
Citation: Krichen, M. A Survey on

Formal Verification and Validation

Techniques for Internet of Things.

Appl. Sci. 2023, 13, 8122. https://

doi.org/10.3390/app13148122

Academic Editor: Dimitris Mourtzis

Received: 9 May 2023

Revised: 7 July 2023

Accepted: 10 July 2023

Published: 12 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Survey on Formal Verification and Validation Techniques for
Internet of Things
Moez Krichen 1,2

1 Faculty of Computer Science and Information Technology, Al-Baha University, Al-Baha 65528, Saudi Arabia;
moez.krichen@redcad.org

2 ReDCAD Laboratory, University of Sfax, Sfax 3038, Tunisia

Abstract: The Internet of Things (IoT) has brought about a new era of connected devices and systems,
with applications ranging from healthcare to transportation. However, the reliability and security of
these systems are critical concerns that must be addressed to ensure their safe and effective operation.
This paper presents a survey of formal verification and validation (FV&V) techniques for IoT systems,
with a focus on the challenges and open issues in this field. We provide an overview of formal
methods and testing techniques for the IoT and discuss the state explosion problem and techniques
to address it. We also examined the use of AI in software testing and describe examples of tools that
use AI in this context. Finally, we discuss the challenges and open issues in FV&V for the IoT and
present possible future directions for research. This survey paper aimed to provide a comprehensive
understanding of the current state of FV&V techniques for IoT systems and to highlight areas for
further research and development.

Keywords: Internet of Things; formal verification; validation; testing techniques

1. Introduction

The Internet of Things (IoT) has become an indispensable part of modern life, con-
necting billions of devices to the Internet and enabling seamless connectivity, automation,
and real-time monitoring [1–4]. The IoT has transformed various industries, including
healthcare, transportation, smart homes, and industrial automation, resulting in significant
improvements in efficiency, productivity, and convenience [5–8]. However, the weak-
nesses of IoT systems, such as limited resources, heterogeneous devices, and a lack of
standardization, make them prone to dangerous faults and attacks [9–12].

These vulnerabilities have resulted in significant losses and damages in the past.
For example, in 2016, the Mirai botnet attack exploited the security weaknesses of IoT
devices to launch a massive distributed denial-of-service (DDoS) attack, which disrupted
the Internet across the globe. The attack caused an estimated USD 323,000 loss per hour for
the affected companies, totaling over USD 100 million in damages [13]. Another example is
the Stuxnet worm, which targeted industrial control systems and caused physical damage
to nuclear centrifuges in Iran. The attack is estimated to have set back Iran’s nuclear
program by two years and caused over USD 1 billion in damages [14].

To ensure the reliability, security, and safety of IoT systems, it is crucial to apply FV&V
techniques. Formal methods use mathematical techniques to model and analyze systems
rigorously [15–17]. As illustrated in Figure 1, they allow system designers to specify the
behavior and properties of the system using precise mathematical notations, such as logic
formulas and state machines. Formal methods can then use automated tools to analyze
the system’s behavior and properties, such as checking for consistency, completeness,
and correctness [18]. They can also identify potential errors, vulnerabilities, and attacks by
exploring the system’s behavior under different scenarios [19]. Formal methods can help
detect design errors early in the development process and ensure that the system meets the
specified requirements and standards.

Appl. Sci. 2023, 13, 8122. https://doi.org/10.3390/app13148122 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148122
https://doi.org/10.3390/app13148122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8873-9755
https://doi.org/10.3390/app13148122
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148122?type=check_update&version=1

Appl. Sci. 2023, 13, 8122 2 of 29

Testing (TSTNG) is an essential step in the verification and validation process, and var-
ious techniques have been proposed to test IoT systems effectively [20–22]. For example,
model-based testing (MBT) techniques generate test cases automatically from a formal
model of the system, which can help achieve better test coverage and reduce the TSTNG ef-
fort [23–25]. Fuzzy TSTNG techniques generate random input data to stress-test the system
and identify vulnerabilities and edge cases [26,27]. Moreover, hardware-in-the-loop TSTNG
techniques can test the interaction between the software and the hardware components of
IoT systems, which can help detect integration issues and compatibility problems [28–30].

The need for formal method verification arises from the criticality of ensuring the
reliability and security of IoT systems, which are often deployed in safety-critical domains
such as healthcare, transportation, and industrial control. FV&V techniques provide a sys-
tematic approach to verifying the correctness of these systems by mathematically modeling
their behavior and rigorously verifying that they meet their specifications. While FV&V
techniques can be time-consuming, they can also reduce the overall cost of development by
identifying and eliminating potential issues early in the design process. Moreover, the use
of automated tools and techniques can help reduce the manual effort required for FV&V,
making it more applicable to meet time-to-market constraints.

The application of updates and patches to IoT systems can potentially introduce new
vulnerabilities or alter the behavior of the system. To address this, FV&V techniques can be
used to verify the correctness of updates and patches before they are applied to the system.
This can help ensure that the system remains reliable and secure even after updates and
patches are applied. Additionally, FV&V techniques can be used to verify the correctness of
the updates and patches themselves, reducing the risk of introducing new vulnerabilities
or errors.

Developing a generic methodology to validate all types of IoT devices using FV&V
techniques is an area of active research. While FV&V techniques are applicable to a wide
range of IoT systems, the specific techniques and tools used may vary depending on the
characteristics of the system being verified. Researchers have developed methodologies for
specific types of IoT devices, such as sensors, actuators, and network protocols. However,
developing a generic methodology that can be applied to all types of IoT devices remains
a challenge.

The motivation for using FV&V techniques in IoT systems lies in the criticality of
ensuring their reliability and security. While other techniques such as testing and simulation
can also be used to verify the correctness of IoT systems, they may not be sufficient to
guarantee their reliability and security in all cases. FV&V techniques provide a formal and
rigorous approach to verifying the correctness of IoT systems and can identify potential
issues that may not be detected through other means. Additionally, FV&V techniques
can be used to verify the correctness of the system throughout its development lifecycle,
from design to deployment to updates and patches.

The goal of this paper was to provide a comprehensive survey of formal verification
(FV), validation, and TSTNG techniques for IoT systems. We reviewed the state-of-the-art
methods and tools for modeling, specification, verification, and TSTNG of IoT systems.
We also discuss their strengths and limitations and identified the open challenges and
future research directions in this area. By providing a holistic view of the FV, validation,
and TSTNG landscape for the IoT, this paper aimed to help researchers and practitioners in
developing more-secure, -reliable, and -trustworthy IoT systems.

The main contributions of this paper are summarized below:

• Overview of FV&V techniques for IoT systems;
• Discussion of challenges and open issues in FV&V for IoT systems;
• Examination of formal methods and TSTNG techniques for IoT systems;
• Exploration of the use of AI in software TSTNG for IoT systems;
• Identification of areas for future research and development in FV&V for IoT systems.

Appl. Sci. 2023, 13, 8122 3 of 29

Figure 1. A simplified diagram illustrating how formals methods function.

The rest of the paper is structured as follows. Section 2 is a review of the related work.
In Section 3, we discuss the preliminaries related to the IoT, including the definition of
the IoT, its characteristics, and the challenges it presents. Section 4 provides an overview
of formal methods for the IoT. In Section 5, we explore TSTNG techniques for the IoT,
including the importance of TSTNG, different types of TSTNG, and the challenges of TSTNG
in the IoT. Section 6 examines the use of AI in software TSTNG for IoT systems, including
its advantages and examples of tools. Section 7 presents a case study. In Section 8, we
discuss the challenges and open issues in FV&V for IoT systems and present possible future
directions for research. Finally, we conclude the paper in Section 9, summarizing the main
contributions and their significance and highlighting areas for future work.

2. Related Work

In this section, we review several formal verification approaches proposed for IoT pro-
tocols in recent years, including the IoT Conflict Checker, trust-based service management,
BiAgents*, and formal models of popular messaging protocols. We also discuss formal
approaches to defining semantics for modeling IoT applications and ensuring physical
layer security. Finally, we examine VerificationTalk, a mechanism for verifying device and
network configurations to prevent incorrect deployment of IoT applications.

The article [31] reviewed formal verification approaches for many IoT protocols.
Formal verification is essential for early vulnerability detection, according to the report.
The authors detailed the properties and approaches. An in-depth literature study identified
four application fields: (1) functional checks, (2) security property checks, (3) ideas for
better schemes including a priori security property checks, and (4) protocol implementa-
tion checks. The paper covered security properties and protocol tools. The authors also
described typical model checks and discuss IoT difficulties and limitations.

The fundamental contribution of [32] is the invention of a formal method approach,
the IoT Conflict Checker (IoTC2), for ensuring the safety of controller and actuator behavior
in the Internet of Things (IoT) in the face of conflicts. The work specified and implemented
safety policies for controllers, actions, and triggering events in Prolog to demonstrate
logical completeness and soundness. The Matlab Simulink Environment with its built-in
Model Verification blocks was used to implement the detection policies. The authors used
Simulink to develop a smart home environment and demonstrated how conflicts affect
actions and the corresponding features. The method’s scalability, efficiency, and accuracy

Appl. Sci. 2023, 13, 8122 4 of 29

were evaluated in a simulated environment, demonstrating its potential utility in real-world
IoT applications.

The work [33] represented and verified trust-based service management components
in the Internet of Things (IoT) using a formal method based on higher-order logic (HOL).
The study examined IoT service composition difficulties and trust-based alternatives, which
outperform non-trust-based ones. The authors offered a trust and reputation system to
identify appropriate service providers (SPs) for service composition plans and utilized HOL
to validate the varied behaviors in the trust system and trust value computation procedures.
Malicious nodes can skew trust value computation, leading in incorrect SP selection during
service composition.

The paper [34] proposed a Bigraphical Agents (BiAgents*) model to formalize the
structure and behavior of Internet of Things (IoT) systems. While there has been much
research on IoT networking and devices, formalizing and evaluating IoT systems is still
in its infancy, according to the article. The BiAgents* specification is encoded in the
Maude language to allow IoT systems to behave autonomously. An intelligent collision-
avoidance system illustrated and evaluated the proposed approach. It formalizes and
standardizes the intricate interactions between smart devices in the IoT ecosystem, making
the article important.

The primary result of the work [35] was the introduction of a timed message-passing
process algebra-based formal model of the MQ Telemetry Transport (MQTT) Version 3.1
protocol. Modeling decisions were made, and inconsistencies in the original protocol
specification were highlighted in this study. After performing a static analysis on the formal
protocol model, the authors found that the protocol provided, at most, once and, at least,
once delivery semantics to subscribers, as defined, for the first two QoS modes of operation.
The authors, however, concluded that the third and highest QoS semantics were inaccurate
in some respects and, at best, unclear in others. Finally, the authors proposed improving the
protocol’s QoS to that point. This work contributes significantly since it created a formal
model of a popular messaging protocol and pinpointed ways in which its specification
could be enhanced.

The paper [36] proposed an MDE-based formal approach to define ThingML’s for-
mal semantics for modeling Internet of Things (IoT) applications. The variability of IoT
components and communication protocols makes designing and developing them difficult.
ThingML, a promising UML profile for these difficulties, lacks strict semantics, making it
inappropriate for formal verification and analysis of system architectures [37]. Rewriting
logic and Maude are used to build ThingML’s formal semantics, implementing all concepts
and behaviors. A program developed by the authors automatically converts ThingML
specifications into Maude, enabling advanced analytical methods such as simulation and
model testing. This work proposed a semantics mapping between ThingML ideas and
Maude constructs, defined and implemented an operational semantics for the ThingML
action language in Maude, and provided a case study.

