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Abstract: The vortex-induced vibration (VIV) of flexible risers is a complex fluid–structure interaction
(FSI) phenomenon. In this study, we conducted a numerical simulation method based on the
slicing method to study the vortex-induced vibration (VIV) of deep-sea flexible risers with different
slenderness ratios and uniform flow velocities. The method combines the finite element model
of the riser structure with the two-dimensional flow field slices solved by the Fluent solver. The
fluid–structure interaction was realized by a self-compiled UDF program and the overset mesh
technique. The numerical results were validated by comparing them with experimental data. The
VIV characteristics of the riser, such as the vibration track, vibration mode, vibration frequency and
wake vortex shedding mode, were analyzed. The article reveals the nonlinear dynamic features of
flexible riser vibration, such as multi-frequency vibration, wide-frequency vibration and multi-modal
vibration. The article also provides insights into the fluid–structure interaction mechanism of VIV of
deep-sea flexible risers.

Keywords: flexible riser; vortex-induced vibration; mufti-strip method; mufti-modal vibration

1. Introduction

Vortex-induced vibration (VIV) occurs due to the alternating shedding vortex formed
by the instantaneous variable pressure difference on both sides of a structure. However, VIV
increases the dynamic load of the structure [1] and can cause fatigue failure when subjected
to long-term action. If deep-sea oil and gas pipelines suffer from fatigue damage and
fracture, large amounts of oil and gas can leak into the ocean, causing serious environmental
pollution and ecological disasters. Therefore, studying the dynamic response of VIV in
deep-sea flexible risers is of great significance to accurately predict their fatigue damage.

As early as 1981, Vandiver et al. [2], a group of researchers in the United States,
carried out VIV experiments of slender flexible risers using rising and falling tides. In 1997,
Lie H et al. [3] carried out a VIV experiment of risers under shear flow on the west coast of
Norway. In 2008, Tognarelli et al. [4] monitored the VIV characteristics of risers in the Gulf
of Mexico within the water depth range of 360 m~2070 m.

However, large-scale outdoor riser VIV experiments still have some shortcomings
in the control of specific experimental parameters and data measurements. Therefore,
researchers have begun to conduct indoor experimental research on the VIV of flexible
risers in large water tanks.

Professor Chaplin and Professor Bearman [5] led a group of researchers to carry
out a drag experiment focused on the VIV of a slender riser in a large water tank. The
experimental results of the riser VIV response were compared with the predictions obtained
by 11 different numerical methods (six CFD models and five empirical models), and it was
found that the crossflow (CF) displacement predicted by the empirical models was more
successful than that predicted by the CFD models. Wilde [6] conducted an experimental
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study on the VIV of a flexible riser in a towing tank. The flow field profile demonstrated
uniform flow, and the three-dimensional vibration response characteristics of the flexible
riser were successfully captured. A VIV test of a flexible riser with a slenderness ratio
of 481.5 was carried out by Tognarelli [7]. It was shown that (a) with an increase in flow
velocity, the maximum displacement of the vortex-induced vibration of the riser increased;
(b) the vibration frequency of the riser in the IL direction was twice that in the CF direction;
and (c) the vibration modes excited in the CF direction reached up to the eighth order,
while those excited in the IL direction reached up to the twelfth order.

Since the length of a deep-sea flexible riser can reach 400~1500 m and operation in
outdoor and laboratory tank tests is difficult, research on the VIV of deep-sea flexible risers
using the numerical analysis method has attracted the attention of researchers. Numerical
analysis methods for slender flexible risers are mainly divided into two categories: one is
based on experimental data, such as empirical and semi-empirical models, and the other
is the numerical simulation method based on computational fluid dynamics (CFD) and
computational structural dynamics (CSD) [8].

Empirical and semi-empirical models need to be supported by massive experimental
experiences, where the ranges of key parameters are given by fitting the experimental
results. As early as 1964, Bishop and Hassan [9] proposed the Van der Pol wake oscillator
model. B. Afra, A. Amiri Delouei and A. Tarokh proposed a hybrid model that included
an explicit Lattice Spring Model and an Immersed Boundary–non-Newtonian Lattice
Boltzmann Method to simulate the behavior of filament in the vicinity of fluid flow. They
also studied the effects of the fluid and structural characteristics on the motion of the
filament and cylinder [10]. After more than half a century, an increasing number of
empirical models have been proposed by scholars [11–15]. However, mode transition is
an important feature of the VIV response of long flexible risers, but the empirical model
cannot account for this switching process.

