepts including both SNOMED CT and LOINC terms and their effect on mapping
performance.

The first task of providing OMOP concept suggestions for anesthesiology study names
was similar to the task the algorithm was designed for. However, some of the medical
terms in this methodological study may be more uncommon than those in the HCHS public
health cohort study. Here, the algorithm was able to find a suitable OMOP concept in
five of ten cases (Supplementary Table S5). In one case, ambiguous spelling of the term
causes failure, as ‘Thyreomentaler Abstand’ translates to ‘thyreomental distance’ but not
‘thyromental distance’ for concept 4142891. In another case, the term ‘Maskenbeatmung
unmöglich’ translates to ‘mask breathe impossible’, which relates to the concept ‘controlled
ventilation’ (4074665). This logical relation is, however, not known by the algorithm. The
term ‘Kehlkopf/Atemwegstrauma’ which translates to ‘larynx/respiratory trauma’ should
be associated with the concept ‘injury of larynx’ (4053585, synonym: laryngeal trauma).
However, it does not appear in the algorithm’s top five concept suggestions, probably
because of the differing word combination of the synonymous words larynx/laryngeal
and trauma/injury. In another case, the translated verb ‘tracheotomize’ does not lead to an
association with the noun tracheotomy for which multiple potentially suitable concepts
exist (‘incision of trachea’ (4168133), ‘Tracheostomy, emergency procedure by transtracheal
approach’ (4208093). In one case (‘Simplified Airway Risk Index’), no fitting OMOP concept
could be identified.
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When comparing the algorithm performance using an OMOP concept library only
containing LOINC terms or only SNOMED CT terms or a combined library, no negative
effects when using the combined library could be observed.

The second task using anesthesiology-related measurements illustrated the challenge
of mapping abbreviated medical terms to concepts (Supplementary Table S6). Here, seven
of ten abbreviations failed to map to the correct concept, as these abbreviations neither
occur in the OMOP concept name nor in its concept synonyms. In contrast, when using
the correct long names as provided by a medical domain expert all of these standard
measurements could be mapped correctly.

3.4. Graphical User Interface for Semiautomated Concept Mapping

Because of the complexity of the mapping process, the need for human interaction,
preferably by domain experts, to select the appropriate concept in the target CDM to ensure
high-quality mappings persists. Intelligent user interfaces facilitate this human–computer
interaction. Designed as the front end of an automated, intelligent premapping microservice
that could be integrated into a metadata repository [30], it focusses on what has been the
focus of science for years. In many areas, especially in the health sector, the requirements
for usability are well defined. In the European Medical Device Regulation, usability and
the proof of testing (e.g., for the risk of incorrect operation) is of high importance. The clear
presentation of relevant information, prevention of operational errors through intuitive
and consistent operation, and a high level of user ergonomics are defined in ISO/IEC
62366-1:2015 [31].

We designed three exemplary graphical user interfaces (GUIs) to display descriptive
information for each mapping item (e.g., study variable name) as well as for the interaction
during the mapping of information elements.

The Floating-Action-Button (FAB)-GUI consists of two consecutive pages (Figure 4).
First, the user is provided with an overview of the data elements to be processed in tabular
form. After clicking on the table row, a page with information about the individual element
is displayed, including the element name and a short description. Up to four of the most-
likely entries found in the LOINC or SNOMED CT database are displayed. In addition,
the four most probable classes are offered for selection with blue icons. By clicking on one
of the terms, the mapping suggestion is selected by the user. At the bottom of the second
page, information on the input dataset is displayed which can be expanded. The goal of
this GUI is to direct the user to a single element via a selection page where the necessary
information about the selected concept is presented.

Alternatively, the Table-GUI shows a table with all elements to be mapped on one page.
For each table element the mapping suggestions appear directly below the information
about the element. When you click on a mapping suggestion, the element mapped with it
disappears from the list. As information elements the user is offered the same elements as
in the FAB mapping.