An Event-B proof-based formal model of Internet of Things (IoT) physical layer
security and threats from requirements analysis to the goal level is the main contribution of
the study [38]. The article underlined the need for security in IoT devices, especially those
that generate, gather, or process sensitive data, and that preventing vulnerabilities is better
than identifying them. The authors offered a three-step formal approach: building the IoT
physical layer, checking for security weaknesses, and detecting physical layer assaults such
as jamming and MAC spoofing. To demonstrate generalizability, an electrocardiogram
(ECG) IoT system and a fire alarm system were used as case studies. The Rodin model-
checking tool’s proof responsibilities and ProB animator validated the authors’ approach.
This work’s formal approach for IoT physical layer security and attack detection can assist
in preventing security breaches and securing sensitive data.

The proposed framework in [39] uses the Event-B formal technique to develop a
safe Internet of Things (IoT) architecture and handle IoT security and privacy issues.
The report noted that, while various novel IoT designs have been presented, they still

Appl. Sci. 2023, 13, 8122 5 of 29

face security and privacy issues, and formal verification can assist identify flaws early
on. The authors used Event-B properties such as formal verification, functional checks,
and model checkers to design formal spoofing attacks for the IoT environment and obtain
IoT architecture accuracy by running simulations, proof obligation, and invariant checking.
Formal verification, functional checks, and model checkers were used to validate IoT-EAA
architecture models, which automatically fulfilled 82.35% of the proof responsibilities using
Event-B provers. Finally, the study recommended a well-defined IoT security infrastructure
to decrease IoT security issues. This study is important because it gives a formal way for
developing a safe IoT architecture and resolving IoT security and privacy issues.

The article [40] reviewed many Internet of Things (IoT) security challenges and pro-
posed formal verification as a promising approach to detect flaws and guarantee security.
Due to battery and processing limitations, IoT devices make online cyberattack detection
difficult. The authors suggested pre-deploying the device with stricter security tests to
reduce the attack surface. The study covered IoT security challenges such functional sound-
ness, code errors, side-channel analysis, and hardware Trojans. State-of-the-art procedures
use formal verification tools to detect vulnerabilities before device deployment. This pa-
per is important since it reviews IoT device security vulnerabilities and presents formal
verification as a solution.

The VerificationTalk mechanism, which verifies device and network configurations
to prevent incorrect deployment of Internet of Things (IoT) applications, is the key contri-
bution of [41]. The study showed that, in a two-domain context, application developers
may implement the inappropriate network functions or connect IoT devices that should
never be linked, resulting in network function activities that are incorrect. BigraphTalk
verifies IoT device configuration, and AFLtalk evaluates network functions. The authors
suggested online anomaly detection utilizing a runtime monitor and offline using the
American Fuzzy Lop (AFL). The runtime monitor can intercept potentially hazardous
messages targeting IoT devices, and VerificationTalk offers feedback for debugging issues.
By finding network application security vulnerabilities, VerificationTalk helps design se-
cure IoT apps. The authors showed that, by properly developing the IoTtalk execution
engine, AFLtalk’s testing capacity is three-times that of typical AFL methods. This work
presents a technique to avoid inappropriate deployment of IoT applications by validating
configurations in both the device and network domains, enabling secure and dependable
IoT application development.

These formal verification approaches have the potential to address several challenges
faced by IoT applications and assist in the development of secure and dependable IoT systems.

3. Preliminaries Related to IoT

The Internet of Things (IoT) has evolved significantly over the past few decades,
from simple machine-to-machine (M2M) communication to a vast network of intercon-
nected devices and systems [42–47]. The evolution of the IoT has been driven by ad-
vancements in communication technologies, such as wireless networks, sensors, and cloud
computing, as well as the increasing demand for automation and real-time monitoring in
various industries [48–52].

One of the main characteristics of the IoT is heterogeneity, where devices from different
manufacturers and with varying capabilities and resources must work together seamlessly.
This heterogeneity also applies to the data generated by these devices, which can have
different formats, structures, and semantics. As a result, IoT systems must use standardized
protocols and formats to ensure interoperability and compatibility across devices and
networks. Another characteristic of the IoT is scalability, where IoT systems must be
able to handle large numbers of devices and data without compromising performance
and reliability. This scalability can be achieved through distributed architectures, which
can scale horizontally or vertically, depending on the needs of the application. However,
scaling IoT systems can also increase their complexity and introduce new challenges
related to data management, security, and privacy. IoT systems must also be resilient to

Appl. Sci. 2023, 13, 8122 6 of 29

failures and attacks, due to the critical nature of many applications, such as healthcare and
industrial automation. This resilience can be achieved through redundancy, fault-tolerance,
and disaster-recovery mechanisms, which can ensure the availability and integrity of the
data and services provided by IoT systems. However, ensuring resilience can also increase
the costs and complexity of IoT systems, requiring specialized skills and tools. Finally,
IoT systems must be able to operate in dynamic and unpredictable environments, such as
outdoor environments or moving vehicles. This requires IoT systems to be able to adapt to
changing conditions, such as changes in the network topology, interference, or mobility.
Moreover, IoT systems must be able to handle data in real-time, which requires efficient
data-processing and -analysis algorithms.

The architecture of the IoT typically consists of four layers: the perception layer,
the network layer, the middleware layer, and the application layer. The perception layer
includes the sensors and actuators that collect and manipulate data from the physical world.
These sensors can be of different types, such as temperature, pressure, light, and motion
sensors, and can be connected to the network using various communication protocols, such
as Zigbee, WiFi, and Bluetooth. The network layer includes the communication protocols
and networks that enable devices to connect and communicate with each other. This
layer can include different types of networks, such as cellular networks, satellite networks,
and ad hoc networks, depending on the application requirements. The middleware layer
provides the necessary software and services to manage the devices and data, such as data
storage, processing, and security. This layer can include various components, such as data
brokers, message queues, and data analytics tools, which can facilitate the integration and
analysis of data from different sources. Finally, the application layer includes the software
and services that utilize the data and devices to provide value-added services, such as
smart homes, healthcare monitoring, and industrial automation. This layer can include
various types of applications, such as web applications, mobile applications, and embedded
applications, depending on the target platform and user requirements.

Despite the numerous benefits of the IoT, there are also several limitations that need
to be addressed. One of the main limitations is the lack of standardization, which can
hinder the interoperability and compatibility of different IoT systems. The absence of a
common language and notation for describing IoT systems can also hinder the adoption
and integration of formal methods into the development process. Therefore, there is a
need for standardization efforts to establish a common framework for modeling, specify-
ing, verifying, and TSTNG IoT systems using formal methods. Another limitation is the
security and privacy risks associated with the IoT, due to the large attack surface and the
vulnerabilities of some devices and networks. IoT systems can be subject to various types
of attacks, such as denial-of-service attacks, data breaches, and malware attacks, which
can compromise the confidentiality, integrity, and availability of the data and services
provided by IoT systems. Moreover, IoT systems can collect sensitive data, such as personal
health information, financial information, and location data, which can be misused if not
properly protected.

IoT systems also face challenges related to power consumption, as many devices are
battery-powered and need to operate for long periods without recharging. This requires
IoT systems to use efficient power management techniques, such as duty cycling, sleep
modes, and energy harvesting, that can extend the battery life of the devices and reduce
their environmental impact. Finally, the complexity of IoT systems can make it challenging
to develop, test, and maintain them, requiring specialized skills and tools. IoT systems can
involve multiple layers, devices, protocols, and standards, which can increase the TSTNG
effort and make it difficult to achieve comprehensive test coverage. Moreover, IoT systems
can be subject to changes in requirements, technologies, and regulations, which can require
frequent updates and maintenance. Table 1 summarizes the layers, functions, examples,
and protocols of the IoT.

Appl. Sci. 2023, 13, 8122 7 of 29

Table 1. Layers , functions, examples, and protocols of the IoT.

Layer Function Examples Protocols

Perception Data collection Sensors, actuators Zigbee, WiFi, Bluetooth

Network Communication Cellular, satellite,
ad hoc TCP/IP, MQTT, CoAP

Middleware Data management Data brokers, message
queues AMQP, MQTT, DDS

Application Service provision Smart homes,
healthcare monitoring REST, SOAP, CoAP

4. Formal Methods

In this section, we provide a concise overview of the most-prevalent forms of formal
techniques currently available to the research community [15,16] (Figure 2):

• Abstract interpretation [53]: Abstract interpretation is a formal method used to an-
alyze and verify the behavior of computer programs. It is a technique that involves
approximating the behavior of a program by abstracting away some of its details.
The goal of abstract interpretation is to prove that a program satisfies certain properties,
such as safety, liveness, or termination. Abstract interpretation works by defining a set
of abstract values that represent the possible states of a program. These abstract values
are defined in such a way that they over-approximate the set of possible concrete
values. This allows abstract interpretation to reason about the behavior of a program
without actually executing it. One of the key benefits of abstract interpretation is that
it can be used to analyze programs that are too complex to be analyzed using other
methods. This is because abstract interpretation can reason about the behavior of a
program at a higher level of abstraction, which makes it possible to handle a much
larger state space.

• Semantic static analysis [54]: Semantic static analysis is a formal method used to
analyze the behavior of computer programs by examining their source code. The goal
of semantic static analysis is to detect errors and potential problems in a program
before it is executed. Semantic static analysis works by analyzing the syntax and
structure of a program to infer its meaning. This is done by constructing a mathe-
matical model of the program’s behavior, which can then be used to reason about its
properties. One of the advantages of semantic static analysis is that it can be applied
early in the development process, which can save time and resources. By detecting
errors before a program is executed, semantic static analysis can help to ensure that
the final product is correct and reliable. However, semantic static analysis can be
challenging because it relies on the ability to reason about complex mathematical
models of program behavior. This requires specialized knowledge and expertise in
formal methods and mathematical analysis. Additionally, the accuracy of semantic
static analysis depends on the quality of the model used, which can be difficult to
construct for complex programs [55,56].

• Model checking [57]: Model checking is a formal method used to verify the cor-
rectness of a system by exhaustively exploring its possible behaviors. It works by
constructing a model of the system and specifying the desired properties that the
system should satisfy. The model checker then systematically explores all possible
states of the system to determine whether these properties hold for all possible be-
haviors. Model checking is particularly useful for verifying complex systems, such
as concurrent and distributed systems, where traditional TSTNG methods may not
be sufficient. It can also be used to verify hardware designs and protocols. One of
the main advantages of model checking is that it can provide complete coverage
of all possible behaviors, making it a powerful tool for ensuring the correctness of
critical systems.

Appl. Sci. 2023, 13, 8122 8 of 29

• Proof Assistants [58]: Proof assistants are software tools that help users construct
and verify mathematical proofs. They provide a formal language for expressing
mathematical statements and a set of rules for manipulating these statements to
construct proofs. Proof assistants are useful for formalizing mathematical theories
and verifying their correctness. They can also be used to verify the correctness of
software and hardware designs. One of the main advantages of proof assistants is
that they provide a high level of assurance that the proof is correct, since the proof is
constructed using formal rules and the software checks the proof for correctness.

• Deductive verification [59]: Deductive verification is a formal method used to verify
the correctness of software by constructing a formal proof that the software satisfies
its specifications. It works by starting with the specifications of the software and then
systematically constructing a proof that the implementation of the software satisfies
these specifications. Deductive verification is particularly useful for ensuring the
correctness of safety-critical systems, such as those used in aviation and medical
devices. One of the main advantages of deductive verification is that it can provide a
high level of assurance that the software is correct, since the proof is constructed using
formal rules and the proof can be checked by a computer.

