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Abstract: With the widespread popularity of Wireless Mobile Networks (WMNs) in our daily life, the
huge risk to disclose personal privacy of massive graph structure data in WMNs receives more and
more attention. Particularly, as a special type of graph data in WMNs, the directed graph contains an
amount of sensitive personal information. To provide secure and reliable privacy preservation for
directed graphs in WMNs, we develop a node differential privacy-based method, which combines
differential privacy with graph modification. In the method, the original directed graph is first divided
into several sub-graphs after it is transformed into a weighted graph. Then, in each sub-graph, the
node degree sequences are obtained by using an exponential mechanism and micro-aggregation is
adopted to get the noised node degree sequences, which is used to generate a synthetic directed
sub-graph through edge modification. Finally, all synthetic sub-graphs are merged into a synthetic
directed graph that can preserve the original directed graph. The theoretical analysis proves that
the proposed method satisfies differential privacy. The results of the experiments demonstrate the
effectiveness of the presented method in privacy preservation and data utility.

Keywords: wireless mobile networks; directed graph; differential privacy; graph modification

1. Introduction

Over the past several years, wide applications of 4G mobile wireless networks have
brought us tremendous convenience. For example, through the 4G mobile wireless net-
works, we can enjoy a large number of online services, including mobile shopping/payment,
mobile office, mobile gaming, etc. [1]. Nowadays, with the wide popularity of various inno-
vative applications, such as Vehicle-to-Everything (V2X), AR, holographic communications,
etc. [2], mobile wireless networks make our daily life more convenient. However, mobile
wireless networks also present us with a great challenge while providing tremendous
convenience for us. For instance, as a large amount of data including sensitive informa-
tion is published or shared in mobile wireless networks without privacy preservation, a
lot of individual privacy is leaked, which results in many social security problems [3].
In particular, [4] points out that data leakage is one of the most frequent mobile secu-
rity threats. Therefore, it is crucial to pay close attention to individual privacy in mobile
wireless networks.

More importantly, there is a large amount of personal privacy information, including
identity privacy, semantic attribute privacy, and link privacy, in the graph structure data in
mobile wireless networks [5]. To address the privacy issue in the graph structure data, many
graph modification methods have been proposed, which are divided into three categories:
edge/node modification, clustering, and uncertain graph [6]. In the edge/node modifi-
cation method, the edge randomization method randomly adds or deletes edges in the
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original graph while retaining the characteristics of an original graph as much as possible [7].
To overcome the shortcoming of this method, many k-anonymity methods that can resist
attacks based on the structure of the graph have been devised, such as (k,l)-anonymity [8],
k2-anonymity [9] and k-neighborhood sub-graph anonymity [10]. Clustering-based meth-
ods, called generalization methods, usually group nodes and edges into super-nodes and
super-edges, which hide the detail of nodes and edges in the graph [11]. Furthermore,
the method combining k-anonymity with node clustering is designed, which can provide
sufficient privacy preservation while retaining data utility [12]. Compared with the two
methods mentioned above, the uncertain graph method, which rejects the uncertainty on
the edges of a graph to generate an uncertain graph, can get better data utility than them.
Although graph modification can preserve the graph structure data, it is not able to resist
attacks based on background knowledge.

As a gold-standard notion of privacy that can provide a strict privacy guarantee [13],
differential privacy has been adopted to preserve graph structure data [14]. For instance,
differential privacy has been extensively applied to preserve various statistical values
of the graph, such as the degree distribution [15], frequent graphics patterns [16], and
triangle count [17]. In addition, it can also be used to generate a synthetic graph to preserve
the original graph. In [18], a synthetic graph is released by using a differential private
estimator of the parameters of a special model, which is an exponential family model with
the degree sequence as a sufficient statistic. To improve the data utility of a differential
private synthetic graph [19], devises a differential private graph generator based on the
dK-graph model. Different from graph modification, differential privacy usually employs
noise to achieve privacy preservation, which results in insufficient data utility.

However, the methods introduced above mainly concentrate on undirected graphs.
As a special graph, directed graphs, such as the who-follows-whom social graph on Twitter,
not only possess the relations in graphs but also have the direction information. Therefore,
it is hard to adopt these methods to preserve directed graphs when it is published or
shared. By considering the direction information of edges, a few k-anonymity methods
have been designed in [20,21]. But the k-anonymity method is not able to resist attacks
based on background knowledge and only withstand some special attacks, these methods
cannot provide sufficient privacy preservation for directed graphs. As a result, it is a great
challenge to preserve directed graphs.

To solve this problem, we propose a useful method that combines differential privacy
with graph modification to preserve directed graphs. In particular, compared with edge dif-
ferential privacy, node differential privacy can provide stronger privacy preservation. Thus,
node differential privacy is used to add noise on degree sequences, and edge modification
utilizes noised degree sequences to generate a synthetic directed graph, which provides
strong privacy preservation for the original directed graph. Additionally, to improve data
utility, the original directed graph is divided into many sub-graphs, and the perturbations
are only added in each sub-graph, which is useful to maintain the whole graph structure.
In particular, the exponent mechanism is adopted to truncate degree sequences, which can
ensure that the minimum noise is added to the degree sequences. Moreover, the ranking
micro-aggregation effectively reduces the noise added to the degree sequences. According
to the noised degree sequences, the relationship between two nodes is utilized to modify
the edges of nodes, which can retain the original graph structure. Therefore, the designed
method not only provides strong privacy preservation but also maintains the data utility.

In this paper, our contributions can be summarized as follows:
We propose a method based on node differential privacy to preserve directed graphs in

wireless mobile networks. Particularly, node differential privacy and edge modification are
combined to generate a synthetic directed graph that provides strong privacy preservation
for the original directed graph.