The numerical simulation method has become an indispensable complement to experi-
ments in ocean engineering [16]. With improvement in computing efficiency, the VIV study
of long flexible risers using numerical models has become increasingly common. However,
with the increase in the riser slenderness ratio, three-dimensional numerical simulation has
become increasingly difficult. Therefore, numerical simulation of risers’ VIV coupled with
a two-dimensional fluid and three-dimensional structure based on the slice method has
attracted the attention of researchers.

In 2004, Menegini J.R. [17] adopted the discrete vortex method (DVM) to establish a
quasi-three-dimensional riser vortex-induced vibration model and solved the structural
part of the dynamic equation according to the Euler–Bernoulli beam theory. The numerical
simulation results of flexible riser VIV at different flow velocities were compared with
the experimental results, and it was observed that the wake vortex shedding mode was
2P for the riser with a larger amplitude and 2S for the riser with a smaller amplitude.
B. Afra and S. Karimnejad [18] used the Lattice Spring Method (LSM) combined with
the Immersed Boundary–Lattice Boltzmann Method (IB–LBM) to investigate fluid–elastic
body interaction problems in unsteady conditions. The LSM needs no arbitrary spring
parameters to determine the deformation of the flexible body. Schulz and Meling [19]
combined the RANS method and finite element method to solve the structural dynamic
response, divided the response into multiple slices to establish a quasi-three-dimensional
model, and carried out VIV numerical simulation research on a flexible riser under shear
flow. The researchers used this method to analyze the VIV response of the top tension riser.

WAN D.C. et al. [20–23] developed a computational fluid dynamics (CFD) solver, VIV
FOAM SJTU, on the Open FOAM platform based on the slice method, and amplitudes of
the risers in the IL and CF directions were accurately predicted. In 2020, Han [24], based
on the Fluent solver and a self-compiled UDF, carried out numerical simulation research
on a three-dimensional flexible riser vortex-induced vibration under different flow speeds
and demonstrated the phenomenon of the adjacent order vibration mode switching of the
flexible riser vortex-induced vibration with a change in flow velocity. The phenomena
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of the “traveling wave” and “standing wave” of the flexible riser were observed. At the
same time, the frequency of the VIV response of a flexible riser was analyzed, and the
phenomenon of multi-frequency vibration was observed. In particular, it was found that
the vortex-induced vibration characteristics of the riser showed a vibration response with a
wide-band spectrum when the inflow velocity was relatively high.

In this paper, we accurately predict the fatigue damage of deep-sea flexible risers, and
numerical analysis methods based on the slicing method offer valuable insights into the
dynamic response of vortex-induced vibration. Using a self-compiled UDF program and
overset mesh technique to reveal the nonlinear dynamic features of flexible riser vibration,
our research focuses on further improving these numerical simulation methods to provide
more accurate and reliable predictions of fatigue damage in deep-sea flexible risers.

2. Numerical Simulation Method of VIV of Riser
2.1. Fluid-Domain Governing Equations

Viscous fluid flow is the macroscopic incompressible motion of fluid that abides by
the laws of mass conservation, momentum conservation and energy conservation and is
subject to the governing equations of the fluid. In this paper, we did not consider the energy
conversion caused by temperature change during simulation; hence, we did not use the
energy equation. Viscous fluid flow satisfies the Navier–Stokes (N–S) equation, and we
employed the Reynolds-averaged numerical simulation (RANS) method. In this method,
the Reynolds-averaged N–S equation is used to describe the fluid flow instead of the N–S
equation. In Cartesian coordinates:

Continuity equation:
∂ui
∂xi

= 0 (1)

Momentum equation:

ρ
∂ui
∂t

+ ρ
∂uiuj

∂xj
= − ∂p

∂xi
+ µ∇2ui − ρ

∂u′ iu′ j
∂xj

(2)

where i and j take values of 1, 2 or 3, which, respectively, represent the components of
variables in the X, Y and Z directions; P denotes the pressure;∇ is the Hamiltonian operator;
ui and uj stand for the time-average flow rate; and u′ i and u′ j signify the time-average
value of the pulsating flow rate.

Compared with the N–S equation, the RANS equation adds a group of unknown
Reynolds stress terms which makes the RANS equation an unclosed equation. To
solve the RANS equation, we must add a new supplementary equation known as the
turbulence model.

The boundary layer gradient around a flow is large, and an obvious pressure gradient
and shearing action exist. Therefore, in this paper, we use the shearing pressure transmis-
sion turbulence model. This model was proposed by Menter [25] in 1993 and can better
capture the flow around and wake vortex near the wall. The model includes two equations:
one for turbulent kinetic energy k and one for dissipation rate ω.