• Design by refinement [60,61]: Design by refinement is a formal method used to
develop correct software by iteratively refining an abstract specification of the software
until a detailed implementation is obtained. It works by starting with a high-level
specification of the software and then refining this specification step-by-step until a
detailed implementation is obtained. Design by refinement can help to ensure that the
software meets its specifications and is free of errors. It can also help to ensure that the
software is maintainable and can be easily modified as requirements change. One of
the main advantages of design by refinement is that it provides a systematic approach
to software development, which can help ensure that the final product is correct and
meets its specifications.

• Model-based testing (MBT) [62,63]: MBT is a formal method used to test software by
generating test cases from a model of the software. It works by constructing a model
of the software and then using this model to automatically generate test cases that
exercise different parts of the software. MBT can help to ensure that the software meets
its specifications and is free of errors. It can also help to reduce the time and effort
needed to test the software. One of the main advantages of MBT is that it provides a
systematic approach to TSTNG that can help to ensure that the final product is correct
and meets its specifications.

Table 2 summarizes these different types of formal methods, along with their ad-
vantages. Furthermore, formal methods can be classified into three categories: complete,
partial, and asymptotically complete. In this classification, complete methods are guaran-
teed to provide a definitive answer to a given problem, while partial methods may not
provide a definitive answer, but can provide useful information. Asymptotically complete
methods are not guaranteed to find a solution, but as the problem size grows, the prob-
ability of finding a solution approaches 1. Here are some further details regarding these
three classes:

• Complete methods [64]: Complete methods are formal methods that are guaranteed
to provide a definitive answer to a given problem. This means that, if a problem has a
solution, a complete method will find it. For example, model checking is a complete
method because it can systematically explore all possible behaviors of a system to
determine whether a given property holds or not. Different types of complete FV exist,
namely: SMT-based methods [65] and MILP-based methods.

• Partial methods [66]: Partial methods are formal methods that may not provide a
definitive answer to a given problem. This means that a partial method may not be
able to determine whether a problem has a solution or not. For example, abstract
interpretation is a partial method because it can provide an over-approximation of

Appl. Sci. 2023, 13, 8122 9 of 29

the behavior of a program, but it may not be able to determine whether the program
satisfies a given property or not.

• Asymptotically complete methods: Asymptotically complete methods are formal
methods that are not guaranteed to provide a definitive answer to a problem, but as
the size of the problem grows, the probability of finding a solution approaches 1. This
means that, for very large problems, an asymptotically complete method will almost
always find a solution. For example, heuristic search is an asymptotically complete
method because, as the size of the search space grows, the probability of finding a
solution approaches 1, even though there is no guarantee that a solution will be found
for any given problem instance.

Table 2. Different types of formal methods.

Formal
Method Description Main Benefits

Abstract Inter-
pretation

Analyzes and verifies the behav-
ior of computer programs by ab-
stracting away some details and
approximating the program’s be-
havior

Can analyze complex programs
and reason about their behavior
at a higher level of abstraction

Semantic Static
Analysis

Analyzes the behavior of com-
puter programs by examining
their source code and inferring
their meaning

Can detect errors early in the de-
velopment process and ensure the
final product is correct and reli-
able

Model Check-
ing

Verifies the correctness of a sys-
tem by exhaustively exploring its
possible behaviors

Provides complete coverage of all
possible behaviors and can ensure
the correctness of critical systems

Proof Assis-
tants

Software tools that help users con-
struct and verify mathematical
proofs

Provides a high level of assurance
that the proof is correct and can
verify the correctness of software
and hardware designs

Deductive Ver-
ification

Verifies the correctness of soft-
ware by constructing a formal
proof that the software satisfies
its specifications

Provides a high level of assur-
ance that the software is correct
and can ensure the correctness of
safety-critical systems

Design by Re-
finement

Develops correct software by iter-
atively refining an abstract speci-
fication of the software until a de-
tailed implementation is obtained

Provides a systematic approach
to software development that can
ensure the final product is correct
and meets its specifications

MBT
Tests software by generating test
cases from a model of the soft-
ware

Can ensure the software meets its
specifications and is free of errors
and can reduce the time and effort
needed to test the software

Table 3 summarizes these three classes of formal methods, along with their advantages
and limitations. Complete methods provide a definitive answer, but may be computa-
tionally expensive and may not scale well to large problems. Partial methods can handle
complex problems, but may not be able to detect all errors or find all solutions. Asymp-
totically complete methods can handle very large problems and can often find solutions
quickly, but may not always find a solution and may not be able to guarantee correctness.
Understanding the strengths and limitations of these different types of formal methods can
help developers choose the most-appropriate method for their specific problem.

Appl. Sci. 2023, 13, 8122 10 of 29

Table 3. Different classes of formal methods.

Class Definition Example Advantages Limitations

Complete
Methods

Formal methods that are
guaranteed to provide a
definitive answer to a given
problem

Model checking,
theorem proving

Provide a definitive
answer and can find
all solutions

May be
computationally
expensive and
may not scale
well to large
problems

Partial Methods
Formal methods that may
not provide a definitive
answer to a given problem

Abstract
interpretation, type
checking

Can handle complex
problems and can
provide useful
information even if a
definitive answer
cannot be found

May not be able
to detect all errors
or find all
solutions

Asymptotically
Complete
Methods

Formal methods that are not
guaranteed to provide a
definitive answer to a
problem, but as the size of
the problem grows,
the probability of finding a
solution approaches 1

Heuristic search,
stochastic methods

Can handle very
large problems and
can often find
solutions quickly

May not always
find a solution
and may not be
able to guarantee
correctness

Figure 2. Different types of formal techniques.

The most-important advantages of utilizing formal approaches are as follows:

• Abstraction: Formal approaches allow abstraction, which means that they can provide
a higher-level view of the software system. This can help to manage complexity by
hiding irrelevant details and focusing on the essential characteristics of the system.
Abstraction also makes it easier to reason about the behavior of the system and to
identify potential errors and defects.

• Rigorous analysis: Formal methods provide a rigorous and systematic approach to
analyzing software systems. This means that they use well-defined mathematical
models and techniques to analyze the software, which can help to ensure that the
analysis is accurate and complete. Rigorous analysis can identify defects and errors
that may be missed by other methods, such as TSTNG or informal reviews.

• Early defect discovery: Formal methods can be applied early in the software-
development process, which can help to identify defects and errors before they become
more difficult and expensive to fix. Early defect discovery can also help to improve
the overall quality of the software and reduce the risk of defects, which could lead to
system failures or safety hazards.

• Correctness guarantees: Formal methods can provide correctness guarantees, which
means that they can prove that the software meets its specifications and behaves
correctly. This can provide a high level of assurance that the software is correct and

Appl. Sci. 2023, 13, 8122 11 of 29

reliable. Correctness guarantees are particularly important for safety-critical systems,
where errors or defects could have serious consequences.

• Reliability: Formal methods can improve the reliability of software systems by reduc-
ing the risk of errors and defects. This can help to ensure that the software behaves
as expected and that it is robust and resilient to unexpected inputs or conditions.
Reliability is particularly important for systems that need to operate continuously or
that cannot be easily repaired or replaced.

• Efficient test scenarios: Formal methods can help to identify the most-efficient test
scenarios for a software system. This can reduce the time and effort needed to test the
software, while still ensuring that the software meets its specifications and behaves
correctly. Efficient test scenarios can also help to improve the overall quality of the
software and reduce the risk of defects that could lead to system failures or safety
hazards [62,63].

• Maintainability: Formal methods can improve the maintainability of software sys-
tems by providing a clear and precise specification of the system’s behavior. This can
make it easier to modify or refactor the software without introducing errors or defects.
Formal methods can also help to ensure that modifications do not violate the system’s
specifications or requirements.

• Reusability: Formal methods can improve the reusability of software components by
providing a clear and precise specification of their behavior. This means that software
components can be reused in different contexts without introducing errors or defects.
Formal methods can also help to ensure that reused components behave correctly in
all contexts.

• Standardization: Formal methods can provide a standardized approach to software
development and verification. This means that software systems can be developed
and verified using a common set of techniques and tools, which can improve interop-
erability and reduce the risk of errors or compatibility issues.

• Confidence: Formal methods can provide developers and stakeholders with confi-
dence in the correctness and reliability of the software system. This can increase trust
in the software system and reduce the risk of negative consequences, such as system
failures or safety hazards.

Table 4 summarizes the advantages of utilizing formal methods in software engineer-
ing, including abstraction, rigorous analysis, early defect discovery, correctness guarantees,
reliability, and reusability.

Table 4. Advantages of formal methods in software engineering.

Advantage Description

Abstraction

Formal methods provide a way to represent complex software
systems in a simplified and abstract manner, which can help to
reduce the complexity of the system and make it easier to reason
about.

Rigorous Analysis

Formal methods provide a way to analyze software systems rigor-
ously and to prove that they meet their specifications. This can
help to ensure that the system behaves correctly and that it meets
the needs of its stakeholders.

Early Defect
Discovery

Formal methods can help detect errors and defects early in the
development process, which can make them easier and less ex-
pensive to fix.

Correctness
Guarantees

Formal methods can provide guarantees that a software system is
correct and meets its specifications. This can help to increase the
confidence in the system and reduce the risk of errors or defects.

Appl. Sci. 2023, 13, 8122 12 of 29

Table 4. Cont.

Advantage Description

Reliability

Formal methods can help to ensure that a software system is
reliable and performs as expected under different conditions. This
can help to increase the trust in the system and reduce the risk of
failures or errors.

Efficient Test
Scenarios

Formal methods can help to identify test scenarios that cover all
possible system behaviors, which can reduce the number of tests
needed and the time required for TSTNG. This can result in more-
efficient TSTNG and faster time-to-market for software systems.

Maintainability

Formal methods can improve the maintainability of software sys-
tems by providing a clear and precise specification of the system’s
behavior. This can make it easier to modify or refactor the soft-
ware without introducing errors or defects. Formal methods can
also help to ensure that modifications do not violate the system’s
specifications or requirements.

Reusability

Formal methods can improve the reusability of software com-
ponents by providing a clear and precise specification of their
behavior. This means that software components can be reused in
different contexts without introducing errors or defects. Formal
methods can also help to ensure that reused components behave
correctly in all contexts.

Standardization

Formal methods can provide a standardized approach to software
development and verification. This means that software systems
can be developed and verified using a common set of techniques
and tools, which can improve interoperability and reduce the risk
of errors or compatibility issues.

Confidence

Formal methods can provide developers and stakeholders with
confidence in the correctness and reliability of the software sys-
tem. This can increase trust in the software system and reduce
the risk of negative consequences, such as system failures or
safety hazards.

5. Testing Techniques

Testing (TSTNG) is an essential part of the software development process, as it helps
to ensure that software systems are reliable, performant, and meet the needs of their
users. There are many different approaches to TSTNG software, each with its own specific
objectives and procedures (Figure 3):

• Unit TSTNG [67]: Unit TSTNG is a method of TSTNG that focuses on individual units
or components of a software system. The goal of unit TSTNG is to guarantee that each
component of the system works as expected and meets its standards. Unit TSTNG is
normally accomplished by creating and executing test cases for each unit. Unit TSTNG
has the main advantage of detecting faults and defects early in the development
process, making them easier and less expensive to rectify. The biggest disadvantage
of unit TSTNG is that it may fail to uncover flaws or faults that occur when units
are merged.