We present four algorithms to maintain data utility in the proposed method. First
of all, the Louvain algorithm is used to divide the original directed graph into several
sub-graphs. Then, the node degree sequences in each sub-graph are generated by the



Appl. Sci. 2023, 13, 8089 3 of 19

GSEM (generating degree sequence based on exponent mechanism) algorithm and ADPRA
(adding noise based on differential privacy with the ranking micro-aggregation) algorithm
adds less noise on these node degree sequences. In the end, GGM (generating synthetic
graphs based on graph modification) algorithm generates a synthetic directed sub-graph
that maintains the properties of an original sub-graph.

We demonstrate the performances of the proposed method on several different real
data sets, and the experimental results show that the proposed method is effective in
privacy preservation and data utility.

The rest of this paper is organized as follows. Section 2 reviews the related methods to
preserve the graph structure data. In Section 3, the preliminaries are introduced. Then, the
proposed method is described in detail in Section 4. Section 5 demonstrates the performance
of the proposed method in privacy preservation and data utility. In Section 6, the existing
challenges and promising future directions are discussed.

2. Related Works

With individual privacy on MWNs attracting more and more attention, various tech-
niques have been proposed to provide privacy preservation. In this section, we will focus
on methods that include two categories: graph modification and differential privacy.

In graph modification, there are three important graph modification methods: edge
and node modification methods, generalization or clustering methods, and uncertain graph
methods. In edge and node modification methods, to improve data utility, Ying X. [7] pro-
posed two algorithms to preserve the original graph while keeping the spectral properties
of the graph unchanged as much as possible. In [22], Casas-Roma designed a method
to protect the most important edges, which obtained a better trade-off between privacy
preservation and data utility. In generalization methods that focus on how to generate
so-called super-nodes and super-edges, Yu F. [23] developed a clustering perturbation
algorithm that adopted some perturbations to maintain the whole structure of the social
net work and reduce privacy leakages. In uncertain graph methods, Boldi in [24] designed
a (k, )-obfuscation method based on injecting uncertainty to get an uncertain graph, which
was similar to the original graph. To prevent link attacks based on background knowledge,
Hu J developed an uncertain graph method based on edge-differential privacy, which also
had better data utility in [25].

In addition, k-anonymity [5] had been widely used to generate anonymous graphs
to preserve graph data. Considering the number of mutual friends (NMF) between two
users, [26] developed a k-anonymity method that made use of the mutual friend sequence
to ensure the existence of at least k elements holding the same value for better data
utility. In [27], the new (k, l)-degree anonymity algorithm was devised to modify the
original networks based on a sequence of edge editing operations. In this algorithm, a
location entropy metric was considered to select the important edges so it could achieve
minimum edge modification to increase data utility. Meanwhile, to resist insider attacks
in collaborative social networks, [28] developed a k-anonymity method based on the
clustering, in which a scalable non-deterministic clustering was utilized to prevent the
structure attacks.

In differential privacy methods, many methods based on differential privacy have
been presented for graph data since C. Dwork came up with differential privacy, which was
classified into two kinds: preserving specific sensitive statistics of graphs and generating
differential private graphs. For publishing higher order network statistics, i.e., joint degree
distribution, Iftikhar [29] designed a general framework for releasing dK-distributions
under node differential privacy, in which sensitivity was regulated by a graph projection
algorithm, which transformed graphs into bounded graphs. To accurately estimate sub-
graph counts, [30] proposed a novel multi-phase framework under DDP (decentralized
differential privacy), which was able to control the minimum local noise scale to preserve
the sub-graph counts. Furthermore, some statistical data in graph data, such as triangle
counts, centrality and shortest paths were preserved by differential privacy before they
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were released [31,32]. Apart from preserving the statistical data, differential privacy is also
applied to generate a synthetic graph. In [33], Vishesh Karwa developed an algorithm
to attain a graphical degree partition of a graph preserved by differential privacy, which
could also be used to construct synthetic graphs. Ref. [34] proposed an LDPGen, which
could generate a synthetic graph after structurally similar users were clustered together
according to optimal parameters.

3. Preliminaries Knowledge

In this paper, a directed network is regarded as a simple, directed graph G = (V, E),
where V = (v1 , v2 , . . . , vn) is the set of nodes, and E is the links table, each link (i, j) denotes
a relationship from vi to vi.

Definition 1 (The undirected graph and the directed graph). As shown in Figure 1, the
Figure 1a is an undirected graph, while the Figure 1b represents a directed graph, where each edge
denotes a relationship from one node to another node. In the Figure 1b, the edge (v1, v4) denotes a
link relation from node v1 to node v4.

V1V1

V2V2

V4V4

V3V3

V1V1

V2V2

V4V4

V3V3

(a) (b)

Figure 1. The undirected graph and the directed graph.

Definition 2 (Neighboring directed graph). For two directed graphs G1 = (V1,E1),
G2 = (V2,E2), if |V1

⊕
V2|+|E1

⊕
E2| = 1, where

⊕
is Exclusive—OR operation, we can say

G1 and G2 are neighbors.

As shown in Figure 2, compared with the Figure 2b, Figure 2a has one more different
node with three directed edges. So the Figure 2a,b are neighboring graphs.

V1V1

V2V2

V4V4

V3V3

V1V1

V2V2 V3V3

(a) (b)

Figure 2. The example of neighboring graph of node.

