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Abstract: As an option to deal with insulin-dependent disease, a recently commuted PD control
strategy is designed and carefully analyzed for different clinic diabetic patients. This controller
approach is mainly conceived to stabilize the glucose blood concentration in a diabetic patient around
its basal value; hence, avoiding extreme situations such as hypoglycemia and hyperglycemia. This
control strategy receives two inputs carefully tuned to actuate when the measured variable is out
of a prescribed healthy zone. Therefore, one of these variables is invoked to decrease the glucose
concentration to insulin injection, and the other is employed to increase the glucose absorption, both
by using a proper PD controller. According to our numerical experiments, our controller approach
performs well, even when there is an external disturbance in the controlled system.

Keywords: glucose–insulin system; commuted proportional derivative controller; nonlinear system;
exogenous perturbation

1. Introduction

Diabetes (diabetes mellitus) is a chronic disease that affects millions of persons world-
wide (see, for instance [1–4]). This disease is characterized by inadequate control of the
blood glucose concentration in the body, leading to complications such as limb loss, blind-
ness, ischemic heart disease, and end-stage renal disease [3]. Moreover, for diabetic patients
with insulin-dependent diabetes, the glucose–insulin regulatory system can be viewed as
a feedback-control example where the blood glucose levels are frequently measured to
control it (see, for instance [2,5–8]). Additionally, according to the Diabetes Control and
Complications Trial (DCCT), the blood glucose concentration should be within the range of
50–120 mg/dL [4]. In [9], the range from 60 mg/dL to 110 mg/dL is considered the normal
blood glucose concentration level in humans. Therefore, by correctly applying insulin,
this glucose level can be correctly (healthy) manipulated. For reference values, above
120 mg/dL, the state of the patient is known as hyperglycemia, and below 50 mg/dL, the
state is known as hypoglycemia. Both states are harmful to diabetic patients [4]. Exogenous
factors that can affect glucose include food intake, rate of digestion, exercise, and repro-
ductive state, among others [2,4]. Hence, for control performance evaluation, it is also
important that the designed controller be robust in front of any real kind of internal or
external perturbations.

Figure 1 shows the block diagram of a closed-loop controlled system of diabetic
patients using insulin pumps [4,6]. In this scheme, the glucose sensor can be embedded
under the skin, and the insulin pump can be implanted in the abdomen. So, the control
objective consists to keep regulating the glucose level in the body. In this scenario, the
patient is said to be under metabolic control. The pump injects insulin through a catheter.
The system shown in Figure 1 can be referred to as an artificial pancreas because this closed-
loop system replaces, in some way, the pancreas activity in controlling the glucose level of
the body of a healthy person [2].
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Figure 1. Block diagram of the closed-loop controlled system of insulin-dependent diabetic patients.
A sensor measures the glucose blood concentration and compares it to the reference value (normal
glucose level). Then, the control algorithm decides the amount of insulin administration delivered to
the patient through a pump.

In literature, several approaches have been used to design artificial pancreas. For
instance, a robust controller using a higher-order sliding mode control was studied in [6].
Using optimal H∞ control theory, an insulin injection control was analyzed in [5]. And
employing a parametric programming approach for the control design was considered in [4].
On the other hand, in [10], control algorithms using standard linear control techniques,
like the proportional-derivative controller, were studied, as in [11–13]. In this paper, the
feedback measurement signal was assumed to be available at discrete-time moments which
resulted in an interesting and useful technological fact for an artificial pancreas design. In
contrast, we claim that no significant benefit is obtained from using a nonlinear model-
based control design strategy. For instance, in [14], an impulsive model predictive control
is presented, but the mathematical model has to be linear, and in [15], miss undertaken
internal dynamics. On the other hand, PID controllers in the artificial pancreas have
been studied in [16], but only for hyperglycemic conditions, and in [17] a PID robust
control is presented for the hypoglycemic situation, but both conditions are not studied
simultaneously, as in the present work. However, the nonlinear techniques can offer
new ways of control implementation that can face some nonlinearities ignored in by the
linear controller tools. Some of these nonlinear control design strategies involve sliding
mode control [6,18], delay control [19], optimal control [20], switched LPV control [21],
sub-optimal control [22], model predictive control [23], fuzzy control [24], reinforcement
learning [25], etc. Therefore, the use of these control design tools allows us to innovate new
developments for artificial pancreas approaches. Our proposal aims to act upon the control
part of an insulin-dependent diabetic system to develop an effective and simple solution to
avoid nondesired clinical problems.

The main objective of the present work is to design a robust control for an artificial pan-
creas to minimize the effect of extreme situations such as hyperglycemia or hypoglycemia.
Additionally, we evaluate our artificial pancreas performance under different scenarios.
Our control strategy uses a novel switched strategy: when a peak value on glucose blood
concentration is detected, the controller tries to minimize its level by injecting insulin into
the system, and when the glucose blood concentration is lower than a healthy level, glucose
ingestion is administrated by the controller. The objective is to maintain a healthy level
of glucose. The control strategy is based on a proportional-derivative (PD) theory, where
the input signal is the detected peak value of the blood glucose concentration. The PD
controller format is considered due to its simple and easy realization [11], as pointed out
by [12,20]. We avoid using the PID controller because its integral action may be useless [13].
This is also evidenced, in our numerical experiments, noticing that strong hypoglycemia
occurs during a long period of time when the integral part is considered. But, in order to
complete the study of the proposed switched strategy, a reset integral part is considered,
defining a commuted proportional integral derivative (PID) controller. This approach is
based on Clegg integrator [26], where a reset signal is introduced to face the overshoots
produced by the integral part of the controller as suggested in [27,28].

The rest of the paper is organized as follows. First, the nonlinear mathematical
model and the proposed controller are presented in Section 2. Then, Section 3 shows
the performance of the combined PD controller in different scenarios: with decaying
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disturbance; with external additive perturbation; and in the presence of dynamical plant
changes. Also, in this section, a resetting PID is evaluated to see the undesired chattering
effect due to the integral part of the control architecture. Finally, Section 4 discusses the
obtained results , and conclusions are stated in Section 5.

