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Abstract: This study proposes a new approach to realize generalized function projective synchroniza-
tion (GFPS) between two different chaotic systems with uncertain parameters. The GFPS condition is
derived by converting the differential equations describing the synchronization error systems into a
series of Volterra integral equations on the basis of the Laplace transform method and convolution
theorem, which are solved by applying the successive approximation method in the theory of integral
equations. Compared with the results obtained by constructing Lyapunov functions or calculating
the conditional Lyapunov exponents, the uncertain parameters and the scaling function factors
considered in this paper have fewer restrictions, and the parameter update laws designed for the
estimation of the uncertain parameters are simpler and easier to realize physically.
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1. Introduction

Since Pecora and Carroll realized synchronization between two chaotic systems in
1990 [1,2], chaos synchronization has been widely explored and studied due to its potential
applications in vast areas of physics and engineering science [3–6]. Synchronization is a pro-
cess wherein two or more systems adjust a given property of their motion. Different types of
synchronization phenomena have been numerically observed and experimentally verified
in a variety of chaotic systems, such as complete synchronization [1,7], phase synchro-
nization [8,9], anti-phase synchronization [10,11], lag synchronization [12,13], generalized
synchronization [14,15] and projective synchronization [16,17].

Complete synchronization (CS) is characterized by a coincidence of states of two
chaotic systems while evolving in time. CS only appears when two interacting systems
are identical. However, it is difficult to construct two absolutely identical systems in the
real world. Generalized synchronization (GS) refers to a functional relation of states of two
different chaotic systems, which is an extension of CS. Projective synchronization (PS) is
more complex than CS but simpler than GS. Additionally, PS is useful in extending binary
digital to M-nary digital communication to achieve faster communication [18–20].

PS was first reported by Mainieri et al. [16] in a class of systems with partial linearity
in which the drive and response vectors evolve in a proportional scale. Xu [21] showed
that the scaling factor of PS in coupled partially linear systems is unpredictable and can be
arbitrarily maneuvered by introducing a feedback control to master systems. The PS be-
tween two chaotic discrete dynamical systems was achieved by Xin and Wu [22] via linear
state error feedback control. Wen and Xu [23] and Yan and Li [24] extended the projective
synchronization feature to general nonlinear systems, including non-partially linear chaotic
systems, by applying controllers to response systems, which is called generalized projective
synchronization (GPS) and was studied later [25–27]. CS and anti-synchronization are
particular cases of GPS. As an extension of GPS, modified projective synchronization (MPS)
was introduced by Li et al. [28] and He et al. [29], where the responses of synchronized
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dynamical states can be synchronized up to a constant matrix. The combined projective
synchronization (CPS) among different nonlinear systems has been reported by Feng et al. [30]
by means of the active backstepping design method. Chen et al. [31,32] considered two chaotic
systems synchronized up to a scaling function factor, which is called function projective
synchronization (FPS). The FPS between two novel chaotic systems has been investigated
by El Dessoky et al. [33] and Bekiros et al. [34] using the Lyapunov method of stability.
Du et al. [35] and Srisuntorn et al. [36] discussed modified function projective synchroniza-
tion (MFPS), in which two chaotic systems can be synchronized up to a desired scaling
function matrix. As another extension of MPS and FPS, in generalized function projective
synchronization (GFPS), the scaling function matrix is more generalized than that of MFPS,
as has been discussed by Yu and Li [37], Li and Zhao [38], Wu et al. [39] and Al-Azzawi [40].

Most of the previous works have focused on the constant scaling factor and mainly on
chaotic systems with exactly known parameters. However, in many practical situations,
GFPS needs to be investigated while some parameters are uncertain. It is easy to understand
that GFPS may be greatly affected by these uncertainties. Yu and Li [37] designed an
adaptive controller to achieve GFPS between two different chaotic systems and gain some
parameter update laws to estimate the unknown parameters of chaotic systems. Li and
Zhao [38] firstly discussed the GFPS conditions of two different uncertain hyperchaotic
systems when the scaling function factors were periodic functions and polynomial functions.
However, only a few theoretical results about GFPS between two different uncertain chaotic
systems have been obtained [41–45]. Furthermore, the aforementioned controllers all are
designed through the construction of proper Lyapunov functions. The added controllers
therefore are often very specific and may be too difficult to realize physically.

In this paper, an effective approach is proposed to design an adaptive controller to
realize GFPS between two different uncertain chaotic systems. Moreover, the unknown
parameters in the coupled system can be estimated by given parameter update laws. The
key to realizing GFPS between two chaotic systems is the determination of the stability
of the synchronization error system. In previous works, this problem usually was solved
by using the Lyapunov method. However, there are two main difficulties in this method:
the first one is that it is challenging to construct a proper Lyapunov function; the second
is that the GFPS conditions derived using the Lyapunov method are usually sufficient
and highly conserved. The controllers and parameter update laws designed based on
such conditions are often very specific. In fact, GFPS can be viewed as a unique case of
GS, which can be investigated using the auxiliary system approach [46]. To avoid the
construction of Lyapunov functions, the approach presented in this paper converts the
differential equations describing the synchronization error system between the auxiliary
system and the response system into a series of Volterra integral equations by using the
Laplace transform method. Then, the dynamical behavior of the error system near its
origin can be analyzed by employing the successive approximation method [47] . In the
theory of integral equations, the significance of the Laplace transform method is that the
GFPS condition can be obtained without the construction of Lyapunov functions, even
if the scaling function factors are periodic functions, polynomial functions or any other
complex functions. Compared to previous works, our approach allows the easier design
of controllers and simpler parameter update laws and removes some restrictions on the
uncertain parameters. The feasibility and effectiveness of the approach are illustrated by
several numerical simulations.