• Integration TSTNG [68]: Integration TSTNG is a TSTNG method that focuses on the in-
teractions of several units or components of a software system. The goal of integration
TSTNG is to guarantee that the system as a whole works as planned and that the units
work properly when joined. Integration TSTNG is often accomplished by TSTNG with
various combinations of units and ensuring that they function as expected. The pri-
mary benefit of integration TSTNG is that it can uncover flaws and defects that occur

Appl. Sci. 2023, 13, 8122 13 of 29

when units are merged, making them easier and less expensive to correct. The biggest
disadvantage of integration TSTNG is that it may miss faults or problems that occur
when the system is stressed or loaded.

• Acceptance TSTNG [69]: Acceptance TSTNG is a method of determining whether a
software system meets its requirements and specifications. The goal of acceptance
TSTNG is to guarantee that the system is acceptable to its stakeholders and meets
their requirements. Acceptance TSTNG is often accomplished by putting the system
through its paces in a real-world setting and ensuring that it fits the requirements and
specifications. Acceptance TSTNG has the primary benefit of ensuring that the system
meets the needs of its stakeholders. The fundamental shortcoming of acceptance
TSTNG is that it may fail to uncover mistakes or problems that occur when the system
is stressed or loaded.

• Functional TSTNG [70]: Functional TSTNG is a TSTNG approach that focuses on
TSTNG of the functionality of a software system. The objective of functional TSTNG
is to ensure that the system functions correctly and that it meets its requirements
and specifications. Functional TSTNG is typically achieved by TSTNG of the system
against a set of predefined test cases that cover all aspects of its functionality. The main
advantage of functional TSTNG is that it can ensure that the system functions correctly
and that it meets its requirements and specifications.

• Usability TSTNG [71]: Usability TSTNG is a TSTNG approach that focuses on TSTNG
for how easy it is to use a software system. The objective of usability TSTNG is to
ensure that the system is usable and that it meets the needs of its users. Usability
TSTNG is typically achieved by TSTNG of the system with a group of representative
users and observing how they interact with the system. The main advantage of
usability TSTNG is that it can ensure that the system is easy to use and that it meets
the needs of its users.

• Stress TSTNG [72]: Stress TSTNG is a TSTNG approach that focuses on TSTNG for how
well a software system performs under stress or load. The objective of stress TSTNG
is to ensure that the system can handle high volumes of traffic or requests without
crashing or failing. Stress TSTNG is typically achieved by TSTNG of the system with a
high volume of traffic or requests and observing how it performs. The main advantage
of stress TSTNG is that it can ensure that the system is reliable and can handle high
volumes of traffic or requests.

• Performance TSTNG [73]: Performance TSTNG is a method of determining how well a
software system operates under regular operating conditions. The goal of performance
TSTNG is to guarantee that the system is responsive and meets the needs of its users.
Typically, performance TSTNG is accomplished by subjecting the system to a repre-
sentative load and evaluating how it performs. The primary benefit of performance
TSTNG is that it ensures that the system is responsive and works properly for its users.
The fundamental disadvantage of performance TSTNG is that it may miss mistakes or
problems that occur when the system is stressed or loaded.

• Regression TSTNG [74]: Regression TSTNG is a TSTNG method that focuses on de-
termining whether changes to a software system have introduced new mistakes or
faults. The goal of regression TSTNG is to guarantee that the system continues to work
appropriately after modifications have been made to it. Regression TSTNG is often
accomplished by retesting the system against a set of specified test cases following
modifications to it. The primary benefit of regression TSTNG is that it ensures that
the system continues to function properly after modifications have been made to
it. The fundamental shortcoming of regression TSTNG is that it may fail to uncover
mistakes or problems that occur when the system is under stress or pressure.

Table 5 summarizes the objectives, main procedures, advantages, and limitations of
each approach to TSTNG software. By understanding the strengths and weaknesses of each
approach, developers can choose the most-appropriate approach for their specific needs
and ensure that their software systems are reliable and perform as expected.

Appl. Sci. 2023, 13, 8122 14 of 29

Figure 3. Different kinds of software testing.

Table 5. Approaches to testing software.

Testing Approach Objective Main Procedures Limitations

Unit TSTNG

Ensures that each unit of the
system is working as expected
and meets its specifications.

Writing test cases for each unit
and executing those test cases.

May not detect errors or de-
fects that arise when units are
combined.

Integration TSTNG

Ensures that the system as a
whole is working as expected
and that the units are function-
ing correctly when combined.

TSTNG of different combina-
tions of units and verifying
that they work together as ex-
pected.

May not detect errors or de-
fects that arise when the sys-
tem is under stress or load.

Acceptance TSTNG

Ensures that the system meets
its requirements and specifi-
cations and is acceptable to
stakeholders.

TSTNG of the system in a real-
world environment and veri-
fying that it meets the require-
ments and specifications.

May not detect errors or de-
fects that arise when the sys-
tem is under stress or load.

Functional TSTNG

Ensures that the system func-
tions correctly and meets its re-
quirements and specifications.

TSTNG of the system against
a set of predefined test cases
that cover all aspects of its
functionality.

May not detect errors or de-
fects that arise when the sys-
tem is under stress or load.

Usability TSTNG

Ensures that the system is easy
to use and meets the needs of
its users.

TSTNG of the system with a
group of representative users
and observing how they inter-
act with the system.

May not detect errors or de-
fects that arise when the sys-
tem is under stress or load.

Appl. Sci. 2023, 13, 8122 15 of 29

Table 5. Cont.

Testing Approach Objective Main Procedures Limitations

Stress TSTNG

Ensures that the system can
handle high volumes of traffic
or requests without crashing
or failing.

TSTNG of the system with a
high volume of traffic or re-
quests and observing how it
performs.

May not detect errors or de-
fects that arise under normal
operating conditions.

Performance
TSTNG

Ensures that the system is re-
sponsive and performs well
for its users.

TSTNG of the system with a
representative load and ob-
serving how it performs.

May not detect errors or de-
fects that arise when the sys-
tem is under stress or load.

Regression TSTNG

Ensures that the system con-
tinues to function correctly af-
ter changes have been made
to it.

Retesting the system against
a set of predefined test cases
after changes have been made
to it.

May not detect errors or de-
fects that arise when the sys-
tem is under stress or load.

6. Use of AI in Software Testing

The use of artificial intelligence (AI) [75–78] in software TSTNG has been gaining
popularity in recent years [79,80]. AI can help automate various tasks involved in software
TSTNG, such as test case generation, test execution, and result analysis. One of the main
advantages of using AI in software TSTNG is the ability to improve test coverage and
quality, as AI can analyze large amounts of data and identify patterns and anomalies that
may not be apparent to human testers [79]. This can lead to better detection of defects and
vulnerabilities, reducing the risk of software failures and downtime.

Another advantage of using AI in software TSTNG is the ability to reduce the time and
effort required for TSTNG [80]. AI can automate repetitive and time-consuming tasks, such
as regression TSTNG, allowing testers to focus on more-complex and creative tasks, such
as exploratory TSTNG. This can lead to faster release cycles and reduced time-to-market,
which is crucial in today’s fast-paced software development industry.

Moreover, AI can also help improve the efficiency and effectiveness of TSTNG teams,
as it can provide insights and recommendations based on data analysis and machine
learning algorithms [79]. This can help testers prioritize their TSTNG efforts and focus
on the areas that are most critical and likely to have defects. Additionally, AI can also
help reduce the cost of TSTNG, as it can identify defects and vulnerabilities early in the
development cycle, reducing the need for costly rework and maintenance.

6.1. Advantages

The use of AI in software TSTNG offers numerous advantages that can help improve
the efficiency, effectiveness, and quality of software development. In this section, we will
discuss some of the major advantages that can be gained from using AI strategies for
software TSTNG (Figure 4):

• Automatic writing of test cases: Automatic writing of test cases is one of the most-
significant advantages of using AI in software TSTNG. AI can analyze code and
identify potential areas of weakness, allowing it to generate test cases that can thor-
oughly test the software. This can save significant amounts of time and effort that
would otherwise be spent writing test cases manually. Moreover, AI-generated test
cases can often cover more scenarios and edge cases than human-written test cases,
leading to more thorough TSTNG and better software quality.

• Fast time-to-market: Ising AI in software TSTNG can help reduce the time-to-market
for software products. By automating repetitive and time-consuming tasks, such as
regression TSTNG, AI can help speed up the TSTNG process. This can help software
companies release products more quickly, gaining an edge in the competitive mar-
ketplace. Additionally, a faster time-to-market can lead to increased revenue and

Appl. Sci. 2023, 13, 8122 16 of 29

improved customer satisfaction, as customers are more likely to choose products that
are released quickly and regularly updated with new features and functionality.

• Earliest response/feedback: Another advantage of using AI in software TSTNG is
the ability to provide early feedback on software quality. AI can detect defects and
vulnerabilities early in the development cycle, allowing developers to address them
before they become major issues. This can help improve software quality and reliability,
leading to better customer satisfaction. Additionally, early detection of issues can help
reduce the cost and effort required for fixing them later in the development process.

• Prognostic analysis: Prognostic analysis is another advantage of using AI in software
TSTNG. AI can analyze historical and real-time data to predict the future behavior of
a software system. This can help identify potential issues before they occur, allowing
developers to take preventative measures to avoid downtime or system failures.
Additionally, prognostic analysis can help optimize the performance and efficiency of
software systems, leading to better user experiences and improved customer satisfaction.

• Integrated platform: Using AI in software TSTNG can help integrate various TSTNG
tools and platforms. AI can help unify different TSTNG methods, such as unit TSTNG,
integration TSTNG, and system TSTNG. This can help software companies save time
and reduce costs by using a single, integrated TSTNG platform. Additionally, an in-
tegrated TSTNG platform can provide a holistic view of software quality, allowing
developers to identify and address issues more effectively.

• Reduction of UI-based TSTNG: AI can help reduce the need for UI-based TSTNG,
which is often time-consuming and expensive. By automating backend TSTNG, AI can
help identify issues without the need for extensive UI TSTNG, reducing the overall
TSTNG effort required. Additionally, reducing the need for UI-based TSTNG can help
improve the efficiency of TSTNG teams, allowing them to focus on more-complex and
critical TSTNG tasks.

• Better code coverage: AI can help improve code coverage by identifying areas that
are not adequately covered by existing test cases. This can help ensure that all parts
of the software are thoroughly tested, reducing the risk of issues and vulnerabilities.
Additionally, better code coverage can lead to better software quality and reliability,
improving the overall user experience and customer satisfaction.

• Improved reliability: By automating TSTNG tasks, AI can help improve the reliability
of software products. Automated TSTNG can detect defects and vulnerabilities that
may be missed by manual TSTNG, leading to more-reliable and stable software prod-
ucts. Additionally, improved reliability can help reduce the cost and effort required
for maintenance and support, improving the overall efficiency and effectiveness of
software development teams.

• Improved quality: Using AI in software TSTNG can help improve the overall quality
of software products. By detecting defects and vulnerabilities early in the development
cycle, AI can help ensure that software products are of high quality and meet customer
expectations. Additionally, improved quality can lead to better customer satisfaction,
increased revenue, and a competitive edge in the marketplace.

• Automated visual validation TSTNG: AI can also be used for automated visual vali-
dation TSTNG, which involves comparing the visual output of a software system with
expected results. This can help identify visual defects and inconsistencies, improving
the overall quality and user experience of the software. Additionally, automated
visual validation TSTNG can help reduce the effort required for manual visual TSTNG,
allowing TSTNG teams to focus on more-complex and critical TSTNG tasks.

Overall, the use of AI in software TSTNG offers numerous advantages, including
faster time-to-market, improved reliability and quality, and reduced TSTNG effort and costs.
As AI technology continues to evolve, it is likely that more benefits will become apparent,
making it an increasingly valuable tool for software development and TSTNG.