2. Materials and Methods
2.1. Dynamical Model of the Glucose–Insulin Regulatory System

The main objective of this paper is to design a robust PD controller for an artificial
pancreas able to stabilize the glycemia blood level around its basal value and prevent
hypoglycemia from appearing when the administrated insulin is not well assimilated by
the patient.

In the recent literature, there are some glucose–insulin regulatory mathematical
models [29]. In this paper, we consider the minimal model called the Bergman minimal
model [30], widely used in literature (see, for instance [4–6,10] and references therein). This
is due to its simplicity. This model is as described follows:

ẋ1(t) = −p1(x1(t)− Gb)− x1(t) · x2(t) + D(t), (1)

ẋ2(t) = −p2x2(t) + p3(x3(t)− Ib), (2)

ẋ3(t) = −n(x3(t)− Ib) + γ[x1(t)− σ]+t + u(t), (3)

where x1(t), x2(t) and x3(t) are the blood plasma glucose concentration (mg/dL), the
insulin’s effect on the net glucose disappearance (1/min) and the insulin concentration
in plasma (µU/mL), respectively. [x1 − σ]+ means that when x1(t) is greater that σ, the
value is taken to be [x1 − σ], otherwise, its value is zero. Bergman et al. [30] describe this
factor as the feedback response of pancreatic insulin to variations in glucose concentration
in the bloodstream. Gb and Ib are the basal value levels of pre-injection level of glucose
(mg/dL) and the pre-injection level of insulin (µU/mL), respectively. These values can
be also called the subject’s baseline glycemia (Gb) and the subject’s baseline insulinemia
(Ib) [19]. Remark that σ is greater than Gb. D(t) represents the exogenous factors, and u(t)
defines the insulin injection rate being the control input. Parameters p1, p2, p3, n and γ
are the system parameters. These are described, for instance, in [6,19]. Additionally, x1(0),
x2(0), and x3(0) are the corresponding initial conditions. Finally, x1(t) is the available
output system for the control algorithm.

The term D(t) represents the rate at which glucose enters to the bloodstream from
intestinal absorption after food intake. In oral glucose tests with nondiabetic subjects, the
model aims to produce the desired effect that the plasma glucose level rises too rapidly
(from the resting level) to a maximum in less than 30 min and then falling to the base level
after 2–3 h [20]. Moreover, the exponential function also produces the desired behavior for
the model.

According to [6], D(t) is supposed to be reduced to zero or to some constant value in
finite time, and it represents the rate at which glucose is absorbed by the regulatory system.
One possible mathematical representation of D(t) is as follows [4,6,18,20]:

D(t) = Ae−Bt, B > 0. (4)

Therefore, the mathematical model (1)–(3) will be taken as a reference pancreas system.

2.2. Modified Mathematical Model

Because the dynamic of glucose concentration is reduced when hypoglycemia occurs,
to increase its concentration, the control action has to administrate glucose to the pancreas
system. In consequence, Equation (1) is modified to include this control manipulation:
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ẋ1(t) = −p1(x1(t)− Gb)− x1(t) · x2(t) + D(t) + ug(t), (5)

ẋ2(t) = −p2x2(t) + p3(x3(t)− Ib), (6)

ẋ3(t) = −n(x3(t)− Ib) + γ[x1(t)− σ]+t + u(t). (7)

From here, the term ug(t) corresponds to the controller part that is activated under
hypoglycemia. This modified mathematical model defined by Equations (5)–(7) allows us
to directly influence the glucose level of the pancreas system.

2.3. Commuted PD Control

The control objective is to stabilize the glucose blood concentration around the nominal
value Gb. First, we deal with the following PD control law:

uPD(t) = k1(x1(t)− Gb) + k2 ẋ1(t) , (8)

where control parameters k1 and k2 must be tuned off-line. As is well known, the PD
control compares the measured variable with a reference value and tries to converge to
the desired set point. In our case, the physiologic meaning of this control is to reach the
glucose blood concentration reference Gb with minimal delay and overshoot. Once we
have determined their nominal values, we have to implement the combined strategy to
face hypo- and hyperglycemia states. The purpose is to reduce the time that the patient
suffers from these unhealthy states. In this section, we do not consider the integrator term
of the classical PID controller. As mentioned in [13], the integral action can be neglected in
front of the proportional and derivative ones. But to obtain a more complete study, we deal
with a PID version in Section 3.4. Also, from simulation experiments, we notice that strong
hypoglycemia occurs during a long time period of PID control action.

To mitigate the strong effect of insulin, we propose to administrate a slight dose
of glucose. The control action must be present in glucose dynamics (5) and in insulin
dynamics (7) too. To identify when the patient is in a critical situation, we test if the glucose
blood concentration x1(t) is in a healthy range 60–110 mg/dL. In fact, from the literature,
this range can be larger, such as 50–120 mg/dL [4]. The idea of the switched strategy is
as follows:

• Hyperglycemia: to decrease the glucose blood concentration, an insulin injection is
needed, in terms of the PD controller. In system Equation (7), the control u(t) is:

u(t) =

 uPD(t) x1(t) > x1H

0 otherwise.
(9)

This administration has to be always positive. The control designer has to decide when
this control is activated, in terms of critical glucose blood concentration value x1H .

• Hypoglycemia: to increment the glucose blood concentration, ingestion is necessary. In
System Equation (5), the control ug(t) is:

ug(t) =

 −uPD(t) x1(t) < x1h

0 otherwise.
(10)

Due to the dynamic of glucose blood concentration (5), the control law tries to incre-
ment the velocity of glucose blood absorption. The control designer has to decide when
this control is activated, in terms of critical blood glucose concentration value x1h .

We will call this control strategy the commuted PD controller. This is because we
combine insulin and glucose administration following a switched decision rule. The
design parameters x1H and x1h can be off-line determined to ensure the activation when
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hypoglycemia occurs (we do not have x3(t) measurements to obtain an adjusted running
of this value). In our case, we set x1H = 110 and x1h = 60 to meet the given healthy range.