The rest of the paper is organized as follows. In Section 2, the GFPS scheme for two
different uncertain chaotic systems is introduced. In Section 3, the GFPS condition is inves-
tigated using the Laplace transform method combined with the successive approximation
method in the theory of Volterra integral equations. A numerical example is provided
in Section 4 to demonstrate the effectiveness of our GFPS scheme. In Section 5, simple
parameter update laws are designed according to the GFPS condition derived in Section 3
to estimate the uncertain parameters in chaotic systems, the validity of which are illustrated
by numerical simulations. Finally, conclusions are drawn in Section 6.
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2. GFPS Scheme between Two Different Uncertain Chaotic Systems

Consider two chaotic systems (drive–response systems) with uncertain parameters
given in the following form:

ẋ = f1(x, φ),

ẏ = f2(y, ψ) + u,
(1)

where x, y ∈ Rn; φ ∈ Rm, ψ ∈ Rl are uncertain parameter vectors, and u is the controller
to be designed. For simplicity, assume that f1(0, φ) = f2(0, ψ) = 0 hold for any values of φ
and ψ. If there exists a scaling function matrix h = diag{h1(x), h2(x), · · · , hn(x)}, such that

lim
t→∞
||y− h(x)x|| = 0, (2)

then the two chaotic systems in system (1) are said to be GFPS with respect to the scaling
function matrix h [37,40]. The two chaotic systems are said to be FPS if

h1(x) = h2(x) = · · · = hn(x)

in Equation (2). Moreover, we find MPS between the two chaotic systems if h = diag{h1,
h2,· · · ,hn}, hi(i = 1, 2, · · · , n) are real constants in Equation (2). Obviously, both FPS and
MPS are specific cases of GFPS.

The controller u and the parameter update laws in system (1) are designed as below:

u = J(x) f1(x, φ̂)− f2(y, ψ̂) + kδ1,
˙̂φ = g1(φ̂− φ, δ1),
˙̂ψ = g2(ψ̂− ψ, δ1),

(3)

where J(x) = d(h(x)x)/dx, k is the control parameter, and δ1 = y− h(x)x is the synchro-
nization error; φ̂ and ψ̂ are the estimated values of uncertain parameter vectors φ and ψ,
respectively. In addition, g1(φ̂− φ, 0) = g2(ψ̂− ψ, 0) = 0 hold if

φ̂ = φ and ψ̂ = ψ. (4)

The GFPS occurring in system (1) can be regarded as a specific case of GS between
the two chaotic systems, which can be detected using the auxiliary system approach [46].
Consider the following identical copy of the response system driven by the same driving
signal x,

ż = f2(z, ψ) + ū,

ū = J(x) f1(x, φ̄)− f2(z, ψ̄) + kδ2,
˙̄φ = g1(φ̄− φ, δ2),
˙̄ψ = g2(ψ̄− ψ, δ2),

(5)

in which z ∈ Rn and δ2 = z− h(x)x. φ̄ and ψ̄ are the estimated values of uncertain parameter
vectors φ and ψ, respectively. Additionally, g1(φ̄− φ, 0) = g2(ψ̄− ψ, 0) = 0 hold for

φ̄ = φ and ψ̄ = ψ. (6)

Then, GFPS conditions (2) and (4) lead to

lim
t→∞
||y− z|| = 0, lim

t→∞
||φ̂− φ̄|| = 0, lim

t→∞
||ψ̂− ψ̄|| = 0. (7)
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3. Detection of GFPS Condition Based on the Laplace Transform

By letting

e1 =
y− z

2
, e2 =

φ̂− φ̄

2
, e3 =

ψ̂− ψ̄

2

e4 =
y + z

2
, e5 =

φ̂ + φ̄

2
, e6 =

ψ̂ + ψ̄

2
systems (1), (3) and (5) become

ė1 = ke1 +
J(x)

2
[ f1(x, e2 + e5)− f1(x, e5 − e2)] +

1
2

[ f2(e1 + e4, ψ)− f2(e4 − e1, ψ)]

+
1
2

[ f2(e4 − e1, e6 − e3)− f2(e4 + e1, e6 + e3)],

ė2 =
1
2

[g1(e2 + e5 − φ, e1 + e4 − h(x)x)− g1(e5 − e2 − φ, e4 − e1 − h(x)x)],

ė3 =
1
2

[g2(e3 + e6 − ψ, e1 + e4 − h(x)x)− g2(e6 − e3 − ψ, e4 − e1 − h(x)x)],

ė4 = ke4 +
J
2

[ f1(x, e2 + e5) + f1(x, e5 − e2)] +
1
2

[ f2(e1 + e4, ψ) + f2(e4 − e1, ψ)]

− 1
2

[ f2(e4 − e1, e6 − e3) + f2(e4 + e1, e6 + e3)],

ė5 =
1
2

[g1(e2 + e5 − φ, e1 + e4 − h(x)x) + g1(e5 − e2 − φ, e4 − e1 − h(x)x)],

ė6 =
1
2

[g2(e3 + e6 − ψ, e1 + e4 − h(x)x) + g2(e6 − e3 − ψ, e4 − e1 − h(x)x)],

ẋ = f1(x, φ).