ρ
∂k
∂t

+ kρ
∂ui
∂xi

=
∂

∂xj

(
Γk

∂k
∂xj

)
+ G̃k −Yk + Sk (3)

ρ
∂ω

∂t
+ ρω

∂ui
∂xi

=
∂

∂xj

(
Γω

∂ω

∂xj

)
+ Gω −Yω + Dω + Sω (4)

where
∼
Gk denotes the turbulence kinetic energy produced by the average velocity gradient,

Gω signifies the turbulent kinetic energy generated by the equation, Γk and Γω represent
the effective diffusivities of k and ω, Yk and Yω stand for turbulence terms due to diffusion,
Dω is the orthogonal divergence term, and Sk and Sω are the source phases of the equation.
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To solve the governing equation of the fluid, we used the finite volume method in
discrete form. We used the Fluent solver, which employs the coupled algorithm and
overlapping grid technology. The second-order upwind scheme was used for the transient
equation, and the fully implicit scheme was used for time dispersion.

2.2. Structural Dynamic Model of Riser

The top tension flexible riser model was simplified as a Euler–Bernoulli beam, with
the same material and section shape assumed along the riser’s length. We took the in-line
(IL) direction as the X axis, the crossflow (CF) direction as the Y axis and the riser length
direction as the Z axis, as shown in Figure 1. The differential equations of structural motion
in the flow direction are given by [26,27]:

∂2

∂z2

[
EI

∂2ui(z, t)
∂z2

]
− ∂

∂z

[
T(z)

∂ui(z, t)
∂z

]
+ m

∂2ui(z, t)
∂t2 + c

∂ui(z, t)
∂t

= Fi(z, t) (5)

where EI is the bending stiffness, EA is the tensile stiffness, m is the riser mass per unit
length and c is the structural damping. ui(z, t) denotes the CF and IL displacement, and
Fi(z, t) denotes the CF direction and the IL hydrodynamic force (in which i = 1 is the IL
direction, and i = 2 is the CF direction). T(z) is the riser top tension.
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displacements and a rotation about an axis perpendicular to the plane of the displace-
ments. Yamamoto [29] also used the same three degrees of freedom per finite element 
node to investigate hydro-elastic interactions between oscillating flexible cylinders and 
fluid forces. However, this simplified finite element method can only reflect the riser’s 
response in the transverse direction. 

To study the dynamic responses of deep-sea risers in both the transverse and down-
stream directions, we reduced the riser to a sufficient number of three-dimensional finite 
elements, each of which had six degrees of freedom. The finite element diagram is shown 
in Figure 2. 

Figure 1. Riser model diagram.

Willden and Graham [28] studied the transverse vibration responses of a rigid cylin-
der. Their model allowed for three degrees of freedom, including axial and transverse
displacements and a rotation about an axis perpendicular to the plane of the displacements.
Yamamoto [29] also used the same three degrees of freedom per finite element node to
investigate hydro-elastic interactions between oscillating flexible cylinders and fluid forces.
However, this simplified finite element method can only reflect the riser’s response in the
transverse direction.

To study the dynamic responses of deep-sea risers in both the transverse and down-
stream directions, we reduced the riser to a sufficient number of three-dimensional finite
elements, each of which had six degrees of freedom. The finite element diagram is shown
in Figure 2.

The load vector of each element can be expressed as:

Fe = [F1x, F1y, F1z, F1θx , F1θy , F1θz , F2x, F2y, F2z, F2θx , F2θy , F2θz ]
T (6)
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The positions of some nodes were taken as the positions of the two-dimensional flow
field slices, and the fluid acting force at the slice node was simplified as the uniformly
distributed load plus the riser unit near the slice. The positional relationship between the
slices and the finite element and the force exerted on the element are shown in Figure 3.
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By discretizing Equation (5) using the finite element method, we obtained the following
equation [26,27]:

[M]
{ ..

xi(t)
}
+ [C]

{ .
xi(t)

}
+ ([KE] + [KG]){xi(t)} = {Fi(t)} (7)

where [M], [C], [KE] and [KG] denote the global matrices of the mass, the damping, the
elastic stiffness of the riser and geometric stiffness;

..
xi(t),

.
xi(t) and xi(t) represent the

vectors of the accelerations, velocities and deflections of the nodes of the riser, respectively;
and {Fi(t)} signifies the load vector in the x–y direction. The Newmark-β method was
used to solve the motion equation.