We now discuss why a combined strategy is desirable. First, a PD controller was
considered, but simulations show that the insulin infusion rate is greater than its basal
value leading to hypoglycemia during a long period of time of control activation. To
improve the controller performance, and if possible to not fall into hypoglycemia, one
option is to tune the controller’s parameters. Additionally, we decide to restrict the action
of insulin administration only when hyperglycemia is really happening. In this case, with
control laws {u = uPD, ug = 0}, the controlled artificial pancreas will try to minimize the
error between the measured glucose blood concentration x1(t) and the basal concentration
Gb. Then, when the glucose blood concentration of the patient is in a healthy range, no
control action is required {u = 0, ug = 0}. To complete this strategy, we consider a control
action when hypoglycemia occurs: {u = 0, ug = −uPD}. This action can be seen as
an ingestion or administration of glucose. The minus sign in ug is necessary due to the
dynamics of (1).

2.4. Robustness and Stability

Our control objective consists of stabilizing the glucose level around the basal value in
finite time. To study the stability, we consider two switching surfaces: s1 = {x1 = x1h} and
s2 = {x1 = x1H}. So, the glucose level can be divided into three possible regions:

S1 = (0, x1h) , S0 = (x1h , x1H ) , S2 = (x1H ,+∞), (11)

verifying that x1(t) ∈ R = S̄1 ∪ S̄0 ∪ S̄2. Considering x(t) = (x1(t), x2(t), x3(t))T , the
closed-loop system has the following general representation:

ẋ(t) = f (t, x(t)),

To simplify the presentation, we omit the dependence on t of x(t). Function f (t, x) is then
defined as a piecewise continuous function:

f (t, x) =



f1(t, x), x1 ∈ S1

f0(t, x), x1 ∈ S0

f2(t, x), x1 ∈ S2 ,

(12)

where

f1(t, x) =


1

1−k2
(−(p1 + k1)(x1 − Gb)− x1x2 + D(t))

−p2x2 + p3(x3 − Ib)

−n(x3 − Ib)

, (13)

f0(t, x) =


−p1(x1 − Gb)− x1x2 + D(t)

−p2x2 + p3(x3 − Ib)

−n(x3 − Ib) + γ(x1 − σ)+t

, (14)

f2(t, x) =


−p1(x1 − Gb)− x1x2 + D(t)

−p2x2 + p3(x3 − Ib)

−n(x3 − Ib) + γ(x1 − σ)+t + (k1 − p1k2)(x1 − Gb)− k2x1x2 + k2D(t)

. (15)
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According to Filippov’s theory (see [31–33] for an overview on this subject), a vector
solution x(t) of (12) is said to exist if it is absolutely continuous on [0, ∞), and for almost
all t ∈ [0, ∞), ẋ belongs to C[ f j, f0] with j = 1, 2, the convex closure over all sets of mea-
sure zero. Moreover, system (12) is quadratically stable if there exist Lyapunov functions
Vj = Vj(t, x), j = 1, 2, verifying two conditions [32]:

(i) x ∈ R3 − {sj}: V̇j < 0,

(ii) x ∈ {sj}: sup
α∈[0,1]

(
∂Vi
∂x
(
α f0(t, x) + (1− α) f j(t, x)

))
< 0.

To ensure stability, the control design parameters k1 and k2 have to verify (i) and
(ii), obtaining a rule on how to choose these values. Appendix A presents stability’s
proof details. So, the stability of the closed-loop system is ensured and the commuted PD
controller (8)–(10) verifies the control objective.

The control algorithm to establish healthy behavior in our pancreatic system can be
summarized as follows:

Step 1: Determine parameters x1H > 0 and x1h > 0, necessary to active controllers
ug(t) or u(t).

Step 2: Set the control parameters k1 > 0 and k2 > 0 of control uPD(t) (8), satisfying
the stability conditions.

Step 3: Measure x1(t) every sample time, and define u(t) in (7) and ug(t) in (5) as:

x1(t) ∈ [x1h , x1H ] ⇒
{

u(t) = 0
ug(t) = 0

x1(t) < x1h ⇒
{

u(t) = 0
ug(t) = −uPD(t)

x1(t) > x1H ⇒
{

u(t) = uPD(t)
ug(t) = 0

3. Results

Simulation experiments of our controlled pancreatic model are carried out here, and for
different patients shown in Table 1 [6] (the value ∗ in Patient 3 denotes a modified value to
obtain a notable hyperglycemia case). The total simulation time is over 800 min, and the sample
time is set to 2 min, as in [11]. Although blood glucose uptake presents slow dynamics [34],
we set a sampling time of 2 min to capture the dynamics of the glucose–insulin system with-
out incurring excessive computational overhead. The control parameter values are stated as
k1 = 0.09 and k2 = 0.04 [11]. Note that these values verify the stability conditions, as shown in
Appendix A. In [35], algorithms to tune PD control parameters are presented. Our purpose is to
test the switched strategy, not to find the best PD control parameters.

Table 1. Parameter values [6]. The value ∗ in Patient 3 denotes a modified value to obtain a notable
hyperglycemia case.