(8)

GFPS condition (7) can be written as

lim
t→∞
||ei|| = 0, i = 1, 2, 3. (9)

For sufficiently small e1,2,3 near (0, 0, 0), the right-hand side of the first three equations
in system (8) can be expanded as

ė1 = ke1 + F1(x, e2, e3),

ė2 = α1e1 + α2e2 + F2(e1, e2),

ė3 = α3e1 + α4e3 + F3(e1, e3).

(10)

where

F1(x, e2, e3) = J(x)
∞

∑
n=1

1
(2n− 1)!

∂(2n−1) f1(x, φ)
∂φ(2n−1) e(2n−1)

2 −
∞

∑
n=1

1
(2n− 1)!

∂(2n−1) f2(h(x)x, ψ)
∂ψ(2n−1) e(2n−1)

3 ,

F2(e1, e2) =
∞

∑
n=1

1
(2n + 1)!

[
∂(2n+1)g1(0, 0)

∂δ
(2n+1)
1

e(2n+1)
1 +

∂(2n+1)g1(0, 0)
∂(φ̂− φ)(2n+1) e(2n+1)

2 ],

F3(e1, e3) =
∞

∑
n=1

1
(2n + 1)!

[
∂(2n+1)g2(0, 0)

∂δ
(2n+1)
1

e(2n+1)
1 +

∂(2n+1)g2(0, 0)
∂(ψ̂− ψ)(2n+1) e(2n+1)

3 ],

α1 =
∂g1(0, 0)

∂δ1
, α2 =

∂g1(0, 0)
∂(φ̂− φ)

, α3 =
∂g2(0, 0)

∂δ1
, α4 =

∂g2(0, 0)
∂(ψ̂− ψ)

.
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Consider the Laplace transform, defined as follows:

Ej(s) = L[ej] =
∫ +∞

0
ej(t)e−stdt,

ej(t) = L−1[Ej] =
1

2πi

∫ σ+i∞

σ−i∞
Ej(s)estds, j = 1, 2, 3.

(11)

Both ej and Ej are vectors with the same dimensions for j = 1, 2, 3. Taking the Laplace
transform of e1,2,3 on both sides of system (10) yields

(S−M)[E1, E2, E3]T = [e10, e20, e30]T + [F̂1, F̂2, F̂3]T , (12)

where

S =

sIn 0 0
0 sIm 0
0 0 sIl

, M =

kIn 0 0
α1 α2 0
α3 0 α4

, (13)

In, Im, Il represent the n× n, m×m and l × l real identity matrices, respectively. T denotes
the transpose of vectors. ej0, j = 1, 2, 3, are given initial values of system (10) and F̂1,2,3 are
the Laplace transforms of F1,2,3, respectively, i.e.,

F̂j = L[Fj] =
∫ +∞

0
Fj(t)e−stdt, j = 1, 2, 3.

The solution to Equation (12) can be derived by using Cramer’s rule [48]. Take, for
example, the expression of E1, which is an n-dimensional vector and always can be given
by the form below:

E1 =


E11
E12

...
E1n

 =
1

D(s)


w11(s)
w12(s)

...
w1n(s)

+
1

D(s)


w21(s)F̂11(s)
w22(s)F̂12(s)

...
w2n(s)F̂1n(s)

, (14)

where (E11, E12, · · · , E1n) and (F̂11, F̂12, · · · , F̂1n) are the n components of the vectors E1 and
F̂1, respectively. D(s) is the determinant of matrix (S − M). w1j, w2j, j = 1, · · · , n, are
polynomials of s, and their highest powers are less than that of D(s). Taking the inverse
Laplace transform on Equation (14) and applying the convolution theorem, one has

e1j = L−1[E1j] = L−1[
w1j(s)
D(s)

] + L−1[
w2j(s)
D(s)

] ∗ F1j(t), j = 1, · · · , n. (15)

where (e11, e12, · · · , e1n) and (F11, F12, · · · , F1n) are the n components of the vectors e1 and
F1, respectively. ∗ denotes the convolution operation. First, we introduce the following
theorem.

Theorem 1. The necessary condition for e1j → 0 with t→ ∞, j = 1, 2, · · · , n, in Equation (15)
is that all eigenvalues of matrix M defined in Equation (13) have negative real parts.

Proof. Without loss of generality, for any i = 1, 2 and j = 1, 2, · · · , n, wij(s)/D(s) have the
following form

wij(s)
D(s)

=

v
∑

p=0
apsp

n+m+l
∑

p=0
bpsp

, (16)

where v < n + m + l, ap and bp are constants. Consider the following three cases of the
inverse Laplace transforms for Equation (16):
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• D(s) has n + m + l single roots s1, s2, · · · , s(n+m+l)
wij(s)
D(s) = q1

s−s1
+ q2

s−s2
+ · · ·+ q(n+m+l)

s−s(n+m+l)
,

where qp =
wij(s)
D(s) (s− sp)

∣∣∣∣
s=sp

, p = 1, 2, · · · , n + m + l.