Appl. Sci. 2023, 13, 8122 17 of 29

Figure 4. Advantages of the use of AI in software TSTNG.

6.2. Examples of Tools

There are many AI-based TSTNG tools available in the market that can help improve
the efficiency and effectiveness of software TSTNG. These tools use AI to automate various
TSTNG tasks, such as test case generation, test execution, and defect detection. Some
examples include the following:

• Applitools is a visual TSTNG tool that employs AI to automatically detect visual
defects and inconsistencies in web and mobile applications. By utilizing computer
vision algorithms, Applitools can compare screenshots of an application across various
devices, browsers, and resolutions to identify differences that may indicate a defect.
The tool can integrate with popular TSTNG frameworks, such as Selenium and Ap-
pium, to seamlessly incorporate visual TSTNG into existing processes. Applitools also
provides a dashboard that highlights visual issues and streamlines defect tracking and
management. Testers can leverage Applitools to enhance their visual TSTNG coverage
and accuracy, leading to better software products and increased customer satisfaction.

• Appvance IQ is an AI-based TSTNG tool that utilizes machine learning algorithms
to automatically generate and execute test cases across multiple platforms and en-
vironments. The tool can analyze user behavior to generate test cases that cover
the most-critical and -common use cases. Appvance IQ can also detect defects and
vulnerabilities and provide recommendations for improving software quality. The tool
provides a dashboard that simplifies defect tracking and management and offers
detailed reports and analytics on TSTNG activities. Testers can optimize their test cov-
erage and accuracy while saving time and effort on test case creation and maintenance
by utilizing Appvance IQ.

• Functionize is an AI-based TSTNG tool that allows testers to autonomously generate
and execute test cases and detect and prioritize defects. Using advanced machine
learning algorithms, Functionize can analyze user behavior to generate test cases

Appl. Sci. 2023, 13, 8122 18 of 29

that cover critical and common use cases and automatically prioritize defects based
on severity. Functionize provides a dashboard that simplifies defect tracking and
management and offers detailed reports and analytics on TSTNG activities.

• Mabl is an AI-based TSTNG tool that enables testers to automatically identify and
prioritize issues and generate and maintain test cases. The tool uses advanced machine
learning algorithms to analyze user behavior and generate test cases that cover critical
and common use cases. Mabl can also detect issues and vulnerabilities and prioritize
them based on severity, reducing the effort required for manual defect triage. The tool
provides a dashboard that simplifies defect tracking and management and offers
detailed reports and analytics on TSTNG activities.

• ReTest is an artificial-intelligence-based TSTNG solution that allows testers to assess
software requirements and produce test cases that cover all potential combinations
of input parameters. The program analyzes requirements and generates test cases
that cover all conceivable combinations of input parameters, ensuring complete test
coverage. ReTest can also automatically find problems and vulnerabilities and provide
insights and recommendations for improving software quality. The tool provides a
dashboard that simplifies defect tracking and management and offers detailed reports
and analytics on TSTNG activities. Testers can increase their TSTNG productivity and
effectiveness while ensuring complete test coverage and reducing the risk of faults
and vulnerabilities.

• Sauce Labs is an AI-based TSTNG tool that automates TSTNG for web and mobile
applications. The tool uses advanced machine learning algorithms to automatically
generate and execute test cases across multiple platforms and environments, ensuring
complete test coverage. Sauce Labs can also detect defects and vulnerabilities and pro-
vide recommendations for improving software quality. The tool provides a dashboard
that simplifies defect tracking and management and offers detailed reports and ana-
lytics on TSTNG activities. By utilizing Sauce Labs, testers can improve their TSTNG
efficiency and effectiveness while ensuring complete test coverage across multiple
platforms and environments.

• Test.AI is an AI-powered TSTNG platform that enables testers to create and execute
test cases while detecting and prioritizing errors. The tool analyzes user activity and
generates test cases that cover crucial and common use scenarios using powerful
machine learning methods. Test.AI can also detect and prioritize flaws and vulnerabil-
ities based on severity, minimizing the time and effort necessary for manual defect
triage. The tool provides a dashboard that simplifies defect tracking and management
and offers extensive results and analytics on TSTNG efforts. Testers can increase their
TSTNG efficiency and effectiveness while reducing the time and effort required for
test case generation and maintenance by using Test.AI.

• Testim is an AI-driven TSTNG tool that enables testers to create and execute test
cases with ease. The tool uses advanced machine learning algorithms to analyze user
behavior and generate test cases that cover critical and common use cases. Testim can
also detect defects and vulnerabilities and provide recommendations for improving
software quality. The tool provides a dashboard that simplifies defect tracking and
management and offers detailed reports and analytics on TSTNG activities.

• Tricentis Tosca is an AI-based TSTNG tool that enables testers to generate, maintain,
and execute test cases across multiple platforms and environments. The tool uses
advanced machine learning algorithms to analyze user behavior and generate test
cases that cover critical and common use cases. Tricentis Tosca can also detect defects
and vulnerabilities and provide recommendations for improving software quality.
The tool provides a dashboard that simplifies defect tracking and management and
offers detailed reports and analytics on TSTNG activities across multiple platforms
and environments.

• Usetrace is an AI-powered TSTNG tool that enables testers to automatically generate
and execute test cases. The tool uses machine learning algorithms to analyze user

Appl. Sci. 2023, 13, 8122 19 of 29

behavior and generate test cases that cover critical and common use cases. Usetrace can
also detect defects and vulnerabilities and provide recommendations for improving
software quality. The tool provides a dashboard that simplifies defect tracking and
management and offers detailed reports and analytics on TSTNG activities.

These tools demonstrate the diverse ways in which AI can be applied to software
TSTNG, including visual TSTNG, test case generation, defect detection, and automated
TSTNG across multiple platforms and environments. By using AI-based TSTNG tools,
developers and testers can improve the efficiency, effectiveness, and quality of software
TSTNG, ultimately leading to better software products and greater customer satisfaction.
Table 6 provides a summary of various AI-based TSTNG tools with their functionalities
and advantages.

Table 6. Summary of AI-based testing tools.

Tool Name Functionality Advantages

Applitools AI-powered visual TSTNG

Automatically detects visual defects and inconsistencies.
Compares screenshots across multiple devices, browsers,
and resolutions. Integrates with popular TSTNG frame-
works such as Selenium and Appium. Provides a dash-
board for easy defect tracking and management.

Appvance IQ AI-based test case generation
and execution

Automatically generates and executes test cases across
multiple platforms and environments. Analyzes user
behavior to generate test cases covering the most-critical
and -common use cases. Detects defects and vulner-
abilities. Provides insights and recommendations for
improving software quality. Offers a dashboard for easy
defect tracking and management.

Functionize AI-based test case generation, exe-
cution, and defect detection

Autonomously generates and executes test cases. Ana-
lyzes user behavior to generate test cases covering the
most-critical and common use cases. Automatically de-
tects and prioritizes defects based on severity. Provides
a dashboard for easy defect tracking and management.
Reduces time and effort required for test case creation
and maintenance.

Mabl AI-based issue identification and
prioritization

Automatically identifies and prioritizes issues. Gener-
ates and maintains test cases. Automatically detects
issues and vulnerabilities. Provides a dashboard for easy
defect tracking and management. Reduces the time and
effort required for test case creation and maintenance.

ReTest AI-based test case generation and
defect detection

Analyzes software requirements to generate test cases
covering all possible combinations of input parameters.
Automatically detects defects and vulnerabilities. Pro-
vides insights and recommendations for improving soft-
ware quality. Offers a dashboard for easy defect tracking
and management. Ensures complete test coverage.

Sauce Labs AI-based automated TSTNG for web
and mobile applications

Provides automated TSTNG across multiple platforms
and environments. Detects defects and vulnerabilities.
Provides insights and recommendations for improving
software quality. Offers a dashboard for easy defect track-
ing and management. Ensures complete test coverage.

Appl. Sci. 2023, 13, 8122 20 of 29

Table 6. Cont.

Tool Name Functionality Advantages

Test.AI AI-based test case generation and
defect detection

Generates and executes test cases. Analyzes user behav-
ior to generate test cases covering the most-critical and
-common use cases. Automatically detects and priori-
tizes defects based on severity. Provides a dashboard for
easy defect tracking and management. Reduces time and
effort required for test case creation and maintenance.

Testim AI-based test case generation
and maintenance

Generates and maintains test cases. Automatically ana-
lyzes user behavior to generate test cases covering the
most-critical and -common use cases. Provides a dash-
board for easy defect tracking and management. Re-
duces time and effort required for test case creation and
maintenance.

Tricentis Tosca AI-based end-to-end TSTNG for
web and mobile applications

Provides automated TSTNG across multiple platforms
and environments. Detects defects and vulnerabilities.
Provides insights and recommendations for improving
software quality. Offers a dashboard for easy defect track-
ing and management. Ensures complete test coverage.

7. Case Study: Temperature-Measuring System

This section presents a short case study to demonstrate the previously introduced
methodologies. As shown in Figure 5, our case study has four sensors (SSRs) and one
collector (CLLTR). SSRs communicate ambient temperature (TMPRT) to the CLLTR.
The CLLTR records the SSR values in a database for future use.

Figure 5. Temperature-measuring system (TMS).

We offer a streamlined model for the suggested case study, composed of eight finite
state machines, in Figure 6. On the one hand, each SSR’s activity is described as a distinct
finite state machine with three nodes and three transitions: TMPRT measurements and
TMPRT transmission to the CLLTR, obtaining the CLLTR’s acknowledgment. On the
other hand, the CLLTR’s behavior is provided as a result of four finite state machines.
Additionally, each of these finite state machines has three nodes and three transitions:
Receiving the TMPRT from the associated SSR, storing the TMPRT, and sending the SSR
an acknowledgment are the first three steps.

Appl. Sci. 2023, 13, 8122 21 of 29

Figure 6. A simplified model for the TMS.

Next, we describe how a number of optimization techniques improved the FV and
formal-based TSTNG for this case study. We begin with the FV aspects:

• Abstraction: At this level, it is quite simple to see that the various components of the
system under consideration are described at a very high level. Additionally, many
details are abstracted away, and the interactions between the various SSRs are not
taken into account either.

• Modularization and compositionality: The suggested system is represented as a
network of eight finite state machines. Every finite state machine has three states and
three transitions. By multiplying the products of these different finite state machines,
we obtain a large finite state machine with around 38 = 6501 states. If we expand the
number of SSRs to eight, the product’s states might reach 316 = 43, 046, 721, which
is a big quantity. This demonstrates the significance of studying modularization and
compositionality in order to reduce the size of the models under consideration.

• Symmetry detection: It is easy to observe how the various SSRs and CLLTR pieces
play symmetric roles. As a result, the FV of the entire studied system may be simplified
to the verification of the product of only two finite state machines: one for each of the
four SSRs and one for each of the four collecting elements (as shown in Figure 7).

Appl. Sci. 2023, 13, 8122 22 of 29

Figure 7. A simplification of the model considering symmetry aspects.

• Data independence detection: We can suppose that the system’s various SSRs will
measure additional elements such as pressure and humidity. However, if there is
no association between TMPRT and these additional variables, there is no need to
include them in the system model. This definitely provides for a reduction in the
complexity and size of the considered model.

• Eliminating functional dependencies: Assume that the CLLTR saves the average of
the readings received from the various SSRs. In this situation, it is evident that there is
a direct relationship between the stored variable and the data measured by the SSRs.
Thus, in order to simplify the complexity of the verification process, we must account
for the connection between these various variables by removing the new variable
corresponding to the average value because it can be determined from other variables.