Definition 3 (Differential Privacy). For all outputs S belong to Range(Z), if we can obtain the
result as follows:

Pr[Z(Ga) ∈ S] = eε × Pr[Z(Gb) ∈ S] (1)

where Ga and Gb are neighbors, ε is a privacy preservation level, we can see that the algorithm Z
satisfies ε-differential privacy.

In order to achieve ε-differential privacy, we must perturb the outputs of queries in two ways,
which include the Laplace mechanism and the exponential mechanism.

Definition 4 (Laplace Mechanism). For a sequence of queries F: G→G, if the following holds:

Z(G) = F(G) + Lap(∆ f /ε) (2)
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where µ = 0, b = ∆f/ε and Lap(∆f/ε) represents the Laplace noise, the way that makes an algorithm
Z satisfies ε-differential privacy by adding Laplace noise is the Laplace mechanism.

In the Laplace mechanism, the Laplace noise distribution is shown in Equation (4).

n(x) = 1/2b ∗ exp(−|x− µ|/b) (3)

where µ is a position parameter, b denotes a scale parameter, and x is a random variable.

Definition 5 (Exponential Mechanism). Given a dataset D, an output range T, a privacy budget
ε, and a utility function U: (D, t)→ R, a mechanism M that selects an output t ∈ T with probability
proportional to exp( ε·U(D, t)

24U ) satisfies ε-differential privacy.

Definition 6 (Parallel composition properties). Given a sequence of algorithms {A1, A2, . . . ,
An}, and each algorithm Ai satisfies εi differential privacy, if these algorithms are applied indepen-
dently on a disjoint subset of the input database D, this data process is called the parallel composition
properties of differential privacy, which satisfies max εi differential privacy.

4. The Proposed Method
4.1. The Framework of Method

To preserve the directed graph in wireless mobile networks, we propose a novel
method based on differential privacy, which combines node differential privacy and graph
modification to provide sufficient privacy preservation while retaining data utility. In addi-
tion, we assume that the original directed graph is a simple connected static directed graph
without node attributes.

As shown in Figure 3, the model of the developed method consists of four steps.
In step 1, after the original directed graph is converted into a weight graph, the weight
graph is divided into some sub-graphs according to the optimal modularity [35]. Then, the
node differential privacy is utilized to generate two differential private degree sequences
(an in-degree sequence and an out-degree sequence) from each sub-graph in step 2. In par-
ticular, the exponent mechanism is used to get the degree sequences of nodes in each
sub-graph, while the ranking micro-aggregation is applied to add noise to them. Next, in
step 3, each sub-graph is modified by adding or deleting edges according to the noised
degrees. Simultaneously, the relationship between nodes is considered in edge modification.
At last, all modified sub-graphs are merged into a differential private directed graph which
provides privacy preservation for the original directed graph in Section 4.

Original directed 
graph

Converting 
directed

graph

Decomposing 
Weighted graph

Exponential 
Mechanism

Getting 
node 

degree 
sequences 

Differential 
privacy with 

micro-
aggregation
Adding noise

Adding 
edges

Deleting 
edges

Merging modified 
sub-graphs

Differential 
private directed 

graph

Step 1 graph 
decomposition

Step 2 generating  differential 
private node degree sequences

Step 3 graph modification 
Step 4  generating 

directed graph

Each node in a subgraph

Figure 3. The framework of method.

In particular, as node differential privacy provides stronger privacy preservation
than graph modification and edge differential privacy, it is adopted to provide better
privacy preservation for the directed graphs in mobile wireless networks. At the same
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time, to maintain data utility, the Louvain algorithm is used to divide the original directed
graph into many sub-graphs, and graph modifications are limited in them. Then, the
exponent mechanism truncates the degree sequences to add the minimum noise to the
degree sequences when the privacy budget is given. Next, the ranking micro-aggregation
effectively reduces the noise added to the degree sequences, which is proved by the
mathematical analysis. Finally, the relationship between two nodes is utilized to modify
the edges of nodes, which can retain the original graph structure. Therefore, the proposed
method achieves the trade-off between privacy and data utility.

To summarize, we develop a novel method that can achieve privacy preservation for
the directed graph while maintaining the data utility.

4.2. DGNDP (Synthetic Directed Graph Based on Node Differential Privacy) Algorithm

In Algorithm 1, the goal is to generate a differential private directed graph. At first,
to better gather the nodes of the directed graph, we convert this directed graph into a
weighted graph and utilize the Louvain algorithm to divide the weighted graph into
several sub-graphs. In each sub-graph, the GSEM algorithm is used to get an out-degree
sequence and an in-degree sequence. Then, the ADPRA algorithm adds noise to these
degree sequences. After that, the GGM algorithm generates a synthetic directed sub-graph
according to the noised degrees. Finally, all synthetic directed sub-graphs are merged into
a differential private directed graph.

Algorithm 1 DGNDP algorithm

Input: an original directed graph G
Output: a synthetic directed graph G

′

1: a weighted graph Gw ← converting an original directed graph G
2: a set of directed sub-graph Ssub← decomposing a weighted graph Gw
2: a set of SGn = { }
3: for SGi in Ssub:
4: Sdout = GSEM algorithm (SGi, ε1)
5: Sdin = GSEM algorithm (SGi, ε1)
6: an out-degree sequence Sdoutn ← ADPRA algorithm (SGi, ε2)
7: an in-degree sequence Sdinn ← ADPRA algorithm (SGi, ε2)
8: SnGi ← GGM algorithm (SGi, Sdoutn, Sdinn)
9: SGn adding SnGi
10: G

′ ←merging SGn
11: Return a synthesis directed graph G

′

4.2.1. GSEM (Generating Degree Sequence Based on Exponent Mechanism) Algorithm

For an in-degree sequence or an out-degree sequence in a directed sub-graph, when
the Laplace noise is added to this degree sequence, the smaller the degree of the node,
the greater the damage caused by the added noise. To reduce noise added to the degree
sequence, the noise is only added on nodes with large degrees in this sequence and nodes
with small degrees are deleted from this sequence.