L−1[
wij(s)
D(s) ] = q1es1t + q2es2t + · · ·+ q(n+m+l)es(n+m+l)t

• D(s) has a pair of conjugate complex roots s1,2 = β± jω
wij(s)
D(s) =

wij(s)
(s−β−jω)(s−β+jω)Q(s) =

q1
s−β−jω + q2

s−β+jω + P(s)
Q(s) ,

where q1 =
wij(s)
D′(s)

∣∣∣∣
s=β+jω

, q2 =
wij(s)
D′(s)

∣∣∣∣
s=β−jω

,

L−1[
wij(s)
D(s) ] = q1e(β+jω)t + q2e(β−jω)t + L−1[ P(s)

Q(s) ]
• D(s) has (n + m + l)-repeated real roots s = s0

wij(s)
D(s) = q1

s−s0
+ q2

(s−s0)2 + · · ·+
q(n+m+l)

(s−s0)(n+m+l) ,

where q(n+m+l−p) =
1
p!

dp

dsp [(s− s0)(n+m+l) wij(s)
D(s) ]

∣∣∣∣
s=s0

, p = 1, 2, · · · , n + m + l − 1,

q(n+m+l) = [(s− s0)(n+m+l) wij(s)
D(s) ]

∣∣∣∣
s=s0

,

L−1[
wij(s)
D(s) ] = (q1 + q2t + · · ·+ q(n+m+l)t(n+m+l−1))es0t

From the analysis of the inverse Laplace transform of Equation (16), it is clear that
the inverse Laplace transform of wij(s)/D(s), i = 1, 2, in Equation (15) must be a sum of
exponential functions. When t→ ∞, all roots of D(s) must have negative real parts if

L−1[
w1j(s)
D(s)

], L−1[
w2j(s)
D(s)

]→ 0, j = 1, 2, · · · , n

Assume that matrix M only has eigenvalues with negative real parts; from Equation (15),
when t→ +∞, e1j can be written in the following form:

e1j =
∫ t

0
R1j(t− τ)F1j(τ)dτ, j = 1, 2, · · · , n (17)

where

R1j = L−1[
w2j(s)
D(s)

], j = 1, 2, · · · , n

One can easily confirm that the condition that matrix M only has eigenvalues with
negative real parts also is necessary for e2j → 0, j = 1, 2, · · · , m and e3j → 0, j = 1, 2, · · · , l.
Similarly, under such conditions, when t→ +∞, e2j and e3j have the following form:

e2j =
∫ t

0
R2j(t− τ)F1j(τ)dτ +

∫ t

0
R3j(t− τ)F2j(τ)dτ, j = 1, 2, · · · , m

e3j =
∫ t

0
R4j(t− τ)F1j(τ)dτ +

∫ t

0
R5j(t− τ)F2j(τ)dτ +

∫ t

0
R6j(t− τ)F3j(τ)dτ,

j = 1, 2, · · · , l

(18)

in which Rij → 0 for t→ +∞, i = 2, 3, · · · , 6. (F21, F22, · · · , F2m) and (F31, F32, · · · , F3l) are the
m and l components of the vectors F2 and F3, respectively, which are defined in Equation (10).

Theorem 2. e1j = 0, j = 1, 2, · · · , n, e2j = 0, j = 1, 2, · · · , m, e3j = 0, j = 1, 2, · · · , l, are the
unique continuous solutions of Equations (17) and (18).
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Proof. In fact, Equations (17) and (18) are a series of Volterra integral equations, which
can be solved by using the successive approximation method [47] in the theory of integral
equations. Consider the Volterra integral equation as below:

A(t) = B(t) +
∫ t

0
T(t− τ)H(τ, A(τ))dτ, (19)

where A(t) ∈ Rn and |A(t)| < ∞, T(t) is a n × n matrix, and |T(t)| ∈ L[0, t0] for any
0 < t0 < ∞. Both B(t) and H(t, A(t)) are vectors with n continuous components. Further-
more, for any η > 0, there must exist a constant ρ(η) > 0 such that

|H(t, A1)− H(t, A2)| ≤ ρ(η)|A1 − A2|, (|A1|, |A2| ≤ η) (20)

From the results given by Nohel [47], if the above conditions are satisfied, the succes-
sive approximations

ω0(t) = 0, ωn+1(t) = B(t) +
∫ t

0
T(t− τ)H(τ, ωn(τ))dτ, n = 0, 1, 2, · · · (21)

will uniformly converge to the unique continuous solution A(t) = ω(t) of Equation (19).
Comparing Equations (17)–(19), it is easy to check that F1,2,3, which are defined in

Equation (10), are smooth enough to satisfy condition (20). From Equation (21), e1j = 0,
j = 1, 2, · · · , n, e2j = 0, j = 1, 2, · · · , m, e3j = 0, j = 1, 2, · · · , l, are the unique continuous
solutions of Equations (17) and (18).