• Exploiting reversible rules: Consider the finite state machine that describes the behav-
ior of SSR 1. This finite state machine can be simplified further by merging the two
nodes connected by the transition Measure(Temp 1), as this operation can be viewed
as internal and has no effect on the FV of the entire system. Similarly, we can compress
the pairs of CLLTR finite state machine nodes connected by Store(Temp i) transitions.
After verification, the collapsed nodes can be separated as they were originally.

Second, we discuss MBT:

• Refinement techniques: This technique considers an untimed specification (Spec) and
a set of refinement rules that allow each high-level untimed activity to be transformed
into a sequence of low-level timed actions. Test cases (TSTCSs) are retrieved from
the untimed Spec and refined into timed TSTCSs using the refinement procedures
that have been established. For example, in Figure 8, the operation Measure(Temp 1)
is refined into a sequence of four timed actions: TMPRT is measured by recording
three successive values and then taking the average of these three values. This dra-
matically simplifies the test-creation technique and greatly decreases the calculation
time and space requirements.

Figure 8. A refinement of a high-level action.

Appl. Sci. 2023, 13, 8122 23 of 29

• Reducing the size of digital-clock tests: A digital-clock test can be thought of as a
particular tree with a special Tick action, which mimics time progression. The purpose
of this phase is to reduce the size of the test tree by compacting Tick action sequences.
This technique is presented in Figure 9, where a sequence of ten Tick actions is replaced
with just one transition labeled with 10 Ticks. The size of the exams is greatly decreased
in this way.

Figure 9. Reduction of the size of digital-clock tests.

• Timed automaton (TA) tester generation: When the system Spec is presented as a non-
deterministic timed automaton, there are two alternatives for test generation. The first
option is to generate TSTCS on the fly. That is, test generation and test execution are
carried out concurrently. This first option is challenging in general since it necessitates
the use of high-performance calculators. The second option is to pre-determine the
considered timed automaton before running the test. In Figure 10, for example, we
suggest a non-deterministic version of a section of the model of the investigated
system. This automaton is non-deterministic since the same action leads to different
successor nodes from the beginning node. This non-determinism corresponds to the
fact that the SSR may estimate TMPRT by computing the average of three collected
data or only two values depending on some internal choices (for example, available
resources). The result of the determinization of the non-deterministic automaton is
shown in the same image. As previously stated, this method is not always practicable
in a precise manner. As a result, we may need to make some assumptions.

Figure 10. TA tester generation using determinization techniques.

• TSTCS updating: As our system evolves, we must update the model accordingly.
In this instance, we must also update the previously generated TSTCS, as recreating
them from the beginning would be prohibitively expensive. In Figure 11, we propose
a potential system evolution. The CLLTR initially sent an acknowledgment to the
corresponding SSR after storing the TMPRT in the database. In the new version,
the acknowledgment is transmitted once the storage is complete. In order to minimize
the cost and duration of the test-regeneration phase, the previously generated tests

Appl. Sci. 2023, 13, 8122 24 of 29

must be updated appropriately. As previously described, we must compare the two
system models (the old and the new) and classify the available TSTCS to achieve
this objective.

Figure 11. An example of a possible update of the model of the considered system.

• Resource-aware tester component placement: In general, the architecture for TSTNG
may be centralized or decentralized. In the second scenario, we must devise a method
for distributing the various test components across the system’s computational el-
ements. If the CLLTR has sufficient resources, for instance, it can host some of the
test components devoted to verifying some of the SSRs. Similarly, if one of the SSRs
has sufficient resources, it can host the test component responsible for the TSTNG of
another SSR. Optimization techniques must be employed for this purpose.

• Coverage techniques: These techniques enable the intelligent reduction of the number
of created tests by defining specific selection criteria. In our case, we may consider a
criterion that enables us to cover the various nodes of the various finite state machines
of the model under consideration. Similarly, we may consider a second criterion
that encompasses the set of transitions, the set of transition pairs that occur con-
secutively, etc. This can be accomplished by constructing the observable graph as
previously described.

8. Challenges and Open Issues

The Internet of Things (IoT) presents a unique set of challenges for FV&V techniques.
One of the main challenges is the complexity and heterogeneity of IoT systems. IoT systems
can involve numerous devices and networks, each with different hardware, software,
and communication protocols. This makes it difficult to develop a unified FV framework
that can be applied to all devices. Moreover, the lack of standardization of IoT devices and
networks makes it difficult to develop formal models that accurately capture the behavior of
these systems. For example, different devices may have different communication protocols
or may use different data formats, making it challenging to develop a unified formal model
that can be applied to all devices. Another challenge is the dynamic nature of IoT systems.
Devices may join or leave the system at any time, and the behavior of the system may
change depending on the context and environment. This makes it difficult to develop a
static formal model that can accurately capture the behavior of the system. To address these
challenges, researchers have developed device-specific formal models and verification
techniques that can be tailored to the specific characteristics of each device. Moreover, they
have developed standardized interfaces and protocols that enable interoperability between
devices and networks, improving the accuracy and reliability of formal models.

Another challenge in FV&V techniques for the IoT is the state explosion problem. IoT
systems can involve a large number of devices and states, making it difficult to analyze
them exhaustively. This problem can be addressed using abstraction, modularization,
and symmetry-detection techniques. Abstraction involves simplifying the system model
by removing extraneous features, while modularization involves breaking down the ver-
ification of complex systems into smaller subproblems. Symmetry detection involves
minimizing the state space by identifying symmetries that occur during system execution
and creating a mapping from states to equivalence class representatives. These techniques
have been used in previous research to address the state explosion problem in the FV&V

Appl. Sci. 2023, 13, 8122 25 of 29

of IoT systems. However, there is still a need to develop more-efficient and -effective
techniques that can handle the dynamic and heterogeneous nature of IoT systems.

Another challenge in the FV&V of IoT systems is the need to ensure that they meet
performance requirements while also maintaining security and reliability. Many IoT sys-
tems are used in safety-critical applications, such as healthcare and transportation, where
reliability and security are of paramount importance. Moreover, IoT systems often involve
real-time constraints, which can make it difficult to ensure that they meet the perfor-
mance requirements. This can be addressed using TAs and other formal models that
capture the temporal behavior of IoT systems. However, there is still a need to develop
more-sophisticated models and techniques that can handle the complex interactions and
dependencies that exist in IoT systems. Moreover, there is a need to ensure that FV&V tech-
niques are integrated into the software development process for IoT systems, rather than
being treated as an afterthought. This requires a cultural shift towards a more-formalized
approach to software development, as well as the development of tools and frameworks
that make it easier to apply FV&V techniques.

Thus, FV&V techniques offer a promising approach to ensuring the reliability and
security of IoT systems. However, there are several challenges and open issues that need
to be addressed to fully realize their potential. These challenges include the complexity
and heterogeneity of IoT systems, the dynamic nature of IoT systems, the state explosion
problem, and the need to ensure that IoT systems meet the performance requirements
while also maintaining security and reliability. Addressing these challenges will require the
development of more-efficient and -effective techniques, as well as a cultural shift towards
a more formalized approach to software development.

9. Conclusions and Future Work

In conclusion, FV&V techniques have the potential to address the challenges of re-
liability and security in IoT systems. However, the dynamic and heterogeneous nature
of IoT systems presents several challenges for applying these techniques. Researchers
have developed various techniques, such as abstraction, modularization, symmetry de-
tection, and TAs, to address these challenges. However, there is still a need to develop
more-efficient and -effective techniques that can handle the complex interactions and
dependencies that exist in IoT systems. Moreover, there is a need for a cultural shift to-
wards a more-formalized approach to software development, where FV&V techniques are
integrated into the development process.

One possible direction for future research is the development of more-sophisticated
formal models and verification techniques that can handle the dynamic and heterogeneous
nature of IoT systems. For example, researchers could develop models that capture the
interactions and dependencies between devices and networks, as well as the context
and environment in which the system operates. They could also develop verification
techniques that can handle the large number of states and events that occur in IoT systems,
while also maintaining performance and scalability. Another possible direction is the
development of tools and frameworks that make it easier to apply FV&V techniques in the
development process. These tools could automate the process of model generation and
verification, reducing the manual effort required and improving the accuracy and reliability
of the models.

Moreover, there is a need to develop more-comprehensive standards for IoT devices
and networks that can improve the accuracy and reliability of formal models. Standard-
ization can also enable interoperability between devices and networks, improving the
scalability and flexibility of IoT systems. Finally, there is a need to investigate the use of
machine learning and artificial intelligence techniques in conjunction with FV&V tech-
niques [81–84]. These techniques can help identify patterns and anomalies in IoT systems,
improving their reliability and security.

In addition to the future directions discussed above, there are two more directions that
warrant further investigation in the context of FV&V for IoT systems. Firstly, the incorpora-

Appl. Sci. 2023, 13, 8122 26 of 29

tion of novel AI techniques in dynamic and heterogeneous IoT systems is an area of great
interest. Specific AI algorithms, such as federated learning and 0NKP, have shown promise
in improving the security of IoT systems. Researchers could explore the integration of these
techniques into formal models and verification techniques to detect vulnerabilities and
ensure the safety and security of IoT systems.

Secondly, there is a need to provide more details related to post-quantum security [85].
With the potential impact of quantum computing on IoT security, it is crucial to investigate
post-quantum security mechanisms and protocols. Researchers could explore the use of
formal methods in conjunction with these techniques to ensure the safety and security of
IoT systems in the face of emerging threats.

With these future directions in mind, the continued research and development of FV&V
techniques for IoT systems will require collaboration between researchers, developers,
and industry stakeholders. By addressing the challenges and open issues discussed in this
paper, FV&V techniques can help ensure the reliable and secure operation of IoT systems,
enabling their full potential to be realized.

In summary, FV&V techniques offer a promising approach to ensuring the reliability
and security of IoT systems. Addressing the challenges and open issues discussed in this
paper will require a concerted effort from researchers, developers, and industry stakehold-
ers. With continued research and development, FV&V techniques can help realize the full
potential of IoT systems in a safe and secure manner.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Laghari, A.A.; Wu, K.; Laghari, R.A.; Ali, M.; Khan, A.A. A review and state of art of Internet of Things (IoT). Arch. Comput.

Methods Eng. 2021, 29, 1395–1413. [CrossRef]
2. Abdalzaher, M.S.; Fouda, M.M.; Elsayed, H.A.; Salim, M.M. Toward Secured IoT-Based Smart Systems Using Machine Learning.

IEEE Access 2023, 11, 20827–20841. [CrossRef]
3. Hassan, F.; Hussain, S.F.; Qaisar, S.M. Fusion of multivariate EEG signals for schizophrenia detection using CNN and machine

learning techniques. Inf. Fusion 2023, 92, 466–478. [CrossRef]
4. Imtiaz, S.I.; Khan, L.A.; Almadhor, A.S.; Abbas, S.; Alsubai, S.; Gregus, M.; Jalil, Z. Efficient Approach for Anomaly Detection in

Internet of Things Traffic Using Deep Learning. Wirel. Commun. Mob. Comput. 2022, 2022, 8266347. [CrossRef]
5. Alamer, M.; Almaiah, M.A. Cybersecurity in Smart City: A systematic mapping study. In Proceedings of the 2021 International

Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 719–724.
6. Allouch, A.; Cheikhrouhou, O.; Koubâa, A.; Toumi, K.; Khalgui, M.; Nguyen Gia, T. Utm-chain: Blockchain-based secure

unmanned traffic management for Internet of drones. Sensors 2021, 21, 3049. [CrossRef] [PubMed]
7. Abdalzaher, M.S.; Salim, M.M.; Elsayed, H.A.; Fouda, M.M. Machine learning benchmarking for secured IoT smart systems. In

Proceedings of the 2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS), Bali, Indonesia,
24–26 November 2022; pp. 50–56.