Finally, a Swipe-GUI was developed which displays only one element at a time as a
swipeable card from a stack of cards. The user can swipe the card left or right to perform
an assignment to one of two mapping suggestions. The information elements on the card
are intentionally limited. When you tap on a suggested concept, it expands to show the
information similar to the other GUIs.

To evaluate the performance of the different GUIs, user testing among a small group
of potential users was carried out. The participants were given test versions on a smart
phone, displaying mapping suggestions for the anesthesiology dataset. Afterwards an
online questionnaire was completed. The questions were mostly in free-text form and
aimed at capturing the individual user experience rather than delivering a quantitative
comparison of the different GUI concepts, as the way of interaction with the application
strongly depends on the habits of the individual user.
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Overall, the analysis of user responses showed that the FAB-GUI and the Table-GUI
were received about equally well, with the Table-GUI perceived as faster when dealing with
a large list of elements. The concept of the Swipe-GUI was well received by the majority of
participants.

4. Discussion

We present an approach for mapping nonstandardized German medical data to the
OMOP common data model. The established workflow handles German data from transla-
tion to concept suggestion without the need for human–computer interaction. This can be
of advantage particularly when dealing with large datasets and frequent mapping tasks.
The performance of our algorithm is comparable to the manual method, in that it suggests
the right OMOP concept as frequently.

However, there is still room for improvement: For one, a major challenge lies in
the correct translation of clinical expressions, especially from unstructured data. Here, a
great need exists for a comprehensive multilingual medical text corpus as the basis for
improved language models. Although some efforts are being made in individual countries,
there seems to be the need for a concerted effort to include a comprehensive collection of
languages in this corpus. For example, a project called the European Clinical Case Corpus
(E3C, https://e3c.fbk.eu) has generated a freely available multilingual corpus in English,
French, Italian, Spanish, and Basque but is not applicable to German texts. And, German
efforts to create a medical text corpus for natural language processing as part of the Medical
Informatics Initiative are currently predominantly limited to the German language itself.

Additional to the translation of non-English terms to English, the project has high-
lighted problems with the identification of word synonyms. For example, the algorithm
struggles with the equivalence of verbs, nouns, and adjectives of the same word stem
(larynx vs. laryngeal; tracheotomize vs. tracheotomy), as well as words with similar
meaning (injury vs. trauma). To improve results, a semantic web with word embeddings

https://e3c.fbk.eu
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representing semantic distances could be utilized which would account for such semantic
similarities [32–34].

Furthermore, the comprehensiveness of concept synonyms within the OMOP cata-
logue could be reviewed. Especially for standard medical abbreviations, shortcomings
have become apparent. However, abbreviations are inherently ambiguous. For example,
the abbreviation CO can stand for carbon monoxide or cardiac output, and PR may mean
progesterone receptor or pulse rate. Therefore, it seems that some form of integration of
domain knowledge is inevitable. For example, a large dictionary of 858 thousand medical
acronyms and abbreviations [35] could be integrated in the algorithm, combined with the
need for user–computer interaction to select the domain-specific appropriate long name.

Problems also arise from the words and phrases chosen in these unstructured datasets,
with the use of nonstandard expressions and layman’s terms affecting translation and
subsequent mapping. Also, the relation between individual variables (such as questions
within a questionnaire) has an impact. As each variable name is processed independently,
a semantic reference of a question to the one before needs to be avoided under all circum-
stances. Therefore, the early involvement of a domain expert for data standardization
during study design should be considered.

Overall, the presented mapping tool shows a feasible approach for the automation
of specific mapping tasks. Its code is publicly available and customizable, and could be
integrated into a metadata repository. Besides a user-friendly graphical user interface, ad-
ditional functions could be added, such as the ability to select specific OMOP vocabularies
or domains.

5. Conclusions

For the first time, our study describes a semiautomated mapping process for non-
standardized German data to English OMOP concepts. Our publicly available tool using
TF-IDF suggests concepts after automated translation, and can be embedded into a user-
friendly graphical user interface. Improvements in translation tools for medical text will
lead to improved mapping tools such as ours in the future.
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