In particular, after a degree sequence of a sub-graph sorted from large to small is
truncated according to a certain threshold t, the Laplace noise is only added to the rest
of the degree sequence. Thus, there are two kinds of errors: One is the reconstruction
error caused by the truncated part of the degree sequence, and the other is Laplace noise
added on the rest of this degree sequence. The larger the certain threshold t is, the more
parts of this sequence are deleted, which will result in a larger reconstruction error. On the
contrary, the smaller the certain threshold t, the more Laplace noise is added. Therefore,
the exponent mechanism is applied to get an optimal t, which can be used to add minimum
noise to the degree sequence.
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Given a directed sub-graph SGa = ( Va, Ea), the out degree sequence of (SGa) is
Seqout(SGa) :[d1, d2, . . . , dn], where n is the number of nodes, then a query function f
is given:

f→ Seqout(SGa)

After the Seqout(SGa) is sorted from small to large and is truncated by t, there are two
kind of errors in Seqout(SGa): the reconstruction error and the Laplace noise.

Error(Seqout(SGa))

= RE(Seqout(SGa)) + LE(Seqout(SGa))

where RE(Seqout(SGa)) is the error caused by the truncation, LE(Seqout(SGa)) represents the
error brought by the Laplace noise.

RE(Seqout(SGa)) =

√√√√ t

∑
i=1
|di|2

LE(Seqout(SGi)) = E(

√
m

∑
i=t+1

lap(
4 f

ε
)2)

where m is n− t.
RE(Seqout(SGa)) + LE(Seqout(SGa))

=

√√√√ t

∑
i=1
|di|2 +

√
2 ∗ (n− t) ∗ 4 f

ε

To gain a minimum value of Error(Seqout(SGa)), the exponent mechanism is utilized to
select a best threshold t. Then, there is a scoring function:

U(SGa, t) =

√√√√ t

∑
i=1
|di|2 +

√
2 ∗ (n− t) ∗ 4 f

ε

As the node differential privacy is employed to achieve differential privacy, the4U is:

4U = U(SGa, t)−U(SGa′ , t) = 4RE +4LE

where there is only one node difference between SGa and SGa′ .

4RE = ≤ max(

√√√√ t

∑
i=1
|d(SGa)i|2 −

√√√√ t

∑
i=1
|d(SGa′ )i|

2)

≤ max(
t

∑
i=1
|d(SGa)i| −

t

∑
i=1
|d(SGa′ )i|)

≤ dmax

4LE = 4 f

4 ft = | ft(SGa)− ft(SGa′ )| = max(degree(SGa))

= dmax

where4 f is the sensitive of a query function f .
Therefore,4 U is:

4U = 4RE +4LE ≤ 2dmax
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The probability that the threshold t can be selected is

pr(t) =
exp

(
− ε1U(SGa ,t)

2∆U

)
∑dmax−1

i=1 exp
(
− ε1U(SGa ,t)

2∆U

)
Finally, a threshold t is obtained through the exponent mechanism and used to generate

an out-degree sequence Sdout. In the same way, an in-degree sequence Sdin is also obtained.
Thus, to ensure that the minimal noise is added to a degree sequence when the privacy

budget is given, the noise is added to the truncated degree sequence.
As shown in Algorithm 2, in line 1, according to a directed sub-graph SGa, an out

degree sequence Seqtout is generated. Then, the dmax is obtained from the out degree
sequence Seqtout in line 2. From line 3 to line 5, the exponent mechanism is used to get
a threshold t. In line 6, an out-degree sequence Seqout is truncated to get an out-degree
sequence Sdout, and it is returned in line 7.

Algorithm 2 GSEM algorithm

Input: a directed SGa = (Va, Ea), a privacy budget ε1
Output: an out-degree sequence Sdout
1: an out degree sequenceSeqout ← a directed graph SGa = ( Va, Ea)
2: dmax= the maximum degree of Seqout

3: for 1 to t:
4: the scoring function

U(SGa, t) =

√√√√ t

∑
i=1
|di|2 +

√
2 ∗ (n− t) ∗ 4 f

ε

5: selecting t with probability

pr(t) ∝ exp(−(ε1U(SG1, t)/2 ∗ 4U)

6: an out-degree sequence Sdout ← an out degree sequenceSeqout
7: Return an out-degree sequence Sdout

4.2.2. ADPRA (Adding Noise Based on Differential Privacy with the Ranking
Micro-Aggregation) Algorithm

Given an ordered degree sequence d = [d1, d2, . . . , dn], it is aggregated into n
k clusters.

In each cluster, there are k continuous degree values, except perhaps one cluster that
contains up to 2k− 1 consecutive values. Then, there is a sequence of the centroid of these
clusters denoted by [dc1, dc2, . . . , dcn/k]. In this ordered degree sequence, if any single di in
d is replaced by d̄, |di − d̄| ≤ 4, then there is a new sequence of the centroid of these new
clusters which is described as [ ¯dc1, ¯dc2, . . . , ¯dcn/k]. As a result, it holds that

[n/k]

∑
m=1

∣∣∣dcm − dcm

∣∣∣ ≤ ∆/k

Compared with edge differential privacy, node differential privacy can provide
stronger privacy preservation. Nevertheless, node differential privacy results in insuf-
ficient data utility. To mitigate this problem, the ranking micro-aggregation is introduced
to improve data utility. In particular, with the help of the ranking micro-aggregation, this
algorithm generates two differential private degree sequences with effective data utility,
which are useful for the graph modification in the next step.
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Without losing generality, assume d̄i > di, and n can be divided by k. Thus, there
are n/k clusters, with each cluster m having consecutive values from d(m−1)k+1 to dmk. In
particular, each di belongs to a cluster mi.