8. Malik, A.; Khan, M.Z.; Qaisar, S.M.; Faisal, M.; Mehmood, G. An Efficient Approach for the Detection and Prevention of
Gray-Hole Attacks in VANETs. IEEE Access 2023, 11, 46691–46706. [CrossRef]

9. Abdalzaher, M.S.; Elsayed, H.A.; Fouda, M.M. Employing remote sensing, data communication networks, ai, and optimization
methodologies in seismology. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9417–9438. [CrossRef]

10. Lee, I. Internet of Things (IoT) cybersecurity: Literature review and IoT cyber risk management. Future Internet 2020, 12, 157.
[CrossRef]

11. Koubaa, A.; Allouche, A.; Khalgui, M.; Cheikhrouhou, O. Blockchain-Based Solution for Internet of Drones Security and Privacy.
U.S. Patent 11,488,488, 31 March 2022.

12. Javed, A.R.; Shahzad, F.; ur Rehman, S.; Zikria, Y.B.; Razzak, I.; Jalil, Z.; Xu, G. Future smart cities: Requirements, emerging
technologies, applications, challenges, and future aspects. Cities 2022, 129, 103794. [CrossRef]

http://doi.org/10.1007/s11831-021-09622-6
http://dx.doi.org/10.1109/ACCESS.2023.3250235
http://dx.doi.org/10.1016/j.inffus.2022.12.019
http://dx.doi.org/10.1155/2022/8266347
http://dx.doi.org/10.3390/s21093049
http://www.ncbi.nlm.nih.gov/pubmed/33925489
http://dx.doi.org/10.1109/ACCESS.2023.3274650
http://dx.doi.org/10.1109/JSTARS.2022.3216998
http://dx.doi.org/10.3390/fi12090157
http://dx.doi.org/10.1016/j.cities.2022.103794

Appl. Sci. 2023, 13, 8122 27 of 29

13. Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.;
Kallitsis, M.; et al. Understanding the Mirai Botnet. In Proceedings of the 26th USENIX Security Symposium (USENIX Security
17), Vancouver, BC, Canada, 16–18 August 2017; USENIX Association: Vancouver, BC, Canada, 2017; pp. 1093–1110.

14. Bakić, B.; Milić, M.; Antović, I.; Savić, D.; Stojanović, T. 10 years since Stuxnet: What have we learned from this mysterious
computer software worm? In Proceedings of the 2021 25th International Conference on Information Technology (IT), Zabljak,
Montenegro, 16–20 February 2021; pp. 1–4.

15. Wang, F.; Cao, Z.; Tan, L.; Zong, H. Survey on learning-based formal methods: Taxonomy, applications and possible future
directions. IEEE Access 2020, 8, 108561–108578. [CrossRef]

16. Gleirscher, M.; Marmsoler, D. Formal methods in dependable systems engineering: A survey of professionals from Europe and
North America. Empir. Softw. Eng. 2020, 25, 4473–4546. [CrossRef]

17. Gleirscher, M.; Foster, S.; Woodcock, J. New opportunities for integrated formal methods. ACM Comput. Surv. (CSUR) 2019,
52, 1–36. [CrossRef]

18. Hofer-Schmitz, K.; Stojanović, B. Towards formal methods of IoT application layer protocols. In Proceedings of the 2019 12th
CMI Conference on Cybersecurity and Privacy (CMI), Copenhagen, Denmark, 28–29 November 2019; pp. 1–6.

19. Souri, A.; Norouzi, M. A state-of-the-art survey on formal verification of the Internet of things applications. J. Serv. Sci. Res. 2019,
11, 47–67. [CrossRef]

20. Siboni, S.; Sachidananda, V.; Meidan, Y.; Bohadana, M.; Mathov, Y.; Bhairav, S.; Shabtai, A.; Elovici, Y. Security testbed for
Internet-of-Things devices. IEEE Trans. Reliab. 2019, 68, 23–44. [CrossRef]

21. Jeannotte, B.; Tekeoglu, A. Artorias: IoT security testing framework. In Proceedings of the 2019 26th International Conference on
Telecommunications (ICT), Hanoi, Vietnam, 8–10 April 2019; pp. 233–237.

22. Matheu-García, S.N.; Hernández-Ramos, J.L.; Skarmeta, A.F.; Baldini, G. Risk-based automated assessment and testing for the
cybersecurity certification and labelling of IoT devices. Comput. Stand. Interfaces 2019, 62, 64–83. [CrossRef]

23. Garousi, V.; Keleş, A.B.; Balaman, Y.; Güler, Z.Ö.; Arcuri, A. Model-based testing in practice: An experience report from the web
applications domain. J. Syst. Softw. 2021, 180, 111032. [CrossRef]

24. Ahmad, T.; Iqbal, J.; Ashraf, A.; Truscan, D.; Porres, I. Model-based testing using UML activity diagrams: A systematic mapping
study. Comput. Sci. Rev. 2019, 33, 98–112. [CrossRef]

25. Krichen, M.; Mechti, S.; Alroobaea, R.; Said, E.; Singh, P.; Khalaf, O.I.; Masud, M. A formal testing model for operating room
control system using Internet of things. Comput. Mater. Contin. 2021, 66, 2997–3011. [CrossRef]

26. Miller, B.P.; Zhang, M.; Heymann, E.R. The relevance of classic fuzz testing: Have we solved this one? IEEE Trans. Softw. Eng.
2020, 48, 2028–2039. [CrossRef]

27. Fu, Y.; Ren, M.; Ma, F.; Shi, H.; Yang, X.; Jiang, Y.; Li, H.; Shi, X. Evmfuzzer: Detect evm vulnerabilities via fuzz testing.
In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Tallinn, Estonia, 26–30 August 2019; pp. 1110–1114.

28. Mihalič, F.; Truntič, M.; Hren, A. Hardware-in-the-loop simulations: A historical overview of engineering challenges. Electronics
2022, 11, 2462. [CrossRef]

29. Kiesbye, J.; Messmann, D.; Preisinger, M.; Reina, G.; Nagy, D.; Schummer, F.; Mostad, M.; Kale, T.; Langer, M. Hardware-in-the-
loop and software-in-the-loop testing of the move-ii cubesat. Aerospace 2019, 6, 130. [CrossRef]

30. Xie, B.; Wang, S.; Wu, X.; Wen, C.; Zhang, S.; Zhao, X. Design and hardware-in-the-loop test of a coupled drive system for electric
tractor. Biosyst. Eng. 2022, 216, 165–185. [CrossRef]

31. Hofer-Schmitz, K.; Stojanović, B. Towards formal verification of IoT protocols: A Review. Comput. Netw. 2020, 174, 107233.
[CrossRef]

32. Al Farooq, A.; Al-Shaer, E.; Moyer, T.; Kant, K. Iotc 2: A formal method approach for detecting conflicts in large scale iot systems.
In Proceedings of the 2019 IFIP/IEEE symposium on integrated network and service management (IM), Arlington, VA, USA,
8–12 April 2019; pp. 442–447.

33. Ahmed, A.I.A.; Hamid, S.H.A.; Gani, A.; Abdelaziz, A.; Abaker, M. Formal Analysis of Trust and Reputation for Service
Composition in IoT. Sensors 2023, 23, 3192. [CrossRef]

34. Souad, M.; Faiza, B.; Nabil, H. Formal modeling iot systems on the basis of biagents* and maude. In Proceedings of the 2020
International Conference on Advanced Aspects of Software Engineering (ICAASE), Constantine, Algeria, 28–30 November 2020;
pp. 1–7.

35. Aziz, B. A formal model and analysis of an IoT protocol. Ad Hoc Netw. 2016, 36, 49–57. [CrossRef]
36. Fortas, A.; Kerkouche, E.; Chaoui, A. Formal verification of IoT applications using rewriting logic: An MDE-based approach. Sci.

Comput. Program. 2022, 222, 102859. [CrossRef]
37. Hagar, J.; Wendland, M.F. Defining Software Test Architectures with the UML Testing Profile. In Proceedings of the 2023 IEEE

International Conference on Software Testing, Verification and Validation Workshops (ICSTW), Dublin, Ireland, 16–20 April 2023;
pp. 271–280.

38. Toman, Z.H.; Hamel, L.; Toman, S.H.; Graiet, M.; Valadares, D.C.G. Formal verification for security and attacks in IoT physical
layer. J. Reliab. Intell. Environ. 2023, 1–19. [CrossRef]

39. Elsayed, E.K.; Diab, L.; Ibrahim, A.A. Formal Verification of an Efficient Architecture to Enhance the Security in IoT. Int. J. Adv.
Comput. Sci. Appl. 2021, 12, 134–139. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3000907
http://dx.doi.org/10.1007/s10664-020-09836-5
http://dx.doi.org/10.1145/3357231
http://dx.doi.org/10.1007/s12927-019-0003-8
http://dx.doi.org/10.1109/TR.2018.2864536
http://dx.doi.org/10.1016/j.csi.2018.08.003
http://dx.doi.org/10.1016/j.jss.2021.111032
http://dx.doi.org/10.1016/j.cosrev.2019.07.001
http://dx.doi.org/10.32604/cmc.2021.014090
http://dx.doi.org/10.1109/TSE.2020.3047766
http://dx.doi.org/10.3390/electronics11152462
http://dx.doi.org/10.3390/aerospace6120130
http://dx.doi.org/10.1016/j.biosystemseng.2022.02.014
http://dx.doi.org/10.1016/j.comnet.2020.107233
http://dx.doi.org/10.3390/s23063192
http://dx.doi.org/10.1016/j.adhoc.2015.05.013
http://dx.doi.org/10.1016/j.scico.2022.102859
http://dx.doi.org/10.1007/s40860-023-00202-y
http://dx.doi.org/10.14569/IJACSA.2021.0120317

Appl. Sci. 2023, 13, 8122 28 of 29

40. Keerthi, K.; Roy, I.; Hazra, A.; Rebeiro, C. Formal verification for security in IoT devices. Secur. Fault Toler. Internet Things 2019,
179–200. [CrossRef]

41. Shieh, M.Z.; Lin, Y.B.; Hsu, Y.J. VerificationTalk: A verification and security mechanism for IoT applications. Sensors 2021, 21, 7449.
[CrossRef] [PubMed]

42. Abdalzaher, M.S.; Samy, L.; Muta, O. Non-zero-sum game-based trust model to enhance wireless sensor networks security for
IoT applications. IET Wirel. Sens. Syst. 2019, 9, 218–226. [CrossRef]

43. Cheikhrouhou, O.; Koubâa, A. Blockloc: Secure localization in the Internet of things using blockchain. In Proceedings of the 2019
15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019;
pp. 629–634.

44. Nasir, M.; Javed, A.R.; Tariq, M.A.; Asim, M.; Baker, T. Feature engineering and deep learning-based intrusion detection
framework for securing edge IoT. J. Supercomput. 2022, 78, 8852–8866. [CrossRef]

45. Ahmad, W.; Rasool, A.; Javed, A.R.; Baker, T.; Jalil, Z. Cyber security in IoT-based cloud computing: A comprehensive survey.
Electronics 2021, 11, 16. [CrossRef]

46. Mihoub, A.; Lefebvre, G. Social intelligence modeling using wearable devices. In Proceedings of the 22nd International
Conference on Intelligent User Interfaces, Limassol, Cyprus, 13–16 March 2017; pp. 331–341.

47. Kelati, A.; Dhaou, I.B.; Tenhunen, H. Biosignal monitoring platform using Wearable IoT. In Proceedings of the 22st Conference of
Open Innovations Association FRUCT, Jyvaskyla, Finland, 15–18 May 2018; pp. 332–337.