According to Theorems 1 and 2, we have the following result.

Theorem 3. GFPS in systems (1) and (3) can be achieved if the matrix M defined in Equation (13)
only has eigenvalues with negative real parts.

4. Discussion of GFPS Scheme

To illustrate the effectiveness of the GFPS scheme proposed in the previous sections
on the basis of the Laplace transform method, the following chaotic systems with uncertain
parameters, which have been considered in [37,38], are discussed:

ẋ = f (x) + Φ(x)Θ,

ẏ = g(y) + Ψ(y)Ω + U,
(22)

where x, y ∈ Rn are the state vectors; Φ(x) : Rn → Rn×p, Ψ(y) : Rn → Rn×q, Θ ∈ Rp and
Ω ∈ Rq represent the vectors of uncertain parameters; and U ∈ Rn is a controller. For
simplicity, f (0) + Φ(0)Θ = g(0) + Ψ(0)Ω = 0 hold for any values of Θ and Ω. Define the
error vector of GFPS as

e = y− h(x)x,

where h(x) = diag{h1(x), h2(x), · · · , hn(x)}, hi(x) : Rn → R (i = 1, 2, · · · , n) are scaling
function factors that compose the scaling function matrix h(x). According to [38], GFPS in
(22) can be achieved by the controller and the parameter update laws as follows:

U = J( f (x) + Φ(x)Θ̂)− g(y)−Ψ(y)Ω̂ + Ke,
˙̂Θ = −(JΦ(x))Te− (Θ̂−Θ),
˙̂Ω = ΨT(y)e− (Ω̂−Ω),

(23)
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where J = d(h(x)x)/dx, Θ̂ and Ω̂ are estimated values of the uncertain parameters in
Equation (22); K is a n× n matrix, which can be decomposed into K = K1 + K2, in which
K1 and K2 satisfy the following assumptions:

(i) KT
1 = −K1,

(ii) K2 = diag{b1, b2, · · · , bn}, bi < 0, (i = 1, 2, · · · , n).
(24)

From the first condition in condition (24), all real parts of the eigenvalues of K1 are
zero since it is a real antisymmetric matrix. Then, all eigenvalues of matrix K (K = K1 + K2)
must have negative real parts if condition (24) is satisfied.

From Theorem 3 in Section 3, GFPS in system (22) appears due to the controller and
parameter update laws presented in Equation (23) if all eigenvalues of the matrixK 0 0

0 −Ip 0
0 0 −Iq

, (25)

have negative real parts, in which Ip and Iq are the p× p and q× q real identity matrices,
respectively. Obviously, the above GFPS condition implies that all eigenvalues of matrix K
should have negative real parts.

Remark 1. The GFPS condition derived in [38] is a special condition of Theorem 3 in Section 3.

An example is given below to demonstrate that the condition (24) is not necessary
for GFPS occurring in system (22) under the controller and parameter update laws in (23).
Consider the hyperchaotic Chen system and hyperchaotic Lorenz system as the drive and
response systems, respectively [38].

ẋ1 = −ax1 + ax2 + x4,

ẋ2 = dx1 + cx2 − x1x3,

ẋ3 = −bx3 + x1x2,

ẋ4 = rx4 + x2x3,

(26)

and
ẏ1 = −a1y1 + a1y2 + y4 + u1,

ẏ2 = b1y1 − y2 − y1y3 + u2,

ẏ3 = −c1y3 + y1y2 + u3,

ẏ4 = d1y4 − y1y3 + u4,

(27)

where a, b, c, d, r, a1, b1, c1 and d1 are uncertain parameters to be identified. The true values
of the uncertain parameters of systems (26) and (27) are chosen as a = 35, b = 3, c = 12,
d = 7, r = 0.08, a1 = 10, b1 = 28, c1 = 8/3 and d1 = 1.3. In addition, we choose the scaling
function matrix as h(x) = diag{h1(x1), h2(x2), h3(x3), h4(x4)}, where

h1(x1) = 2 sin(x1 + 1) + 1,

h2(x2) = 3 sin(−2x2 + 3) + 1,

h3(x3) = − sin(3x3 − 1) + 1,

h4(x4) = −2 sin(−x4 + 4) + 1,

(28)
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Then, one can find that J = d(h(x)x)/dx = diag{J1, J2, J3, J4}, where

J1 = 2 cos(x1 + 1)x1 + 2 sin(x1 + 1) + 1,

J2 = −6 cos(2x2 − 3)x2 − 3 sin(2x2 − 3) + 1,

J3 = −3 cos(3x3 − 1)x3 − sin(3x3 − 1) + 1,

J4 = 2 cos(x4 − 4)x4 + 2 sin(x4 − 4) + 1,

(29)

According to the theoretical analysis, the controller and parameter update laws pre-
sented in (23) have the following form:

u1 = J1x4 − y4 + â1(y1 − y2)− â J1(x1 − x2) +
4

∑
i=1

k1iei,

u2 = y2 + y1y3 − J2x1x3 − b̂1y1 + d̂J2x1 + ĉ J2x2 +
4

∑
i=1

k2iei,

u3 = J3x1x2 − y1y2 + ĉ1y3 − b̂ J3x3 +
4

∑
i=1

k3iei,

u4 = y1y3 + J4x2x3 − d̂1y4 + r̂ J4x4 +
4

∑
i=1

k4iei,

(30)