Then two cases are discussed.
Case 1: if d̄i ≤ dmik+1 , then is still in cluster m̄i. Except for the cluster mi, the centroids

of other clusters are unchanged. The centroids of the cluster m̄i increase ∆
k , because

d̄i = di +4. Therefore, this case meets the requirements of the ranking micro-aggregation.
Case 2: if d̄i ≥ dmik+1, then d̄i is not in cluster mi. Therefore, two and more changes

for the d̄i replace the di: the clustermi lose di and a cluster m̄i obtain d̄i(for m̄i > mi). For
keeping the number of clusters mi unchanged, the cluster mi gains dmik+1; in return, the
cluster mi+1 loses dmik+1 and obtains dmi+1k+1, until the cluster m̄i gives its smallest value
d(m̄i−1)k+1 to cluster m̄i − 1 and obtains d̄i . From cluster m̄i + 1 to the end cluster, there is
nothing that takes place. The change of the centroids is shown as follows:

4
[n/k]

∑
m=1

∣∣∣dcm − dcm

∣∣∣
=

m̄i

∑
m=mi

∣∣∣dcm − dcm

∣∣∣
=

dm,k+1 − di

k
+

d(mi+1)k+1 − dm,k+1

k
+

. . . +
di − d(m̄i−1)k+1

k

=
di − di

k
=

∆
k

when n is not a multiple of k, there are n/k clusters and one of them holds values between
k + 1 and 2k− 1. If in case 1, when the larger cluster is cluster mi, the change of centroid of
mi is less than ∆/k. While if the larger cluster is another cluster, nothing will happen and
it will meet the requirements of the theorem. If in case 2, a changed cluster is the larger
cluster, one of the fractions in the third term of expression shown above has a denominator
that is greater than k and the overall sum is less than ∆/k. Therefore, the lemma is set up; if
the larger cluster is not affected, the lemma also holds.

In the ADPRA algorithm, given a query function

f (SGi)→ ASdout

because the node differential privacy is used in this algorithm, according to the analysis
mentioned above, the sensitivity of the query function f is

∆ f = maxSGi ,S
′
Gi
‖ f (SGi)− f (S

′
Gi)‖1 =

dmax

k
Therefore, due to the ranking micro-aggregation, the sensitivity of the query function

decreases, so that the noise added to the degree sequence is reduced. To sum up, the
ADPRA algorithm provides differential privacy for the degree sequence while maintaining
data utility.

As illustrated in the Algorithm 3, line 1 sorts an out-degree sequence from small to
large. After this sequence is aggregated in line 2, line 3 adds the Laplace noise to obtain a
differential private out-degree sequence. In the same way, from line 4 to line 6, a differential
private in-degree sequence is also got.
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Algorithm 3 ADPRA algorithm

Input: an out-degree sequence Sdout, an in-degree sequence Sdin, a privacy budget ε2, the
number of elements in a cluster, k
Output: a noised out-degree sequence NSdout, a noised in-degree sequence NSdin
1: Sorting Sdout from large to small
2: ASdout ←micro-aggregating Sdout
3: NSdout ← adding the Laplace noise ((4 f )/k*ε2) on ASdout
4: Sorting Sdin from large to small
5: ASdin ←micro-aggregating Sdin
6: NSdin ← adding a Laplace noise ((4 f )/k*ε2) on ASdin
7: Return a noised out-degree sequence NSdout, a noised in-degree sequence NSdin

4.2.3. GGM (Generating Synthetic Graph Based on Graph Modification) Algorithm

To generate a synthetic directed graph by using a noised degree sequence, the graph
modification method is adopted to present the GGM algorithm which consists of three
steps. In this algorithm, step 1 compares two out-degree sequences NSdout and Sdout as
well as two in-degree sequences NSdin and Sdin, and records the difference between them.
In step 2, some edges are added into a sub-graph SnGi as the value of the out and in the
degree of a node increases. To reduce the perturbation caused by adding edges, the nodes
with increased out-degree and the nodes with increased in-degree are paired to add edges
between them. In the last step, an out or in-degree sequence is selected to delete edges
between these nodes in it and their neighborhood nodes. In particular, the relationships
between nodes are considered when edges are added or deleted, which can preserve
the original structure as much as possible. In the end, the GGM algorithm generates a
differential private synthesis directed graph, which can effectively preserve the original
directed graph.

The detail of the Algorithm 4 is demonstrated as follows. In line 2 to line 3, after
the NSdout and Sdout are compared, Do1 and Do2, which record nodes and their increased/
decreased out-degree values are obtained. Then, Di1 and Di2, which record nodes and
their increased/decreased in-degree values are obtained. Starting on line 4, some edges
are added into the graph SnGi as few as possible. For each node, i in sorted Do1, k nodes in
Di1, which are closer to node i than other nodes, are selected and edges are added between
them from line 5 to 8. After that, the value in Di1 is modified from line 9 to line 11. In order
to delete edges the least amount possible, Do2 and Di2 are compared in line 12. If Do2 is
selected, as for each node i in Do2, a set of nodes Ina, which is the intersection of Na and
Di2, is gained. Then, if the number of INa is more than zero, we delete min {k,|INa|} edges
from SnGi; otherwise, the min {k,|Na|}edges are removed from SnGi. If the Di2 is chosen,
some edges are deleted in the same way as from line 22 to line 29. Therefore, through the
graph modification method, a synthetic directed graph is generated.