48. Abdalzaher, M.S.; Soliman, M.S.; El-Hady, S.M.; Benslimane, A.; Elwekeil, M. A deep learning model for earthquake parameters
observation in IoT system-based earthquake early warning. IEEE Internet Things J. 2021, 9, 8412–8424. [CrossRef]

49. Maher, A.; Qaisar, S.M.; Salankar, N.; Jiang, F.; Tadeusiewicz, R.; Pławiak, P.; Abd El-Latif, A.A.; Hammad, M. Hybrid EEG-fNIRS
brain-computer interface based on the non-linear features extraction and stacking ensemble learning. Biocybern. Biomed. Eng.
2023, 43, 463–475. [CrossRef]

50. Krichen, M.; Adoni, W.Y.H.; Mihoub, A.; Alzahrani, M.Y.; Nahhal, T. Security challenges for drone communications: Possible
threats, attacks and countermeasures. In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging
Technologies (SMARTTECH), Riyadh, Saudi Arabia, 9–11 May 2022; pp. 184–189.

51. Kondoro, A.; Dhaou, I.B.; Tenhunen, H.; Mvungi, N. Real time performance analysis of secure IoT protocols for microgrid
communication. Future Gener. Comput. Syst. 2021, 116, 1–12. [CrossRef]

52. Gupta, M.; Kumar, R.; Shekhar, S.; Sharma, B.; Patel, R.B.; Jain, S.; Dhaou, I.B.; Iwendi, C. Game theory-based authentication
framework to secure Internet of vehicles with blockchain. Sensors 2022, 22, 5119. [CrossRef]

53. Cousot, P. Abstract interpretation based formal methods and future challenges. In Informatics: 10 Years Back. 10 Years Ahead;
Springer: Berlin/Heidelberg, Germany, 2001; pp. 138–156.

54. Gosain, A.; Sharma, G. Static analysis: A survey of techniques and tools. In Intelligent Computing and Applications; Springer:
Berlin/Heidelberg, Germany, 2015.

55. Saadatmand, M.; Enoiu, E.P.; Schlingloff, H.; Felderer, M.; Afzal, W. Smartdelta: Automated quality assurance and optimization
in incremental industrial software systems development. In Proceedings of the 2022 25th Euromicro Conference on Digital
System Design (DSD), Maspalomas, Spain, 31 August–2 September 2022; pp. 754–760.

56. Abbas, M.; Hamayouni, A.; Moghadam, M.H.; Saadatmand, M.; Strandberg, P.E. Making Sense of Failure Logs in an Industrial
DevOps Environment. In Proceedings of the International Conference on Information Technology-New Generations, Las Vegas,
NV, USA, 24–26 April 2023; pp. 217–226.

57. Müller-Olm, M.; Schmidt, D.; Steffen, B. Model-checking. In Proceedings of the International Static Analysis Symposium, Venice,
Italy, 22–24 September 1999; pp. 330–354.

58. Geuvers, H. Proof assistants: History, ideas and future. Sadhana 2009, 34, 3–25. [CrossRef]
59. Pnueli, A.; Ruah, S.; Zuck, L. Automatic deductive verification with invisible invariants. In Proceedings of the International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, Genoa, Italy, 2–6 April 2001; pp. 82–97.
60. Burch, J.R.; Passerone, R.; Sangiovanni-Vincentelli, A.L. Modeling techniques in design-by-refinement methodologies. In System

Specification & Design Languages; Springer: Berlin/Heidelberg, Germany, 2003; pp. 283–292.
61. Bensalem, S.; Krichen, M.; Majdoub, L.; Robbana, R.; Tripakis, S. A Simplified Approach for Testing Real-Time Systems Based on

Action Refinement. In Proceedings of the ISoLA 2007, Workshop on Leveraging Applications of Formal Methods, Verification
and Validation, Poitiers, France, 12–14 December 2007; pp. 191–202.

62. Krichen, M. Contributions to Model-Based Testing of Dynamic and Distributed Real-Time Systems. Ph.D. Thesis, École Nationale
d’Ingénieurs de Sfax, Sfax, Tunisie, 2018.

63. Krichen, M. A formal framework for conformance testing of distributed real-time systems. In Proceedings of the International
Conference on Principles of Distributed Systems, Tozeur, Tunisia, 14–17 December 2010; pp. 139–142.

64. Davis, J.A.; Clark, M.; Cofer, D.; Fifarek, A.; Hinchman, J.; Hoffman, J.; Hulbert, B.; Miller, S.P.; Wagner, L. Study on the barriers to
the industrial adoption of formal methods. In Proceedings of the International Workshop on Formal Methods for Industrial
Critical Systems, Madrid, Spain, 23–24 September 2013; pp. 63–77.

65. Barrett, C.; Tinelli, C. Satisfiability modulo theories. In Handbook of Model Checking; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 305–343.

http://dx.doi.org/10.1007/978-3-030-02807-7_9
http://dx.doi.org/10.3390/s21227449
http://www.ncbi.nlm.nih.gov/pubmed/34833525
http://dx.doi.org/10.1049/iet-wss.2018.5114
http://dx.doi.org/10.1007/s11227-021-04250-0
http://dx.doi.org/10.3390/electronics11010016
http://dx.doi.org/10.1109/JIOT.2021.3114420
http://dx.doi.org/10.1016/j.bbe.2023.05.001
http://dx.doi.org/10.1016/j.future.2020.09.031
http://dx.doi.org/10.3390/s22145119
http://dx.doi.org/10.1007/s12046-009-0001-5

Appl. Sci. 2023, 13, 8122 29 of 29

66. Easterbrook, S.; Callahan, J. Formal methods for verification and validation of partial specifications: A case study. J. Syst. Softw.
1998, 40, 199–210. [CrossRef]

67. Khorikov, V. Unit Testing Principles, Practices, and Patterns; Simon and Schuster: New York, NY, USA, 2020.
68. Shashank, S.P.; Chakka, P.; Kumar, D.V. A systematic literature survey of integration testing in component-based software

engineering. In Proceedings of the 2010 International Conference on Computer and Communication Technology (ICCCT),
Allahabad, India, 17–19 September 2010; pp. 562–568.

69. van Heugten Breurkes, J.; Gilson, F.; Galster, M. Overlap between Automated Unit and Acceptance Testing—A Systematic
Literature Review. In Proceedings of the International Conference on Evaluation and Assessment in Software Engineering 2022,
Gothenburg, Sweden, 13–15 June 2022; pp. 80–89.

70. Tramontana, P.; Amalfitano, D.; Amatucci, N.; Fasolino, A.R. Automated functional testing of mobile applications: A systematic
mapping study. Softw. Qual. J. 2019, 27, 149–201. [CrossRef]

71. Hertzum, M. Usability Testing: A Practitioner’s Guide to Evaluating the User Experience; Synthesis Lectures on Human-Centered
Informatics; Springer: Berlin/Heidelberg, Germany, 2020; Volume 13, pp. 1–105.

72. Maâlej, A.J.; Lahami, M.; Krichen, M.; Jmaïel, M. Distributed and Resource-Aware Load Testing of WS-BPEL Compositions.
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), Funchal, Portugal, 21–24
March 2018; pp. 29–38.

73. Ali, A.; Maghawry, H.A.; Badr, N. Performance testing as a service using cloud computing environment: A survey. J. Softw. Evol.
Process. 2022, 34, e2492. [CrossRef]

74. Lahami, M.; Krichen, M. A survey on runtime testing of dynamically adaptable and distributed systems. Softw. Qual. J. 2021,
29, 555–593. [CrossRef]

75. Holzinger, A.; Saranti, A.; Angerschmid, A.; Retzlaff, C.O.; Gronauer, A.; Pejakovic, V.; Medel-Jimenez, F.; Krexner, T.; Gollob,
C.; Stampfer, K. Digital transformation in smart farm and forest operations needs human-centered AI: Challenges and future
directions. Sensors 2022, 22, 3043. [CrossRef] [PubMed]

76. Alyami, H.; Alosaimi, W.; Krichen, M.; Alroobaea, R. Monitoring social distancing using artificial intelligence for fighting
COVID-19 virus spread. Int. J. Open Source Softw. Process. (IJOSSP) 2021, 12, 48–63. [CrossRef]

77. Krichen, M.; Mihoub, A.; Alzahrani, M.Y.; Adoni, W.Y.H.; Nahhal, T. Are Formal Methods Applicable To Machine Learning And
Artificial Intelligence? In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging Technologies
(SMARTTECH), Riyadh, Saudi Arabia, 9–11 May 2022; pp. 48–53.

78. Mihoub, A. A deep learning-based framework for human activity recognition in smart homes. Mob. Inf. Syst. 2021, 2021, 6961343.
[CrossRef]

79. Gao, J.; Ramachandran, M. A survey on software testing techniques using artificial intelligence. J. Big Data 2018, 5, 1–35.
80. Tian, J.; Li, Y.; Zhang, X. A survey on software testing with machine learning. J. Softw. Evol. Process. 2019, 31, e2176.
81. Hrizi, O.; Gasmi, K.; Ben Ltaifa, I.; Alshammari, H.; Karamti, H.; Krichen, M.; Ben Ammar, L.; Mahmood, M.A. Tuberculosis

disease diagnosis based on an optimized machine learning model. J. Healthc. Eng. 2022, 2022, 8950243. [CrossRef]
82. Aworka, R.; Cedric, L.S.; Adoni, W.Y.H.; Zoueu, J.T.; Mutombo, F.K.; Kimpolo, C.L.M.; Nahhal, T.; Krichen, M. Agricultural

decision system based on advanced machine learning models for yield prediction: Case of East African countries. Smart Agric.
Technol. 2022, 2, 100048. [CrossRef]

83. Cedric, L.S.; Adoni, W.Y.H.; Aworka, R.; Zoueu, J.T.; Mutombo, F.K.; Krichen, M.; Kimpolo, C.L.M. Crops yield prediction based
on machine learning models: Case of West African countries. Smart Agric. Technol. 2022, 2, 100049. [CrossRef]

84. Zidi, S.; Mihoub, A.; Qaisar, S.M.; Krichen, M.; Al-Haija, Q.A. Theft detection dataset for benchmarking and machine learning
based classification in a smart grid environment. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 13–25. [CrossRef]

85. Teodoras, , D.A.; Popovici, E.C.; Suciu, G.; Sachian, M.A. Quantum technology’s role in cyber-security. In Proceedings of the
Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies XI, Constanta, Romania, 25–28 August 2022;
Volume 12493, pp. 96–103.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0164-1212(97)00167-2
http://dx.doi.org/10.1007/s11219-018-9418-6
http://dx.doi.org/10.1002/smr.2492
http://dx.doi.org/10.1007/s11219-021-09558-x
http://dx.doi.org/10.3390/s22083043
http://www.ncbi.nlm.nih.gov/pubmed/35459028
http://dx.doi.org/10.4018/IJOSSP.2021070104
http://dx.doi.org/10.1155/2021/6961343
http://dx.doi.org/10.1155/2022/8950243
http://dx.doi.org/10.1016/j.atech.2022.100048
http://dx.doi.org/10.1016/j.atech.2022.100049
http://dx.doi.org/10.1016/j.jksuci.2022.05.007

	Introduction
	Related Work
	Preliminaries Related to IoT
	Formal Methods
	Testing Techniques
	Use of AI in Software Testing
	Advantages
	Examples of Tools

	Case Study: Temperature-Measuring System
	Challenges and Open Issues
	Conclusions and Future Work
	References