˙̂a = (x1 − x2)J1e1 + (a− â),
˙̂b = x3 J3e3 + (b− b̂),
˙̂c = −x2 J2e2 + (c− ĉ),
˙̂d = −x1 J2e2 + (d− d̂),
˙̂r = −x4 J4e4 + (r− r̂),

(31)

˙̂a1 = (y2 − y1)e1 + (a1 − â1),
˙̂b1 = y1e2 + (b1 − b̂1),
˙̂c1 = −y3e3 + (c1 − ĉ1),
˙̂d1 = y4e4 + (d1 − d̂1),

(32)

where kij (i = 1, 2, 3, 4; j = 1, 2, 3, 4) are real constants that compose the matrix K;
ei = (yi − hixi), i = 1, 2, 3, 4; â, b̂, ĉ, d̂, r̂, â1, b̂1, ĉ1 and d̂1 are estimated values of the
unknown parameters in systems (26) and (27). From the analytical result given in [38],
GFPS between systems (26) and (27) will be achieved if the K matrix is chosen as

K =


−1 1 0 0
−1 −1 1 0
0 −1 −1 1
0 0 −1 −1

, (33)

which satisfies condition (24). However, the GFPS conditions obtained in this paper for
systems (26) and (27) only require that all eigenvalues of K matrix have negative real parts.
Numerical simulations for systems (26), (27) are carried out below by selecting

K =


−1 1 0 0
−2 −1 1 0
0 −1 −1 1
0 0 −1 −1

. (34)

Remark 2. The K matrix (34) is not antisymmetric, which does not satisfy the first condition in (24).
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The four eigenvalues of K matrix (34) are −1± 1.85i and −1± 0.77i. The numerical
results are shown in Figures 1 and 2, in which the initial values of the systems (26) and (27)
are taken as x1(0) = 3, x2(0) = 5, x3(0) = 7, x4(0) = 8, y1(0) = −12, y2(0) = 2, y3(0) = 3,
y4(0) = −5 and the estimated parameters have initial conditions â(0) = 4, b̂(0) = −6,
ĉ(0) = −2, d̂(0) = 1, r̂(0) = −5, â1(0) = 1, b̂1(0) = −3, ĉ1(0) = 0.3 and d̂1(0) = 0.1. Although
K matrix (34) does not satisfy condition (24), Figure 1 shows that GFPS between systems
(26) and (27) is achieved with the scaling function factors (28). Figure 2 illustrates that the
estimated parameters â, b̂, ĉ, d̂, r̂, â1, b̂1, ĉ1, d̂1 in systems (26) and (27) adapt themselves
to the true values a = 35, b = 3, c = 12, d = 7, r = 0.08, a1 = 10, b1 = 28, c1 = 8/3 and
d1 = 1.3, respectively. The numerical results in Figures 1 and 2 demonstrate that GFPS
between systems (26) and (27) can be achieved with the scaling function factors (28) and
matrix (34), and the parameter estimate errors converge to zero.
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Figure 1. GFPS between systems (26) and (27) is achieved with the scaling function matrix
h(x) = diag{2sin(x1 + 1) + 1, 3sin(−2x2 + 3) + 1,−sin(3x3 − 1) + 1,−2sin(−x4 + 4) + 1} and K ma-
trix (34).
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Figure 2. The estimates of the uncertain parameters of systems (26) and (27) for GFPS with the scaling func-
tion matrix h(x) = diag{2sin(x1 + 1) + 1, 3sin(−2x2 + 3) + 1,−sin(3x3 − 1) + 1,−2sin(−x4 + 4) + 1}
and K matrix (34). (a) uncertain parameters in system (26) (b) uncertain parameters in system (27).
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Remark 3. The GFPS condition derived using the Laplace transform method is more generalized
than that proposed in [38], which is obtained using the Lyapunov method.

To further verify the theory’s parts in more detail, another K matrix,

K =


−1 2 3 4
−2 1 2 3
2 −3 −4 −4
−2 −3 −4 −4

, (35)

is chosen to perform the numerical simulations for systems (26) and (27) with scaling
function factors (28), in which all the initial conditions remain the same.

Remark 4. For matrix (35), neither of the two conditions in (24) is satisfied.

Matrix (35) has four eigenvalues with negative real parts, −3.4925 ± 0.6286i,
−0.5075 ± 0.2452i, which satisfies the condition given in Theorem 1 in Section 3. The
numerical results are presented in Figures 3 and 4. Figure 3 illustrates that GFPS between
systems (26) and (27) occurs with the scaling function factors (28). Figure 4 shows that the
estimated parameters â, b̂, ĉ, d̂, r̂, â1, b̂1, ĉ1, d̂1 in systems (26) and (27) also can converge
to their true values a = 35, b = 3, c = 12, d = 7, r = 0.08, a1 = 10, b1 = 28, c1 = 8/3
and d1 = 1.3, respectively. The numerical results in Figures 1–4 demonstrate that GFPS
between systems (26) and (27) can be achieved with the scaling function factors (28), and
the parameter estimate errors converge to zero as long as all eigenvalues of K matrix have
negative real parts, which verifies the correctness of our theoretical results in Section 3.
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Figure 3. GFPS between systems (26) and (27) is achieved with the scaling function matrix
h(x) = diag{2sin(x1 + 1) + 1, 3sin(−2x2 + 3) + 1,−sin(3x3 − 1) + 1,−2sin(−x4 + 4) + 1} and K ma-
trix (35).
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Figure 4. The estimates of the uncertain parameters of systems (26) and (27) for GFPS with the scaling func-
tion matrix h(x) = diag{2sin(x1 + 1) + 1, 3sin(−2x2 + 3) + 1,−sin(3x3 − 1) + 1,−2sin(−x4 + 4) + 1}
and K matrix (35). (a) uncertain parameters in system (26) (b) uncertain parameters in system (27).