Healthy Patient 1 Patient 2 Patient 3

p1 0.0317 0 0 0
p2 0.0123 0.02 0.0072 0.0142
p3 4.92 ×10−6 5.3 × 10−6 2.16 × 10−6 9.94 × 10−5

γ 0.0039 0.005 0.0038 0.0 ∗

n 0.2659 0.3 0.2465 0.2814
σ 79.0353 78 77.5783 82.9370

Gb 70 70 70 70
Ib 7 7 7 7

x1(0) 291.2 220 200 180
x2(0) 0 0 0 0
x3(0) 364.8 50 55 60
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To test the effectiveness of our switched control strategy, different scenarios are con-
sidered: commuted controller (9) and (10) are compared to the uncontrolled situation, and
to system (1)–(3) with the classic PD controller u(t) = uc(t) defined in [11,13]:

ẋ1(t) = −p1(x1(t)− Gb)− x1(t) · x2(t) + D(t), (16)

ẋ2(t) = −p2x2(t) + p3(x3(t)− Ib), (17)

ẋ3(t) = −n(x3(t)− Ib) + γ[x1(t)− σ]+t + uc(t), (18)

where the control is defined by:

uc(t) = k1(x1(t)− Gb) + k2 ẋ1(t). (19)

Also, decaying and additive disturbance are considered, all for each patient in Table 1 [6].
Figures 2–9 present different scenarios that reinforce our proposal (each one in a different
subsection):

• Decaying exponential disturbance D(t) (4): open-loop and closed-loop with com-
muted PD controller (Figures 2–4);

• Additive disturbance (Figures 5 and 6);
• Change in the dynamic Equation (5), proving the efficiency of our control algorithm

against slight modification on glucose assimilation (Figure 7);
• Finally, a reset-PID controller is implemented, showing that despite the rise time

being reduced, the control law presents chattering, a nondesired effect for a pancreatic
system (Figures 8 and 9).

The physiologic meaning of these situations are as follows: the term D(t) represents the
glucose absorption’s rate; the additive disturbance simulates a nonprogrammed ingestion;
the change on the dynamic assimilation smooths the control term; the integral part takes
into account the past glucose concentrations.. Each figure of glucose blood concentration
displays the healthy range 60–110 [9] to measure the duration of hypo- and hyperglycemia
episodes. For each patient, we compute the glucose and insulin blood concentration x1(t)
and x3(t), respectively, and the control actions u(t) and ug(t) (verifying in this case that
they are both positive). The simulation results of patients are obtained using the data in
Table 1, with D(t) = 0.5 e−0.005t [18]. Note that in [6], D(t) = 0 is used. We decided to use
a different value of it to be more realistic taking the exogenous factor into account. Also,
the pump dynamics have been ignored (for a justification, see [6]).

3.1. Decaying Exponential Disturbance Simulations

As mentioned previously, the term D(t) (4) represents the rate at which glucose enters
the blood from intestinal absorption following a meal. In oral glucose tests with normal
subjects, the aim is for the model to produce the desired effect of the plasma glucose level
rising quite rapidly (from the rest level) to a maximum in less than 30 min and then falling
to the base level after 2–3 h [20]. There is some evidence to suggest that the exact form
of D(t) for nondiabetics is not important provided the previously stated aim is met. The
exponential function adequately models this situation.

Figure 2a pictures the open-loop system response (1)–(4) with u(t) = 0. Figure 2b
presents the signal output of the closed-loop system (2)–(5) with the commuted PD
controls (9) and (10) showing the effectiveness of the proposed commuted PD controller.
Also, a comparison is presented in Figure 3, where the behavior of classic PD control [11]
does not perform better than the proposed control strategy. Furthermore, the commuted PD
controller stabilizes the blood glucose concentration at the basal value Gb in the three cases.
As Figure 3 shows, no hypoglycemia is attained when commuted PD control (9) and (10) is
chosen. That is not the case when ug(t) (10) is not considered, as uc(t) behavior shows. In
Figure 3c, considering commuted controller, in just a few minutes, hypoglycemia occurs.
Then, the blood glucose concentration is normalized, but the basal glucose concentration is
not reached.
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Figure 2. From (a), we notice that Patient 2 presents strong hypoglycemia (reaching 30 mg/dL),
and Patient 3 hyperglycemia (reaching 120 mg/dL). From the closed-loop system (b), only Patient
3 presents hypoglycemia for one hour approximately, reaching the lowest glucose level 52 mg/dL
(considered healthy in [4]). (a) Open-loop system (1)–(4). (b) Closed-loop system (2)–(5), with
control (9) and (10).
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Figure 3. Closed-loop simulations. Classic model (16)–(18) with uc(t) (19) from [11], is compared
to proposed system (2)–(5) with commuted PD controller (9) and (10). It shows how under the
commuted PD controller (9) and (10) the glucose blood concentration is stabilized at Gb. (a) Patient 1.
(b) Patient 2. (c) Patient 3.
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Figure 4. Control input u(t) (9) and ug(t) (10), with D(t) defined in (4), for each patient under study.
To prevent hypoglycemia, after a few minutes of the end of its injection, glucose ingestion is needed.
(a) Patient 1. (b) Patient 2. (c) Patient 3.

Analysing Figure 4, we see how commuted PD controller works. We comment on
the Patient 1 case. During the first minutes after meal ingestion, when D(t) is biggest,
the system needs insulin injection to reduce the glucose concentration (graphic of u(t) in
Figure 4a). To normalize its level, glucose ingestion is needed an hour after (graphic of ug(t)
in Figure 4a). This is a common situation difficult to deal with. This might indicate that the
insulin administration could be too strong for a pancreatic system. To mitigate this effect,
we suggest ingesting some controlled quantity of glucose. This is done by ug(t) (10) action.
The same can be seen for Patients 2 and 3 given in Figure 4b and Figure 4c, respectively.
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3.2. External Noise Perturbation

Now, an ingestion is considered an external disturbance. So, an intake meal at 230 min
is introduced, after the controller is activated. It corresponds to the case of additive
perturbation on (1) or (5), and defined as:

w(t) = 5(H(t− 230)− H(t− 250)) + Ae−B(t−230)H(t− 230), (20)

where the function H(t− a) is the well-known Heaviside expression:

H(t− a) =
{

0 t < a
1 t ≥ a.