The structural damping usually depends on the natural frequency. In actual analysis,
we usually adopt the Rayleigh damping matrix, which is a linear combination of [M]
and [K] [30]:

[C] = α[M] + γ[K] (8)

where α and γ are the Rayleigh damping coefficient, which is related to the natural fre-
quency and damping ratio of the riser [30]:[

α
γ

]
=

2ζ

ωn + ωm

[
ωnωm

1

]
(9)

where ζ = 0.03, ωn takes the first-order natural frequency and ωm takes the natural frequency
with a relatively high contribution to the vibration response.
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2.3. Overset Mesh Technique

Traditional moving mesh technology has the drawback that even slight movement in
one part can affect the overall situation, which consumes significant computing time and
requires high grid quality. Moreover, when the grid is moving fast or has large deformations,
it is prone to distortion, leading to negative volume during dynamic updates.

To address these issues, Fluent has introduced a new mesh function called the overset
mesh technique. With this technique, the entire computational domain is divided into
a background area and a foreground area corresponding to the moving parts. Mesh
division is performed separately for each area, and an overset interface is created to link
the foreground and background meshes. Data transfer between the two regions is achieved
through interpolation.

Tezdogan et al. [31] used the overset mesh technology to build a full-scale KRISO
container ship model for nonlinear unsteady RANS simulation. The authors found that
important flow characteristics, such as flow separation, slamming, wave breaking and high
vortices around the hull, remained within the overset domain.

2.4. Method of Fluid–Structure Interaction (FSI)

Fluid–structure interaction (FSI) occurs due to the coupling between a fluid and a
solid structure. The solid structure experiences motion response or deformation under the
action of flow field force, while the deformation or motion reaction of the solid structure
affects the fluid, causing a change in fluid force at the next moment.

The vortex-induced vibration (VIV) problem is a classical FSI problem that requires a
comprehensive consideration of the interaction between flow field motion parameters and
structural motion parameters during analysis. On one hand, the cylinder in the flow field
experiences fluid force, causing parameters such as amplitude, velocity and acceleration to
change. On the other hand, the cylinder parameters affect the flow field, leading to changes
in the flow field motion parameters.

For quasi-3D FSI solutions based on the slice method, we followed these steps, as
shown in Figure 4:

1. At the initial moment, the riser structure was fixed, and the flow field was calculated.
Each flow field slice simultaneously solved the governing equation of the fluid to
obtain the fluid force of each slice node;

2. The self-compiled UDF [32] program cylinder.c called the Computer_Force_And_Moment
macro to extract the fluid force on the slice node at the current moment and to sim-
plify the fluid force into uniformly distributed loads acting on the finite elements
represented by each slice;

3. Uniformly distributed loads acting on the elements were converted into node loads
by an equivalent load method. We solved the dynamic equation of the riser structure
using the Newmark-β method to obtain the displacement, velocity and acceleration
of the finite element nodes at the current moment;

4. The cylinder.c program called the DEFINE_CG_MOTION macro to transmit the
displacement and speed of finite element nodes at the slice calculated in the previous
step back to Fluent to update the displacement and speed of the cylinder in the slice.
We then realized the mesh update in the fluid domain by combining the overset
mesh technology;

5. We entered the next time step and repeated until the set total time was reached and
the calculation was completed.
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3. Quasi-3D Numerical Calculation Model
3.1. Computational Domain and Boundary Conditions

The computational domain for the flow field calculation was set as 30D × 60D, with
distances from the inlet boundary and upper and lower boundaries to the riser center at
15D [33,34]. The distance from the outlet boundary to the riser center was 45D, as shown in
Figure 5.

The corresponding boundary settings are given in Table 1.

3.2. Grid Division

Matching the overset mesh technique, the grid division consisted of a background
mesh and a foreground grid, and an overset interface was adopted at the junction of the
two grids. The background grid was generated in the entire computational domain to
ensure that interpolation points could be found in the background grid for any moving
region at any moment.

It is important to note that the overset area requires a fine enough grid; otherwise,
a floating-point overflow may occur, leading to interpolation failure. In the background
grid, the 5D × 5D area centered on the riser was encrypted, as shown in Figure 6. For the
foreground grid, there was no fluid information, and the boundary layer region adjacent to
the cylinder wall moved synchronously with the cylinder. A dot representing the center of
the riser was used as a reference, with a foreground grid area of radius 1.5D.
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Table 1. Boundary settings.

Boundary Setting

Inlet boundary Velocity-inlet, u = U0, v = 0
Outlet boundary Pressure-outlet, ∂u/∂x = 0, ∂v/∂x = 0, static pressure = 0

Upper and lower boundary Symmetry, ∂u/∂x = 0, ∂v/∂x = 0
Cylinder boundary No-Slip Wall, u = v = 0

Interface of foreground grid
and background grid Overset Interface
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An O-type mesh generation was used for mesh refinement, where the mesh near the
wall of the cylinder met y+<1, as shown in Figure 7. Finally, the overset mesh technique
was used to realize the coupling link between the foreground grid and the background
grid, forming a single two-dimensional flow field grid, as shown in Figure 8.