5. The Design of Simple Parameter Update Laws

According to the GFPS condition given in Theorem 1 in Section 3, simple parameter
update laws can be designed for the estimation of the uncertain parameters in system (1).
From M matrix defined in Equation (13), g1(φ̂− φ, e1) and g2(ψ̂− ψ, e1) in Equation (3) can
be selected so that the eigenvalues of matrix M are independent of φ and ψ. Consider that
g1(φ̂− φ, e1) and g2(ψ̂− ψ, e1) in Equation (3) have the following form:

g1(φ̂− φ, δ1) = γ11(φ̂− φ) + γ12Γ1(δ1),

g2(ψ̂− ψ, e1) = γ21(ψ̂− ψ) + γ22Γ2(δ1),
(36)

where γ11, γ12, γ21, γ22 are control parameters; Γ1,2(δ1) are the functions of δ1, ∂Γ1,2(δ1)
∂δ1

∣∣∣∣
δ1=0

= 0.

With parameter update laws (36), matrix M in Equation (13) becomes

M =


kIn 0 0

0 γ11 Im 0

0 0 γ21 Il

, (37)

where In, Im and Il represent n× n, m×m and l × l real identity matrices, respectively. All
eigenvalues of matrix (37) have negative real parts as long as matrices k, γ11 and γ21 have
no eigenvalues with non-negative real parts. For the sake of simplicity, one can choose all k,
γ11 and γ21 to be scalars. Therefore, GFPS in system (1) can be achieved by the controller
and parameter update laws presented in Equations (3) and (36) if k, γ11, γ21 < 0.

To illustrate the effectiveness of the parameter update laws (36), drive–response
systems constructed with the Lorenz and Chen systems are selected to perform numerical
simulations. The Lorenz chaotic system [49], as the drive system, can be described by the
following equations:

ẋ1 = σ(x2 − x1),

ẋ2 = rx1 − x2 − x1x3,

ẋ3 = x1x2 − βx3,

(38)

where x1, x2, x3 are state variables, and σ, r, β are uncertain parameters to be identified. In
particular, when σ = 10, r = 28 and β = 8/3, system (38) displays a chaotic attractor.
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The Chen chaotic system [50], as the response system, is given as below:

ẏ1 = a(y2 − y1) + u1,

ẏ2 = (c− a)y1 − y1y3 + cy2 + u2,

ẏ3 = y1y2 − by3 + u3,

(39)

where y1, y2, y3 are state variables, a, b, c are uncertain parameters to be estimated and u1, u2, u3
are the control laws to be designed. System (39) exhibits chaotic dynamics when a = 35,
b = 3 and c = 28. The scaling function matrix between systems (38) and (39) is chosen as
h(x) = diag{2sin(x1 + 1) + 1, 3sin(−2x2 + 3) + 1,−sin(3x3 − 1) + 1)}, and one has

J =
d(h(x)x)

dx
= diag{2 cos(x1 + 1)x1 + 2 sin(x1 + 1) + 1,

− 6 cos(2x2 − 3)x2 − 3 sin(2x2 − 3) + 1,

− 3 cos(3x3 − 1)x3 − sin(3x3 − 1) + 1}.

According to Equations (3) and (36), the controller u1, u2, u3 and the parameter update
laws can be given by

u1 = (2 cos(x1 + 1)x1 + 2 sin(x1 + 1) + 1)σ̂(x2 − x1)

+ k(y1 − (2 sin(x1 + 1) + 1)x1) + â(y1 − y2),

u2 = (−6 cos(2x2 − 3)x2 − 3 sin(2x2 − 3) + 1)(r̂x1 − x2 − x1x3)

+ k(y2 − (3 sin(−2x2 + 3) + 1)x2)− (ĉ− â)y1 + y1y3 − ĉy2,

u3 = (−3 cos(3x3 − 1)x3 − sin(3x3 − 1) + 1)(x1x2 − β̂x3)

+ k(y3 − (− sin(3x3 − 1) + 1)x3)− y1y2 + b̂y3,

(40)

˙̂σ = γ11(σ̂− σ) + γ12(1− cos(y1 − (2sin(x1 + 1) + 1)x1)),
˙̂r = γ11(r̂− r) + γ12(1− cos(y2 − (3sin(−2x2 + 3) + 1)x2)),
˙̂β = γ11(β̂− β) + γ12(1− cos(y3 − (−sin(3x3 − 1) + 1)x3)),