Algorithm 4 GGM algorithm

Input: NSdout, NSdin, Sdout, Sdin, a directed sub-graph SGi = (Vi, Ei)
Output: a synthesis directed sub-graph SnGi
1:SnGi ← SGi
2: ( Do1, Do2)← comparing Sdout with NSdout
3: (Di1, Di2)← comparing Sdin with NSdin
4: Sorting Do1 and Di1 from large to small
5: for node i in Do1:
6: k = Do1[i]
7: if |Di1| > 0
8: selecting k nodes Di1 and adding edges from node i to those k nodes in SGi
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Algorithm 4 Cont.

9: modifying the values of those k nodes in Di1
10: if the values of node j in Di1 nodes < 0:
11: abandoning node j from Di1
12: if sum (Do2) > sum ( Di2)
13: for node i in Do2:
14: k = Do2[i]
15: a set of node Na = neighborhood nodes of node i
16: a set of node INa = intersection of Na and nodes in Di2
17: if |INa|>0
18: selecting min {k,|INa|} nodes from INa and deleting edges from
node i to those nodes
19: else:
20: selecting min {k,|Na|} nodes from Na and deleting edges from
node i to those nodes
21: else:
22: for node i in Di2:
23: k = Di2[i]
24: a set of node Na = predecessors nodes of node i
25: a set of node Ina = intersection of Na and nodes in Do2
26: if number of Ina > 0
27: selecting min {k,|INa|} nodes from INa and deleting edges from
node i to those nodes
28: else:
29: selecting min {k,|Na|} nodes from Na and deleting edges from
node i to those nodes
30: Return SnGi

4.2.4. Analysis of DGNDP Algorithm

Theorem 1. The GSEM algorithm satisfies ε-differential privacy.

Proof of Theorem 1. As discussed before, the probability to select the threshold t is

pr(t) =
exp

(
− εU(Sg,t)

2∆U

)
∑t′∈O exp

(
− εU(Sg,t′ )

2∆U

)
In this algorithm, we assumed Sg and Sg

′
are neighborhood graphs, where there is

one node difference between them. For any variable t, the following result is obtained.

pr(E(Sg, t))
pr(E(Sg′ , t))

=

exp
(
− εU(Sg,t)

2∆U

)
∑

t′ ∈O
exp

(
− εU(Sg,t′ )

2∆U

)
exp

(
− εU(Sg′ ,t)

2∆U

)
∑

t′ ∈O
exp

(
− εU(Sg′ ,t′ )

2∆U

)

=

 exp
(
− εU(Sg,t)

2∆U

)
exp

(
− ε1U(Sg′ ,t)

2∆U

)
×

∑t′∈O exp
(
− εU(sG

′
,t
′
)

2∆U

)
∑t′∈O exp

(
− εU(Sg,t′ )

2∆U

)
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≤ exp
( ε

2

)
×

∑t′∈0 exp
(

ε
2

)
× exp

(
− εU(Sg,t

′
)

2∆U

)
∑t′∈0 exp

(
− εU(sG,t′ )

2∆U

)


≤ exp
( ε

2

)
× exp

( ε

2

)
×

∑t′∈0 exp
(
− εU(Sg,t

′
)

2∆U

)
∑t′∈0 exp

(
− εU(Sg,t′ )

2∆U

)


= exp(ε)

It is clear that the process of selecting the threshold t satisfies differential privacy.
In addition, in view of the principle of post-processing, it satisfies differential privacy to
obtain an out-degree sequence and an in-degree sequence from the input graph through
the exponent mechanism. Therefore, the GSEM algorithm satisfies differential privacy.

Theorem 2. The ADPRA algorithm satisfies ε-differential privacy.

In this algorithm, the important task is to add the Laplace noise to the degree sequence
by using differential privacy with micro-aggregation. In a graph Sg, let S be a query
function : Sg→ Ds1 , where Ds1 is a degree sequence from SDEM algorithm. Given that
there is only one node difference between Sg and Sg

′
, the sensitivity of S is

∆S = max
Sg,Sg′

∣∣S(Sg)− S
(
Sg′
)∣∣

1

= max
Sg,Sg′

|Ds1− Ds1
′ |1

= dmax

After the micro-aggregation degree sequence Dms1 is obtained from Ds1, given a query
function Sm: Sg1 → Dms1, when there is only one node difference between Sg and Sg

′
,

there is Sm(Sg) = Dms1, Sm(Sg) = Dms2. The sensitivity of Sm is shown as follows.

∆Sm = max
Sg,Sg′

∣∣Sm(Sg)− Sm
(
Sg′
)∣∣

1

= max
Sg,Sg′

|Dms1− Dms2|1

According to the previous analysis, if the difference between two degree sequences
is dmax, the difference between two micro-aggregation degree sequences is dmax

k , k is the
number of entities contained in a cluster. Thus, the sensitivity of Sm is dmax

k . Because the
sensitivity is reduced, less noise is added on the Dms1, which improves the data utility of
this algorithm. In summary, the ADPRA algorithm satisfies differential privacy, which is
proved as follows.