3.3. Quasi-3D Numerical Model Validation

To verify the accuracy of the quasi-3D numerical model, we selected a working
condition from a top tension riser experiment [35] conducted by the Norwegian Institute of
Marine Technology. Table 2 shows the properties of the riser model.
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Table 2. Properties of the riser model.

Properties Values Units

Riser outer diameter (D) 0.02 m
Riser wall thickness (tw) 0.0045 m

Length of the riser (L) 9.63 m
Top tension (T) 817 N

Young’s modulus (E) 1.025 × 1011 N/m2

Mass ratio (m *) 2.23
First-order eigenfrequency (f1) 1.79 Hz

Second-order eigenfrequency (f2) 3.67 Hz
*: Dimensionless.

To accurately simulate the vibration pattern of the riser, it was ensured that at least
three slices and seven finite element nodes were available for each mode. The axial direction
of the riser was uniformly divided into 1–69 finite element nodes from bottom to top, with
17 two-dimensional flow field slices arranged. The 9th slice was located at the 35th finite
element node, which was in the center of the riser. Figure 9 shows the schematic diagram
of slice division.

Numerical simulation of the vortex-induced vibration of a riser was performed.
Figure 10 shows the comparison of the envelopes of the inline displacement between
the present quasi-3D numerical simulation and the experiment. Figure 11 shows the com-
parison of the envelopes of the crossflow displacement between the present quasi-3D
numerical simulation and the experiment.
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Figure 10. Comparison of the riser response envelopes in IL direction. (a) Simulation results.
(b) Experimental results [27].

It can be seen that the main control modes of inline and crossflow displacements
obtained from the quasi-3D numerical simulation results were second-order and first-order,
respectively, which is consistent with the experimental results. Although the amplitude
ranges were slightly different, the envelope profile was essentially the same.

As shown in Figure 12, by comparing the displacement–time history curves in the
crossflow direction of the riser at z/L = 0.22, it is easy to find that the amplitude range of the
present quasi-3D numerical simulation is in good agreement with the original experimental
results. The original experimental period was about 0.60 s, and the present CFD period
was about 0.55 s, which is slightly shorter than that of the original experimental data, but
the error was controlled within 8.3%. The frequency calculated from the periodic value
obtained from the numerical calculation results in this paper was 1.786 Hz, which is almost
the same as the first-order eigenfrequency (1.79 Hz).
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According to the above analysis, the quasi-three-dimensional numerical results in
this paper are in good agreement with the experimental data, indicating that the quasi-
three-dimensional numerical model in this paper can accurately predict the dynamics of
vortex-induced vibration.

4. Results and Discussion
4.1. Description of the Problem

Based on the quasi-3D numerical model verified above, riser models with slenderness
ratios (L/D) of 400, 550 and 700 were established for numerical simulation of the VIV. The
main parameters of the quasi-3D numerical model are summarized in Table 3. In this paper,
simulations were performed for six different test cases, namely C1, C2, C3, C4, C5 and C6,
as displayed in Table 4.

When the vortex shedding frequency of the riser approaches a certain order of natural
frequency, resonance occurs, resulting in an increase in amplitude. The outer drainage
basin surrounding the riser was established using the modal analysis module in ANSYS
Workbench to conduct modal analysis on the riser model. Table 5 provides the first
six natural frequencies of the riser in still water.
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Table 3. Riser model parameters.

Parameter Value Unit

Diameter (D) 0.04 m
Modulus of elasticity (E) 2.74 × 1010 N/m2

Top tension (T) 1500 N
Mass ratio (m *) 1.83

*: Dimensionless.

Table 4. Six different test cases.

Case Velocity (m/s) Slenderness Ratios

C1 0.2 400
C2 0.2 550
C3 0.2 700
C4 0.1 700
C5 0.15 700
C6 0.25 700

Table 5. First six natural frequencies of riser model in still water.