Due to the additional glucose ingestion, an additional rate of glucose absorption has to be
considered (exponential function in (20)). Hence, the classic mathematical model of the
pancreatic system is given by [11]:

ẋ1(t) = −p1(x1(t)− Gb)− x1(t) · x2(t) + D(t) + w(t), (21)

ẋ2(t) = −p2x2(t) + p3(x3(t)− Ib), (22)

ẋ3(t) = −n(x3(t)− Ib) + γ[x1(t)− σ]+t + uc(t), (23)

which, modified to our controlled system, results in:

ẋ1(t) = −p1(x1(t)− Gb)− x1(t) · x2(t) + D(t) + ug(t) + w(t), (24)

ẋ2(t) = −p2x2(t) + p3(x3(t)− Ib), (25)

ẋ3(t) = −n(x3(t)− Ib) + γ[x1(t)− σ]+t + u(t), (26)

with u(t) defined in (9) and ug(t) in (10).
Figures 5 and 6 present the simulations of Patients 1, 2, and 3 under the commuted PD

controller action. In these cases, the commuted PD controller has a good performance, be-
cause no hypoglycemia range is attained. Hyperglycemia is attained only during ingestion,
as expected.
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Figure 5. Simulations of closed-loop system with external perturbation (20). The proposed control
strategy performs better than PD control uc(t) [11], noticing that glucose ingestion is needed to
prevent hypoglycemia episodes. (a) System (24)–(26) with the commuted PD controller (9) and (10).
(b) System (21)–(23) with the PD controller uc(t) (19) in [11].
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Figure 6. Commuted PD controller (9) and (10), under external perturbation (20). Notice that the
glucose ingestion suggested is small compared with the glucose blood concentration. (a) Patient 1.
(b) Patient 2. (c) Patient 3.

3.3. Changes on Glucose Assimilation

Consider a more general case to system in (5), where the dynamic of x1(t) is modified
using an auxiliary variable xa(t) with an stable dynamic (27) and (28):

ẋ1(t) = −p1(x1(t)− Gb)− x1(t) · x2(t) + D(t) + xa(t), (27)

ẋa(t) = −α
(
xa(t)− ug(t)

)
. (28)

The change on the dynamic assimilation smooths the control term, that is, we consider
now that the insulin administration is slowed down, but the total level administration does
not change. We set α = 2. Figure 7 presents the simulations, where it can be noticed that its
behavior is similar to (5). So, we can conclude that our control algorithm is robust against
changes in patient dynamics for glucose assimilation.
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Figure 7. Simulations of closed-loop system with commuted PD controller (9) and (10) when dynami-
cal changes on the glucose assimilation are considered (27) and (28). Two comparative situations:
(a) with w(t) = 0 and (b) under external perturbation (20). The behavior is similar to commuted
model (5), as Figures 2b and 5a show. (a) Unperturbed modified system (27) and (28). (b) Perturbed
modified system (27) and (28) with w(t) 6= 0 (20).

3.4. PID Using Reset Integrator

As was mentioned in the introduction, we noticed from simulations that strong hypo-
glycemia occurs during a long period of time when the integral part of the PD controller is
considered. In order to complete the study of the proposed switched strategy, we consider
now a reset integral part. Hence, defining a commuted PID controller as:

uPID(t) = k1(x1(t)− Gb) + k2 ẋ1(t) + k3

∫ t

0
(x1(τ)− Gb)dτ . (29)

That is, control (8) is now modified by the integral part with parameter k3. This term
accounts for past values of the error between the desired glucose concentration Gb and
the actual glucose blood level. The limitations of the linear integrator can be faced using
a reset integrator, also named as Clegg integrator [26]. This integrator resets its output
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to zero whenever its input and output have different signs [27,28]. Due to this resetting
condition, the transient response of the controller can be arranged. Figure 8 captures the
Matlab Simulink model used to compute the numerical simulation experiments. Based
on Clegg integrator [26], we define a reset integrator block by taking into account that we
need to integrate the error and to vanish it. Then, from Figure 8, we set:

• Clegg integrator input. The error between glucose blood concentration x1(t) and the
nominal value Gb.

• Clegg integrator initial condition. After each reset to the Clegg integrator, an ini-
tial condition is needed to integrate each resetting action. We use the zero initial
condition setting.

• Clegg integrator resetting actions. The block can reset its state to the specified initial
condition based on an external signal. We choose to reset the integrator when the
sinus function changes its sign.

• Clegg integrator gain. The parameter k3 = 0.1 is found by the trial and error method.

Proportional

Derivative

Integral

Initial Cond.

a=0: Classic PD
    a=1: Commuted PD

Reset Integrator

s

0.1s+1

Reset

1
s

xo

x0

Glucose/Insuline
System (1)-(3)

U 

Ug 
X1

k2

k1

a

k3

Gb

Commuted PD Controller

x1

u

Ug

U

Figure 8. Matlab Simulink diagram block model used to study the behavior of the proposed control
strategy to our pancreatic plant, considering reset integrator (29). When k3 = 0, we obtain the
commuted PD controller (9) and (10). As a resetting signal, we use a sinusoidal function r(t) = sin(t),
and zero initial condition.

Figure 9 shows the behavior of the commuted PID controller (29), where the rise time
is reduced to 10 min approximately. But the controller presents chattering in all cases (we
picture Patient 1 in Figure 9b as an example), and the insulin injection rate is increased.
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Figure 9. Simulations of closed-loop system with external perturbation (20), using PID with reset
integrator (29). The rise time is reduced to 10 min approximately compared to Figure 5a, but the
control laws present chattering. (a) Commuted PID—External Perturbation w(t) (20). (b) Commuted
PID controller (9) and (10) using (29), for Patient 1.
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4. Discussion of Results