Let Pr[Sg] represents the probability density function of LA(Sg,Sm,ε), and Pr[Sg
′
]

indicates the probability density function of LA(Sg
′
,Sm,ε) .

pr [LA(Sg)]
pr [LA(Sg)]

=
pr [D− Sm(Sg)]
pr [D− Sm(Sg′ )]

=

1
2 ∆Sm

ε

exp
(
− |D−Sm(Sg)|

∆Sm
ε

)
1

2 ∆Sm
ε

exp
(
− |D−Sm(Sg′ )|

∆Sm
ε

)

=

exp
(
− |D−Sm(Sg)|

∆Sm
ε

)
exp

(
− |D−Sin(Sg′ )|

∆Sm
ε

)
= exp

(
ε|D− Sm(Sg)|

∆Sm
− ε|D− Sm(Sg

′
)|

∆Sm

)
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= exp

(
ε(|D− Sm(Sg)| − |D− Sm(Sg

′
)|)

∆Sm

)

≤ exp

(
ε(|Sm(Sg)− Sm(Sg

′
)|)

∆Sm

)

≤ exp
(

ε · ∆Sm
∆Sm

)
= ε

Theorem 3. The DGNDP algorithm satisfies ε-differential privacy.

Proof of Theorem 3. In this algorithm, each sub-graph is handled by the GSEM algorithm
and ADPRA algorithm, which all satisfy differential privacy. According to the principle of
sequence combination in differential privacy, each sub-graph is preserved by differential
privacy. After all the sub-graphs are merged into a complete directed graph, on the basis
of the principle of parallel processing in differential privacy, it is evident that the GDNDP
algorithm satisfies differential privacy.

5. Experiments and Results

In this paper, the proposed method focuses on a special directed graph, which is a
simple connected directed graph without self-cycles and node attributes. In this section,
five real-world data sets, which describe five directed graphs are applied to demonstrate
the efficiency of the proposed method. In privacy preservation, the change rate of the edge
is utilized to evaluate the performance of methods. In data utility, the metrics of the graph
are used to measure the effectiveness of methods. In addition, we compare the proposed
method with other methods in [5,20]. The experiments are conducted on a Laptop with an
Intel i7 3.5 Ghz and 8GB RAM, which works with Windos10 and Python 2.6.

5.1. Data Sets

(1) Physicians: This directed network captures innovation spread among 246 physicians
in towns in Illinois, Peoria, Bloomington, Quincy, and Galesburg. A node represents
a physician and an edge between two physicians shows that the left physician told
that the right physician is his friend or that he turns to the right physician if he needs
advice or is interested in a discussion. There are 240 nodes and 1098 edges.

(2) Blogs: This directed network contains front-page hyperlinks between blogs in the
context of the 2004 US election. A node represents a blog and an edge represents a
hyperlink between two blogs. There are 1224 nodes and 19,025 edges.

(3) Wikipedia−link: This network consists of the wikilinks of Wikipedia in the Gagauz
language (gag). Nodes are Wikipedia articles and directed edges are wikilinks, i.e.,
hyperlinks within one wiki. There are 2929 nodes and 118,603 edges.

(4) Gnutella: This is a network of Gnutella hosts from 2002. The nodes represent
Gnutella hosts, and the directed edges represent connections between them. There
are 12,717 nodes and 51,525 edges.

(5) Twitter lists: This directed network contains Twitter user–user following information.
A node represents a user. An edge indicates that the user represented by the left
node follows the user represented by the right node. There are 23,370 nodes and
1,231,177 edges.

5.2. Metrics and Parameters
5.2.1. Metrics and Parameters in Privacy Preservation

To evaluate privacy preservation, a metric, the change rate of the edge is shown
as follows.

CRE =
Me

Se
× 100%
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where Me denotes the sum of all edges that are added and deleted in this method and Se
represents the sum of edges of the synthesis graph. This metric indicates how much the
original graph has been modified to generate a synthesis graph. The larger CRC, the better
privacy preservation.

Moreover, three methods including the independent (ki, ko)-degree anonymity method
in [5], k-anonymity method in [20] and the GDGMP method without micro-aggregation
are used to compare with the proposed method. The method in reference [5] is a k-degree
anonymity method without considering the direction of edges, which minimizes changes
in degree sequences as much as possible. Compared with the method in reference [5], the
method in reference [20] focuses on directed graphs and provides a k-degree anonymity
method. As node differential privacy can provide stronger privacy preservation than
k-anonymity methods, the proposed method achieves better privacy preservation for
directed graphs.

Correspondingly, the privacy budget in experiments is set as the sum of ε1 and ε2,
where ε1 = ε2 = ε. Meanwhile, ε is in [0.2, 0.5, 1.0, 1.5, 2] and k, the number of elements in a
cluster, is the integer between 2 and 5, which is also used in k-anonymization. Due to the
uncertainty of the noise, all data sets are executed 10 times by using the proposed method
and other methods to average out the results.

5.2.2. Metrics and Parameters in Data Utility

In the graph structure measure, the edge intersection EI is the ratio of the edges in the
original graph to edges in the perturbed graph, as shown below.

EI =
|E∩ E

′ |
max(|E|, |E′ |

× 100%

In the properties of nodes, the betweenness centrality(Cb) is the fraction of the shortest
paths that go through each node. Then, the closeness centralities based on the in-degree(in-
Cc) and out-degree(out-Cc) are used to measure how many steps are required to access
every other node from a given node.

5.3. Results and Discussion
5.3.1. Analysis of Privacy Preservation

At first, the proposed method is conducted in the five data sets and the results are kept
in Table 1. As shown in Table 1, when k is 3 and ε is 1, the value of CRE in the Hamsterster
friendships data set is 47.62, while that in the Gnutella data set is 49.76. In particular, the
value of CRE increases along with the decrease of ε when k is fixed. For example, when k
is 3, the value of CRE in the Wikipedia−link data set increases from 25.74 to 69.13 with ε
decreasing from 2 to 0.2, while that in the Gnutella data set also changes from 36.32 to 71.38.
The results show that the smaller the ε, the larger CRE, which indicates that the proposed
method can gain better privacy preservation for data sets. In Table 2, when ε is 1, if the k
increases from 2 to 5, the value of CRE in Wikipedia-link will decrease from 50.89 to 36.74,
as does that in other data sets, which indicates that the value of k can affect the privacy
preservation. It is clearer that the smaller k, the better privacy preservation.