L/D = 400 f1(Hz) f2(Hz) f3(Hz) f4(Hz) f5(Hz) f6(Hz)
0.7837 1.7136 2.6067 3.7466 5.0832 6.6353

L/D = 550 f1(Hz) f2(Hz) f3(Hz) f4(Hz) f5(Hz) f6(Hz)
0.6421 1.3103 2.0286 2.8192 3.6991 4.6824

L/D = 700 f1(Hz) f2(Hz) f3(Hz) f4(Hz) f5(Hz) f6(Hz)
0.4297 0.8695 1.3587 1.8564 2.3903 2.9675

4.2. The Displacement–Time History Curves

It can be seen from Figure 13 that the vibration amplitude variation of each node in
the inline (IL) and crossflow (CF) directions gradually increased from both ends of the riser
to the center of the riser. The maximum value of the average value of the IL displacement
appeared at node 37 instead of node 35 at the midpoint, with an amplitude of approximately
2.081D. The maximum average value of the IL displacement was located about 2–4% below
the midpoint of the riser, which was due to the gradual decrease in the top tension of each
riser node along the riser axis from top to bottom.

The CF displacement reciprocated at y/D = 0, but the vibration amplitude was not
stable. The vibration displacement–time history curves in the CF direction and the IL
direction did not have smooth and regular sine or cosine curves similar to those in the
two-dimensional VIV of a cylinder, but rather approximated the vibration trace of the
two-dimensional cylinder when multi-frequency flapping occurred, which also reflects the
randomness and complexity of three-dimensional VIV.

4.3. Characteristics of VIV Track of Riser

Figure 14 illustrates the mass center trajectories at 17 different slices along the riser axis.
By comparing Figure 14a–c, it can be observed that the IL and CF displacements of

all slices in the riser axis increased with an increase in the slenderness ratio. As shown
in Figure 14a, when L/D = 400, a clear “8”-shaped vibration trace was visible at each
slice. With an increase in slenderness ratio, the “8” vibration trace of the riser became
increasingly scattered from the middle position of the riser. Figure 14c demonstrates that
when L/D = 700, only a faint “8”-shaped motion trace was visible at both ends of the riser.
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pipe in the IL direction to increase. 
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Figure 13. Displacement–time history curves of each node in the CF and IL directions.

By comparing Figure 14c–f, it can be observed that the IL and CF displacements of all
slices in the riser axis increased with an increase in the flow velocity. Figure 14d reveals
that a relatively “8”-shaped motion trace of the mass center could be seen for all nodes
except for partial nodes in the middle section of the riser. As the flow velocity increased, the
trajectory of the “8”-shaped mass center gradually became more blurred, but it remained
faintly visible. When U = 0.25 m/s, as shown in Figure 14f, only a “e”k “8”-shaped motion
trace was visible in the region of both ends of the riser. Furthermore, it can be observed
that with an increase in flow velocity, the IL and CF displacements continuously increased
at the same slenderness ratio. This is because as the flow rate increases, the fluid forces
acting on the riser increase, thereby causing the equilibrium positions of the standpipe in
the IL direction to increase.

The “8”-shaped vibration trace reflects the occurrence of dual resonance where the
IL and CF vibration frequencies have a ratio of two [36]. Due to the influence of different
slenderness ratios and flow rates, the IL and CF vibrations at different axial positions of
the riser had different phase differences, leading to different figure-eight shapes on the
17 slices along the riser axis.

4.4. Vibration Modal Analysis of Riser

Figure 15 exhibits the instantaneous dimensionless displacement envelopes of the
riser in the IL and CF directions, revealing that an increase in the slenderness ratio or flow
velocity leads to increasingly obvious multi-modal vibration phenomenon.
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Figure 15. The VIV displacement envelops of the riser in the IL and CF directions. (a) C1, U = 0.20 m/s,
L/D = 400. (b) C2, U = 0.20 m/s, L/D = 550. (c) C3, U = 0.20 m/s, L/D = 700. (d) C4, U = 0.10 m/s,
L/D = 700. (e) C5, U = 0.15 m/s, L/D = 700. (f) C6, U = 0.25 m/s, L/D = 700.

When comparing Figure 15a–c, it was observed that an increase in the slenderness
ratio resulted in a higher number of vibration modes in both the IL and CF directions.
The dominant mode for the IL direction was fourth-order, while for the CF direction,
it was second-order with a weak third-order mode. Such findings can be explained by
two reasons: first, the Reynolds number was constant in the subcritical stage, resulting
in a stable vortex shedding frequency equal to the vibration frequency when the locking
phenomenon occurred; second, an increase in the slenderness ratio decreased natural
frequencies while increasing the order of the natural frequencies, which resulted in more
vibration modes. Moreover, due to the reduction in the difference between the natural
frequencies of each order, the vibration frequency was more likely to jump to adjacent
orders, leading to a further aggravation of the multi-modal vibration phenomenon.