(41)

˙̂a = γ21(â− a) + γ22(1− cos(y1 − (2sin(x1 + 1) + 1)x1)),
˙̂b = γ21(b̂− b) + γ22(1− cos(y2 − (3sin(−2x2 + 3) + 1)x2)),
˙̂c = γ21(ĉ− c) + γ22(1− cos(y3 − (−sin(3x3 − 1) + 1)x3)),

(42)

where σ̂, r̂, β̂, â, b̂ and ĉ are estimated values of the uncertain parameters in systems (38)
and (39). The true values of the uncertain parameters of systems (38) and (39) are chosen
as σ = 10, r = 28, β = 8/3 and a = 35, b = 3, c = 28. According to the previous
analysis results in the section, if k, γ11, γ21, γ12, γ22 are chosen as k = γ11 = γ21 = −1
and γ12 = γ22 = 0.01, GFPS between uncertain Lorenz and Chen chaotic systems will
be achieved under the control of the controller (40), and the uncertain parameters will
be estimated using the parameter update laws (41) and (42). The initial conditions are
given by x1(0) = 0.1, x2(0) = 0.2, x3(0) = 0.3, y1(0) = 0.4, y2(0) = 0.5, y3(0) = 0.6, σ̂ = 9,
r̂ = 25, β̂ = 3, â = 33, b̂ = 2 and ĉ = 29 to perform the numerical simulations. As shown
in Figures 5 and 6, GFPS between systems (38) and (39) is achieved, and the uncertain
parameters are also identified.
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Figure 5. GFPS between systems (38) and (39) is achieved with the scaling function matrix
h(x) = diag{2sin(x1 + 1) + 1, 3sin(−2x2 + 3) + 1,−sin(3x3 − 1) + 1)}. (a) (2sin(x1 + 1) + 1)x1

vs. y1 (b) (3sin(−2x2 + 3) + 1)x2 vs. y2 (c) (−sin(3x3 − 1) + 1))x3 vs. y3.
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Figure 6. The estimates of the uncertain parameters of systems (38) and (39) for GFPS with the scaling
function matrix h(x) = diag{2sin(x1 + 1) + 1, 3sin(−2x2 + 3) + 1,−sin(3x3 − 1) + 1)}. (a) uncertain
parameters in system (38) (b) uncertain parameters in system (39).

If the scaling function matrix is taken as h(x) = diag{0.02x2
1 + 0.2x1 + 1,−0.01x2

2 +
0.1x2 − 1, 0.03x2

3 − 0.1x3 + 0.5} and all other parameter conditions in systems (38) and (39)
remain the same, GFPS between systems (38) and (39) still can be achieved and the uncertain
parameters are also identified under the controller and parameter update laws given by
Equations (3) and (36), respectively. The simulation results are shown in Figures 7 and 8,
which illustrate the validity of the parameter update laws (36) proposed in the section. It is
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worth pointing out that the parameter update laws (36) are still valid even if the scaling
function factors are other complex functions.
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Figure 7. GFPS between systems (38) and (39) is achieved with the scaling function matrix
h(x) = diag{0.02x2

1 + 0.2x1 + 1,−0.01x2
2 + 0.1x2 − 1, 0.03x2

3 − 0.1x3 + 0.5)}. (a) (0.02x2
1 + 0.2x1 + 1)x1

vs. y1 (b) (−0.01x2
2 + 0.1x2 − 1)x2 vs. y2 (c) (0.03x2

3 − 0.1x3 + 0.5)x3 vs. y3.
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Figure 8. The estimates of the uncertain parameters of systems (38) and (39) for GFPS with the
scaling function matrix h(x) = diag{0.02x2

1 + 0.2x1 + 1,−0.01x2
2 + 0.1x2 − 1, 0.03x2

3 − 0.1x3 + 0.5}.
(a) uncertain parameters in system (38) (b) uncertain parameters in system (39).

6. Conclusions

In this paper, an adaptive controller is proposed to realize GFPS between two different
chaotic systems (drive–response systems) with uncertain parameters based on the Laplace
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transform method. Compared to previous research, first, the uncertain chaotic systems
considered in this paper are more generalized and have fewer restrictions on uncertain
parameters; second, the GFPS scheme proposed in this paper is more generalized, and
it can be used even when the scaling function factors are periodic functions, polynomial
functions or other complex functions. Third, the parameter update laws designed for the
estimation of uncertain parameters based on the GFPS condition derived using the Laplace
transform method are simpler.

The greatest advantage of the GFPS scheme based on the Laplace transform method
is that it can be used to design simple controllers and parameter update laws without
constructing Lyapunov functions. The added controllers designed by this approach are
more generalized and easier to realize physically than those designed through the Lyapunov
function method.

It should be noted that we only consider the local stability of the origin in the GFPS
error system between two chaotic systems in this paper. Moreover, to obtain the GFPS
conditions, we require the smoothness of the trajectories in two chaotic systems to guarantee
the existence, uniqueness and continuousness of solutions in a class of Volterra integral
equations. According to the works in the literature [51,52], the global stability of the GFPS
error system between two non-smooth chaotic systems is worthy of discussion, and this
will be one of our next research points.
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