Table 1. The value of CRC in proposed method when k = 3.

K ε Physicians Hamsterster
Friendships Wikipedia−Link Gnutella Twitter Lists

3 0.2 72.32 74.38 69.13 71.38 68.18
3 0.5 61.25 58.23 57.79 60.32 56.67
3 1 50.13 47.62 57.21 49.76 45.23
3 1.5 43.62 41.87 38.11 43.98 40.62
3 2 38.78 36.05 25.74 36.32 34.17
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Table 2. The value of CRC in proposed method when ε = 1.

K ε Physicians Hamsterster
Friendships Wikipedia−Link Gnutella Twitter Lists

2 1 56.39 52.14 50.89 54.67 51.22
3 1 50.13 47.62 45.21 49.76 45.23
4 1 45.82 43.68 40.31 45.33 41.87
5 1 41.22 39.98 36.74 40.79 38.49

Then, the performance of the proposed method in Gnutella and Twitter lists is illus-
trated in Figures 4 and 5. In Figure 4, with ε increasing from 0.2 to 2, the value of CRE
decreases from about 70 to about 30 regardless of the value of k, which indicates that
the ε controls the degree of privacy preservation. In addition, no matter what the value
of ε is, the value of CRE increases with k decreasing from 5 to 2, which shows that the
micro-aggregation can control privacy preservation. In addition, the same results as that in
Figure 4 are demonstrated in Figure 5, which implies that the proposed method also can be
applied in the big network.

Figure 4. The comparison in the different privacy budgets in Wikipedia.

Figure 5. The comparison of the different privacy budgets in Twitter lists.

In the end, the proposed method is compared with other methods, and the results are
illustrated in Figures 6 and 7. In Figure 6, when ε is 1, the value of CRE obtained by the
proposed method is larger than that in (ki,ko)-degree anonymity method and k-anonymity
method regardless of the value of k. Although the values in the (ki,ko)-degree anonymity
method and k-anonymity method increase with the value of k rising, the proposed method
provides better privacy preservation than these two methods. However, compared with
the value of CRE in the proposed method without micro-aggregation, the value of CRE in
the proposed method is smaller regardless of the value of k, which shows that the micro-
aggregation can weaken privacy preservation. Moreover, in the data set Twitter lists, the
same results as that in Figure 6 are shown in Figure 7. Therefore, the proposed method
provides better privacy preservation than the two anonymity methods and has better data
utility than the method without micro-aggregation.
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Figure 6. The comparison of the different methods in Wikipedia.

Figure 7. The comparison of the different methods in Twitter lists.

To sum up, the experiment results show that the proposed method can preserve di-
rected graphs. In addition, micro-aggregation can be applied to control privacy preservation
in this method.

5.3.2. Analysis of Data Utility

As shown in Figure 8, when the ε is 1, with k rising, the values of EI in five data sets all
increase, which means more and more edges in the original graph retained in the synthetic
directed graph generated by the proposed method. In Figure 9, as the ε is 1, the value of4
av-Cb decreases gradually with the value of k increasing. The result indicates the property
of nodes in the synthetic directed graph is close to that of the original directed graph. As
illustrated in Figures 10 and 11, it is clear that the4 av-in Cc and the4 av-out Dc decline
with k rising. To sum up, the results show that the proposed method can provide effective
data utility.

Figure 8. The comparison of EI in the different data sets.
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Figure 9. The comparison of betweenness in the different data sets.

Figure 10. The comparison of the average of in Cc in the different data sets.

Figure 11. The comparison of the average of our Dc in the different data sets.

In particular, with the size of the network and the amount of data increasing, the
computational overhead significantly increases because more and more edges and nodes
are modified. In order to preserve a large directed graph, it is divided into many sub-
graphs. Compared with the original directed graph, each sub-graph is much smaller.
Therefore, the proposed algorithms can be well applied in these sub-graphs. In real-world
deployments, for the scalability of the method, the scalability of the Louvain algorithm is
mainly considered, which determines the scalability of the proposed method.

6. Conclusions

In this paper, to preserve directed graphs in MWNs, the DGNDP method is designed,
which combines node differential privacy and graph modification. In this method, as
node differential privacy can provide stronger privacy preservation than edge differential
privacy and graph modification, it is used to add noise on degree sequences. Then, edge
modification utilizes noised degree sequences to generate a synthetic directed graph, which
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can strongly preserve the original directed graph. Additionally, to improve data utility,
the original directed graph is divided into many sub-graphs, and the perturbations are
only added in each sub-graph. In particular, the exponent mechanism is adopted to
truncate degree sequences, which can ensure that the minimum noise is added to the
degree sequences. Moreover, the ranking micro-aggregation effectively reduces the noise
added to the degree sequences. According to the noised degree sequences, the relationship
between two nodes is utilized to modify the edges of nodes, which can retain the original
graph structure. Moreover, the theoretical analysis and the performance of experiments
show that the DGNDP method not only satisfies ε-differential privacy but also retains
data utility.

In this paper, we only focus on the simple static directed graph without consider-
ing node attributes. However, node attributes play an important role in the directed
graphs. Thus, in the future, we will concentrate on the application of node differential
privacy in complex attribute graphs. In addition, there is still a demand to achieve privacy
preservation for dynamic directed graphs.
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