When comparing Figure 15c–f, it was concluded that an increase in the flow velocity
also resulted in an increase in the number of vibration modes in both the IL and CF
directions. As the flow velocity increased, the vortex shedding frequency of the riser also
increased. When the locking phenomenon occurred, the vibration frequency of each finite
element node was equal to the vortex shedding frequency of the riser. Thereby, an increase
in flow velocity did not affect the natural frequency of the riser but rather increased the
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vibration frequency of each node, ultimately leading to a continuous increase in the number
of vibration modes.

Tables 6 and 7 reveal the variation in the dominant mode with respect to the slender-
ness ratio and flow velocity, respectively.

Table 6. Dominant modes of the IL and CF directions at different slenderness ratios (U = 0.2 m/s).

Direction
L/D

400 550 700

IL 2 3 4
CF 1 2 2

Table 7. Dominant modes of the IL and CF directions at different flow velocities (L/D = 700).

Direction
U(m/s)

0.1 0.15 0.2 0.25

IL 2 3 4 5
CF 1 2 2 3

4.5. Standing and Traveling Waves

In addition, Figure 16 exhibits the displacement–time history nephogram of the vi-
bration responses of the riser in the IL and CF directions, which reflects the changing
characteristics of the riser VIV from a standing wave to a traveling wave. The dominant
modes of the riser obtained from analyzing the displacement–time history nephograms
are consistent with the observation results in the envelope diagrams in Figure 14. It can
also be observed that as the slenderness ratio or flow velocity increased, the standing wave
response gradually disappeared while the traveling wave response gradually dominated.
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Figure 16. Time-history nephogram of riser vibration response in the IL and CF directions. (a) C1,
U = 0.20 m/s, L/D = 400. (b) C2, U = 0.20 m/s, L/D = 550. (c) C3, U = 0.20 m/s, L/D = 700.
(d) C4, U = 0.10 m/s, L/D = 700. (e) C5, U = 0.15 m/s, L/D = 700. (f) C6, U = 0.25 m/s, L/D = 700.

Figure 16a shows that the response of the riser in the IL direction was a weak traveling
wave, while in the CF direction, it was a standing wave. Figure 16b shows the traveling
wave response in the IL direction and the combination of a traveling wave and standing
wave in the CF direction. Figure 16c shows significant traveling wave responses in both the
IL and CF directions. This phenomenon indicates that with an increase in the slenderness
ratio, the standing wave response gradually disappears, and the traveling wave response
gradually dominates.

Figure 16d shows that the response of the riser in the IL direction was an unstable
traveling wave, while in the CF direction, it was a standing wave. Figure 16e shows the
traveling wave response in the IL direction and the combination of a traveling wave
and standing wave in the CF direction. Figure 16c,f shows significant traveling wave
responses in both the IL and CF directions. These phenomena lead to a conclusion
consistent with the above: with an increase in the flow velocity, the traveling wave effect
gradually dominates.

4.6. Riser Vibration Response Frequency Analysis

In Figure 17, the oscillation frequencies of the IL and CF directions of the riser at
nine different positions along the riser axis are presented. The dominating frequency
was consistent with the main mode obtained in Sections 4.4 and 4.5. The ratio of the
dominating frequency of the IL vibration to the dominating frequency of the CF vibration
was approximately 2.
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In Figure 17a, the dominating frequency of the riser in the IL direction was 1.8456 Hz,
which is close to the second-order natural frequency of 1.7136 Hz shown in Table 5. The
vibration presented as the second-order main control mode with weak third-order and
fourth-order frequency components. The dominating frequency of the riser in the CF
direction was 0.9408 Hz, which is close to the first-order natural frequency of 0.7837 Hz,
and the vibration presented as the first-order main control mode.
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Figure 17. Frequency spectra of IL and CF vibration responses at different axial positions of the riser.
(a) C1, U = 0.20 m/s, L/D = 400. (b) C2, U = 0.20 m/s, L/D = 550. (c) C3, U = 0.20 m/s, L/D = 700.
(d) C4, U = 0.10 m/s, L/D = 700. (e) C5, U = 0.15 m/s, L/D = 700. (f) C6, U = 0.25 m/s, L/D = 700.

Figure 18 shows the variation in the dominating frequency of the riser in both the
IL and CF directions as the slenderness ratio varied. With an increase in the slenderness
ratio, the broadband characteristic of frequencies in both IL and CF directions became more
prominent, leading to an aggravated degree of fatigue damage of the riser.
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were not the same and could mainly be categorized as 2S, 2P and P + S vortex shedding 
modes. The 2S mode was characterized by low intensity, and the energy it carried could 
only support vibration with lower amplitudes. Figure 20 depicts that the 2S mode oc-
curred primarily in areas with smaller amplitudes such as the ends of the riser and the 
vicinity of the vibration stagnation point. On the other hand, the vortexes in the P + S and 
2P modes were more intense, and they carried enough energy to support larger ampli-
tudes which, in turn, strengthen the vortex and maintain the P + S and 2P modes. As Fig-
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in the middle of the riser. 