A closed-loop artificial pancreas would measure glucose blood concentration, deter-
mine the expected time course following insulin administration, and dispense the optimal
dose [36–39]. Our proposal seeks to do so by designing a commuted linear control able
to keep the blood sugar concentration in a healthy region in terms of reducing the error
between the actual glucose concentration and the desired one. To compare our strategy, we
consider the reference [11] due to its similarity. As was remarked in the introduction, there
are many results on the insulin–glucose regulation system, and we choose the Bergman
model because is commonly used for diabetic systems. As was presented in Section 3, our
approach shows better performance, surely due to two main reasons: (a) the glucose level
alerts when hypoglycemia occurs (not considered in [11] or [16], for instance); (b) and the
error between the glucose level and the desired setting is reduced. In fact, despite this, our
control approach can be considered as an applied mathematics study, where its application
is easy to understand. Additionally, the proportional factor in our control design tries to
reduce the error signal, but the parameter k1 in (8) must be tuned carefully. But once it
is set, the controller must be able to face different patients’ biological uncertainties. On
the other hand, the derivative factor of the controller regulates the rate of the changing
error signal, which is mainly governed by parameter k2 in (8). That is, it governs the future
value of glucose concentration in terms of the present measurement (anticipatory control).
Furthermore, if a white noise is present in the blood glucose measurement, our control
strategy maintains healthy behavior, but the rise time is increased (see Figure 10). Only
for the case of persistent hypoglycemia (Patient 2) the controller does not accomplish its
purpose. In this case, the strategy must be different, maybe by considering a saturation
effect on the insulin administration to avoid hypoglycemic episodes.
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Figure 10. White noise on measurements. In this case, white noise is considered to simulate a
worse case of glucose measurement error. It is observed that the controller regulates the glucose
concentration to a healthy one of 70 mg/dL, but slower than without error measurements. Hence, for
this noise environment, if external ingestion occurs, almost all patients cases are regulated, except
case 2 (hypoglycemic patient). (a) Without external perturbation. (b) With ingestion at 230–250 min.

5. Conclusions and Future Work

This paper proposes a new strategy to control the blood glucose concentration in a
pancreatic system, and with the control objective to reduce the error between this concen-
tration with respect to the basal one. As is well-known, the main idea is to administrate
insulin to prevent hyperglycemia. But this insulin dose could be too strong, falling into the
hypoglycemia region. To mitigate this effect, we suggest ingesting some controlled quantity
of glucose. The method used to define the controllers is the proportional-derivative one,
which is able to stabilize the glucose concentration around its basal value. The key feature
is to avoid an unhealthy glucose concentration range, combining insulin injection with
glucose administration. Then, two control actions are defined: one to modify the insulin
dynamics (and prevent hyperglycemia), and the other one to improve the performance of
the glucose dynamics (and prevent hypoglycemia).
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The simulations test the closed-loop performance on four different human behaviors.
Moreover, external perturbations are considered meal ingestion. The results are comparable
or improved with respect to other works. The purpose of this work is to study the behavior
of this novel strategy, and opens the possibility of testing this switched strategy on another
type of controller. Also, as theoretical future work, discontinuities of state variables can be
considered by working with a piecewise smooth differential system. Moreover, the time
delays in insulin administration can be also an interesting case to study [40].

Finally, two complementary studies are presented. One is based on modifying the
glucose absorption dynamic, to test the robustness of the commuted PD controller. The
other study was to include an integral part of our controller approach, defining a PID with
a resetting integrator action, showing that despite the rise-time of closed-loop dynamics
being reduced, chattering on the controller appears inevitably.
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Appendix A

In this appendix, we check the stability conditions established in Section 2.4 without
external disturbances, that is, considering D(t) = 0. We apply Filippov’s theory [31–33],
where a vector solution x(t) in (12) is said to exist if it is absolutely continuous on [0, ∞),
and for almost all t ∈ [0, ∞), if ẋ belongs to the convex closure over all sets of measure
zero. Moreover, a system (12) is quadratically stable if there exist Lyapunov functions
Vj = Vj(t, x), j = 1, 2, verifying two conditions [32]:

(i) x ∈ R3 − {sj}: V̇j < 0,

(ii) x ∈ {sj}: sup
α∈[0,1]

(
∂Vi
∂x
(
α f0(t, x) + (1− α) f j(t, x)

))
< 0.

First, and only for stability proof, we use Jacobian linearization to linearize the nonlin-
ear system (12) around the equilibrium point (Gb, 0, Ib):

f̄1 =

 −p1−k1
1−k2

−Gb 0
0 −p2 p3
0 0 −n

 (A1)

f̄0 =

 −p1 −Gb 0
0 −p2 p3
0 0 −n

 (A2)

f̄2 =

 −p1 −Gb 0
0 −p2 p3

k1 − p1k2 −k2Gb −n

 (A3)

The existence of the Lyapunov function of condition (i) from Filippov’s theory is ensured
by the negativeness of the eigenvalues of the matrices (A1)–(A3) from the linearized model.
Hence, from the triangular expression of (A2) the negativeness is obvious. The eigenvalues
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of (A1) have negative real part if −p1−k1
1−k2

< 0, where p1 > 0. Hence, these inequalities
define a condition on the PD-control parameters:

−p1 − k1

1− k2
< 0⇒ p1 + k1

1− k2
> 0⇒ k2 < 1.

Under assumption k2 < 1, the stability of (A3) is verified, and the existence of Lyapunov
function Vj is guaranteed if k1 < n·p2

Gb·p3
. From the experimental data in Table 1, we obtain

k1 < 0.301. Condition (ii) ensures the stability where x1 takes its critical value.
It is worthy to comment on the case of a discontinuity in x2, or x3 in (5)–(7). This would

make the Filippov treatment a higher co-dimensional problem. Our control approach is
based on the sign of x1 to activate the corresponding controller block. Therefore, if a
discontinuity appears on variables x2 or x3, the control law can not be modified because
only the glucose level is measured, but the stability issue is drastically increased [41].
One option to resolve this is to establish a safety region for variable x3, where the insulin
concentration is considered healthy (from a physiologic point of view, we can consider
Ib ± ε, with ε view as a measurement error). So, two intersecting smooth manifolds of
co-dimension 1 define three regions on x1, and another two manifolds define the x3’s
regions. Then, R2 is divided into nine regions, where condition (ii) must be verified in each
one. This study is not treated here, but it is an interesting theoretical issue for future work.