Figure 18. Dominating frequencies of IL and CF directions at different slenderness ratios (U = 0.2 m/s).

Comparative analysis of Figure 17c–f reveals that with an increase in flow velocity, the
vibration frequency increased continuously, resulting in more obvious multi-frequency and
wide-frequency vibration phenomena. Moreover, it can be observed from the frequency
spectra in the CF direction that there were secondary frequencies which were twice or even
three times the dominating frequency, representing the coupling effect of vibrations in both
the IL and CF directions.

Furthermore, comparative analysis of Figure 17a–c shows that as the slenderness ratio
increased, the amplitude of lower-order frequencies below the dominating frequency in
the CF vibration response spectra increased continuously, which had a significant effect
on the fatigue damage of the riser. This was due to the transverse average fluctuation that
occurred when the transverse vibration equilibrium position of the riser deviated from
y = 0, as can be vaguely seen from the transverse envelope diagram of the riser.

To conclude, Figures 17 and 19 provide valuable insights into the frequency analysis
of the riser vibration response in both the IL and CF directions, demonstrating the impact
of the slenderness ratio and flow velocity on the vibration frequency and characteristics of
the riser.
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4.7. Wake Vortex Characteristics Analysis

In Figure 20, vortex diagrams are presented for nine different positions along the riser
axis (Z/L = 0.029, 0.147, 0.265, 0.382, 0.500, 0.618, 0.735, 0.853 and 0.971). The diagram
clearly shows that the vortex shedding modes at various positions along the riser axis
were not the same and could mainly be categorized as 2S, 2P and P + S vortex shedding
modes. The 2S mode was characterized by low intensity, and the energy it carried could
only support vibration with lower amplitudes. Figure 20 depicts that the 2S mode occurred
primarily in areas with smaller amplitudes such as the ends of the riser and the vicinity
of the vibration stagnation point. On the other hand, the vortexes in the P + S and 2P
modes were more intense, and they carried enough energy to support larger amplitudes
which, in turn, strengthen the vortex and maintain the P + S and 2P modes. As Figure 20
demonstrates, P + S and 2P modes tended to occur in areas with higher amplitudes in the
middle of the riser.
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5. Conclusions

In this paper, based on the slice method, through a self-compiled UDF program in the
Fluent solver, a 3D riser structure vibration program and 2D Fluent flow field calculation
were combined to achieve fluid–structure coupling, and the numerical simulation of the
vortex-induced vibration of a flexible riser with different slenderness ratios and different
flow velocities was carried out. The following conclusions may be drawn:

(1) Uniform flow did not result in smooth or regular sine or cosine curves for
displacement–time history curves in the IL and CF directions but rather approximated to
the vibration trace of a two-dimensional cylinder when multi-frequency flapping occurred.
The maximum point of the riser’s IL displacement balance was between 2% and 4% below
the riser’s midpoint;

(2) With an increase in the slenderness ratio, the equilibrium position of the vibration
of the riser in the IL direction continuously increased, but the position of the maximum
value of the average value of the IL displacement in the axial direction of the riser remained
unchanged. The “8”-shaped vibration track of the riser became increasingly vague and
chaotic while being limited to a certain range. The vibration frequencies and vibration
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modes in the IL and CF directions continued to increase gradually, shifting from single-
mode vibration to multi-modal vibration. At the same time, the order of the natural
frequency of the vibration frequency continued to rise, and the number of vibration modes
continued to increase. Furthermore, the phenomena of multi-frequency vibration and
wide-frequency vibration became more apparent;

(3) With an increase in flow velocity, the equilibrium position of the vibration of the
riser in the IL direction continuously increased, but the position of the maximum value
of the average value of the IL displacement in the axial direction of the riser remained
unchanged. The vibration frequency increased with increasing flow velocity; however,
the natural frequency remained constant. Therefore, the order of the natural frequency at
which the vibration frequency was located continuously increased, leading to an increase in
the number of vibration modes. This phenomenon also displayed a shift from a lower-order
standing wave to a higher-order traveling wave (the standing wave response gradually
disappeared, and the traveling wave response gradually dominated);

(4) The 2S vortex shedding mode primarily occurred at the two ends of the riser and
near the vibration stagnation point where the amplitude was relatively small. The P + S
and 2P vortex shedding modes mainly occurred at places with relatively large amplitudes.
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