References
1. Nwokolo, M.; Hovorka, R. The Artificial Pancreas and Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2023, 108, 1614–1623. [CrossRef]
2. Carson, E.R.; Deutsch, T. A Spectrum of approaches for controlling diabetes. IEEE Control Syst. Mag. 1992, 12, 25–31.
3. Cobelli, C.; Dalla Man, C.; Sparacino, G.; Magni, L.; De Nicolao, G.; Kovatchev, B.P. Diabetes: Models, Signals, and Control. IEEE

Rev. Biomed. Eng. 2009, 2, 54–96. [CrossRef] [PubMed]
4. Dua, P.; Doyle, F.J., III; Pistikopoulos, E.N. Model-based glucose control for Type-1 diabetes via parametric programming. IEEE

Trans. Biomed. Eng. 2006, 53, 1478–1491. [CrossRef] [PubMed]
5. Chee, F.; Savkin, A.V.; Fernando, T.L.; Nahavandi, S. Optimal H∞ insulin injection control for blood glucose regulation in diabetic

patients. IEEE Trans. Biomed. Eng. 2005, 52, 1625–1631. [CrossRef]
6. Kaveh, P.; Shtessel, Y.B. Blood glucose regulation using higher-order sliding mode control. Int. J. Robust Nonlinear Control 2008,

18, 557–569. [CrossRef]
7. Leon, B.S.; Alanis, A.Y.; Sanchez, E.N.; Ornelas-Tellez, F.; Ruiz-Velazquez, E. Inverse optimal neural control of blood glucose level

for type 1 diabetes mellitus patients. J. Frankl. Inst. 2012, 349, 1851–1870. [CrossRef]
8. El Fathi, A.; Smaoui, M.R.; Gingras, V.; Boulet, B.; Haidar, A. The Artificial Pancreas and Meal Control: An Overview of

Postprandial Glucose Regulation in Type 1 Diabetes. IEEE Control Syst. 2018, 38, 67–85.
9. Makroglou, A.; Li, J.; Kuang, Y. Mathematical models and software tools for the glucose-insulin regulatory system and diabetes:

An overview. Appl. Numer. Math. 2006, 56, 559–573. [CrossRef]
10. Hernjak, N.; Doyle, F.J., III. Glucose control design using nonlinearity assessment techniques. AIChE J. 2005, 51, 544–554. [CrossRef]
11. Li, C.; Hu, R. Simulation study on blood glucose control in diabetics. In Proceedings of the 2007 1st International Conference on

Bioinformatics and Biomedical Engineering, Wuhan, China, 6–8 July 2007.
12. Amuthameena, S. A novel strategy for blood glucose control in human body using PID-Fuzzy logic controller. J. Chem. Pharm. Sci.

2016, 8, 88–92.
13. Marchetti, G.; Barolo, M.; Jovanovic, L.; Zisser, H.; Seborg, D.E. An improved PID switching control strategy for Type 1 Diabetes.

IEEE Trans. Biomed. Eng. 2008, 55, 857–865. [CrossRef]
14. Hoyos, J.D.; Bolanos, F.; Vallejo, M.; Rivadeneira, P.S. Population-based incremental learning algorithm for identification of blood

glucose dynamics model for type-1 diabetic patients. In Proceedings of the International Conference on Artificial Intelligence,
Chengdu China, 12–14 March 2018; pp. 29–35.

15. Villa Tamayo, M.F.; Caicedo Alvarez, M.A.; Rivadeneira, P.S. Handling Parameter Variations during the Treatment of Type 1
Diabetes Mellitus: In Silico Results. Math. Probl. Eng. 2019, 2019, 2640405. [CrossRef]

16. Ndakara, A.I.; Essabbar, M.; Saikouk, H. Blood Glucose-Insulin Dynamics in Type-1 Diabetic Patients for the Mitigation of
Hyperglycemic Conditions: A PID Controller with a Step Response. In Digital Technologies and Applications; Motahhir, S., Bossoufi,
B., Eds.; ICDTA 2023; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2023; Volume 668.

17. Syafiie, S.; AlHarbi, F.; Alshehri, A.A.; Hasanain, B. PID and LQG controllers for diabetes system with internal delay: A comparison
study. Biomed. Phys. Eng. Express 2023, 9, 035031. [CrossRef]

18. Kaveh, P.; Shtessel, Y.B. Blood Glucose Regulation in Diabetics Using Sliding Mode Control Techniques. In Proceedings of the
Thirty-Eighth Southeastern Symposium on System Theory, Cookeville, TN, USA, 5–7 March 2006.

http://doi.org/10.1210/clinem/dgad068
http://dx.doi.org/10.1109/RBME.2009.2036073
http://www.ncbi.nlm.nih.gov/pubmed/20936056
http://dx.doi.org/10.1109/TBME.2006.878075
http://www.ncbi.nlm.nih.gov/pubmed/16916082
http://dx.doi.org/10.1109/TBME.2005.855727
http://dx.doi.org/10.1002/rnc.1223
http://dx.doi.org/10.1016/j.jfranklin.2012.02.011
http://dx.doi.org/10.1016/j.apnum.2005.04.023
http://dx.doi.org/10.1002/aic.10326
http://dx.doi.org/10.1109/TBME.2008.915665
http://dx.doi.org/10.1155/2019/2640405
http://dx.doi.org/10.1088/2057-1976/accc8d


Appl. Sci. 2023, 13, 8129 15 of 15

19. De Gaetano, A.; Arino, O. Mathematical modelling of the intravenous glucose tolerance test. J. Math. Biol. 2000, 40, 136–168.
[CrossRef]

20. Fisher, M.E. A semiclosed-loop algorithm for the control of blood glucose levels in diabetics. IEEE Trans. Biomed. Eng. 1991,
38, 57–61. [CrossRef]

21. Colmegna, P.H.; Sanchez-Pena, R.S.; Gondhalekar, R.; Dassau, E.; Doyle, F.J. Switched LPV Glucose Control in Type 1 Diabetes.
IEEE Trans. Biomed. Eng. 2016, 63, 1192–1200. [CrossRef]

22. Batmani, Y. Blood glucose concentration control for type 1 diabetic patients: A non-linear suboptimal approach. IET Syst. Biol.
2017, 11, 119–125. [CrossRef]

23. Messori, M.; Incremona, G.P.; Cobelli, C.; Magni, L. Individualised model predictive control for the artificial pancreas: In Silico
evaluation of closed-loop glucose control. IEEE Control Syst. 2018, 38, 86–104.

24. Ankit Sharma, N.; Singh, H.P. Computer-controlled diabetes disease diagnosis technique based on fuzzy inference structure for
insulin-dependent patients. Appl. Intell. 2023, 53, 1945–1958. [CrossRef]

25. Emerson, H.; Guy, M.; McConville, R. Offline reinforcement learning for safer blood glucose control in people with type 1 diabetes.
J. Biomed. Inform. 2023, 142, 104376. [CrossRef] [PubMed]

26. Clegg, J.C. A nonlinear integrator for servomechanism. Trans. Am. Inst. Electr. Eng. Part II Appl. Ind. 1958, 77, 41–42. [CrossRef]
27. Nesic, D.; Zaccarian, L.; Teel, A.R. Stability properties of reset systems. IFAC Proc. Vol. 2005, 38, 67–72. [CrossRef]
28. Banos, A.; Barreiro, A. Reset Control Systems; Springer Sciences and Business Media: London, UK, 2011.
29. Palumbo, P.; Ditlevsen, S.; Bertuzzi, A.; De Gaetano, A. Mathematical modeling of glucose-insulin system: A review. Math. Biosci.

2013, 244, 69–81. [CrossRef]
30. Bergman, R.N.; Phillips, L.S.; Cobelli, C. Physiologic evaluation of factors controlling glucose tolerance in man: Measurement of

insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Investig. 1981, 68, 1456–1467.
[CrossRef]

31. Filippov, A.F. Differential Equations with Discontinuous Right-Hand Sides; Kluwer Academic: Boston, MA, USA, 1988.
32. Frankowska, H. Filippov’s and Filippov-Wazewski’s theorems on closed domains. J. Differ. Equ. 2000, 161, 449–478. [CrossRef]
33. Dieci, L.; Lopez, L. Sliding motion in Filippov differential systems: Theoretical results and a computational approach. SIAM J.

Numer. Anal. 2009, 47, 2023–2051. [CrossRef]
34. Gena, P.; Del Buono, N.; D’Abbicco, M.; Mastrodonato, M.; Berardi, M.; Svelto, M.; Lopez, L.; Calamita, G. Calamita, Dynamical

modeling of liver Aquaporin-9 expression and glycerol permeability in hepatic glucose metabolism. Eur. J. Cell Biol. 2017, 96, 61–69.
[CrossRef]

35. Ang, K.H.; Chong, G.; Li, Y. PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 2005, 13,
559–576.

36. León-Vargas, F.; Garelli, F.; De Battista, H.; Vehí, J. Postprandial response improvement via safety layer in closed-loop blood
glucose controllers. Biomed. Signal Process. Control 2015, 16, 80–87. [CrossRef]

37. Rossetti, P.; Quiros, C.; Moscardo, V.; Comas, A.; Giménez, M.; Ampudia-Blasco, F.J.; León, F.; Montaser, E.; Conget, I.; Bondia,
J.; et al. Closed-Loop Control of Postprandial Glycemia Using an Insulin-on-Board Limitation Through Continuous Action on
Glucose Target. Diabetes Technol. Ther. 2017, 19, 355–362. [CrossRef]

38. Boiroux, D.; Duun-Henriksen, A.K.; Schmidt, S.; Nørgaard, K.; Poulsen, N.K.; Madsen, H.; Jørgensen, J.B. Adaptive control in an
artificial pancreas for people with type 1 diabetes. Control Eng. Pract. 2017, 58, 332–342. [CrossRef]

39. Glass, L. Dynamical disease: Challenges for nonlinear dynamics and medicine. Chaos 2015, 25, 097603. [CrossRef]
40. Tunç, C. Stability and bounded of solutions to non-autonomous delay differential equations of third order. Nonlinear Dyn. 2010,

62, 945–953. [CrossRef]
41. Difonzo, F.V. A note on attractivity for the intersection of two discontinuity manifolds. Opusc. Math. 2020, 40, 685–702. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s002850050007
http://dx.doi.org/10.1109/10.68209
http://dx.doi.org/10.1109/TBME.2015.2487043
http://dx.doi.org/10.1049/iet-syb.2016.0044
http://dx.doi.org/10.1007/s10489-022-03416-4
http://dx.doi.org/10.1016/j.jbi.2023.104376
http://www.ncbi.nlm.nih.gov/pubmed/37149275
http://dx.doi.org/10.1109/TAI.1958.6367399
http://dx.doi.org/10.3182/20050703-6-CZ-1902.00665
http://dx.doi.org/10.1016/j.mbs.2013.05.006
http://dx.doi.org/10.1172/JCI110398
http://dx.doi.org/10.1006/jdeq.2000.3711
http://dx.doi.org/10.1137/080724599
http://dx.doi.org/10.1016/j.ejcb.2016.12.003
http://dx.doi.org/10.1016/j.bspc.2014.10.003
http://dx.doi.org/10.1089/dia.2016.0443
http://dx.doi.org/10.1016/j.conengprac.2016.01.003
http://dx.doi.org/10.1063/1.4915529
http://dx.doi.org/10.1007/s11071-010-9776-5
http://dx.doi.org/10.7494/OpMath.2020.40.6.685

	Introduction
	Materials and Methods
	Dynamical Model of the Glucose–Insulin Regulatory System
	Modified Mathematical Model
	Commuted PD Control
	Robustness and Stability

	Results
	Decaying Exponential Disturbance Simulations
	External Noise Perturbation
	Changes on Glucose Assimilation
	PID Using Reset Integrator

	Discussion of Results
	Conclusions and Future Work
	Appendix A
	References

