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Featured Application: In this paper, a Multi-Attribute Non-Maximum Suppression (MA-NMS) al-
gorithm, which adaptively adjusts suppression based on density and count attributes, is proposed.
It can help detectors to obtain more accurate predictions in crowded scenes, which will benefit sub-
sequent tasks regarding pedestrian detection, like face recognition, pedestrian re-identification, and
human interaction. The proposed MA-NMS and the attribute branch (ATTB) can be easily embed-
ded into generic pedestrian detectors for performance improvement. Moreover, with the proposed
ATTB, a pedestrian detector is proposed, based on the MA-NMS, which can be directly used for
pedestrian detection in crowded scenes, such as shopping malls, streets, airports, etc.

Abstract: Removing duplicate proposals is a critical process in pedestrian detection, and is usually
performed via Non-Maximum Suppression (NMS); however, in crowded scenes, the detection proposals
of occluded pedestrians are hard to distinguish from duplicate proposals, making the detection results
inaccurate. In order to address the above-mentioned problem, the authors of this paper propose a
Multi-Attribute NMS (MA-NMS) algorithm, which combines density and count attributes in order
to adaptively adjust suppression, effectively preserving the proposals of occluded pedestrians while
removing duplicate proposals. In order to obtain the density and count attributes, an attribute branch
(ATTB), which uses a context extraction module (CEM) to extract the context of pedestrians, and then,
concatenates the context with the features of pedestrians in order to predict both the density and count
attributes simultaneously, is also proposed. With the proposed ATTB, a pedestrian detector, based
on MA-NMS, is constructed for pedestrian detection in crowded scenes. Extensive experiments are
conducted using the CrowdHuman and CityPersons datasets, and the results show that the proposed
method outperforms mainstream methods on AP (average precision), Recall, and MR−2 (log-average
miss rate), sufficiently validating the effectiveness of the proposed MA-NMS algorithm.

Keywords: pedestrian detection; intra-class occlusion; non-maximum suppression; multi-attribute

1. Introduction

Pedestrian detection [1] is a popular research topic in computer vision that has been
widely applied in automatic driving [2], video surveillance [3], robotics [4], etc. As a
fundamental task, pedestrian detection drives the development of research, such as face
recognition [5], pedestrian re-identification [6], and human interaction [7].

With the wide spread of convolutional neural networks, numerous object detectors [8–10]
have been proposed based on deep learning features, some of which have been applied to
pedestrian detection after fine-tuning. Furthermore, several proposed pedestrian detectors [11–13]
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have attempted to detect pedestrians using high-level semantic features [14,15] from another
perspective. In order to obtain all the pedestrians in the images, most of the above-mentioned
pedestrian detectors are dense detectors, which generate multiple proposals for each pedestrian.
However, each pedestrian is represented by only one optimal proposal in the final predictions,
for which NMS is widely used to remove duplicates. NMS was originally implemented via the
greedy algorithm, which is known as Greedy NMS. For each pedestrian, it uses a rigid threshold
in order to divide a uniform suppression interval, and directly discards all other proposals within
the interval to remove the duplicates, which satisfied the need for pedestrian detection in sparse
scenes in early studies. Recently, as artificial intelligence [7] has gradually penetrated our lives,
the demand for pedestrian detection in more crowded scenes, such as shopping malls, railway
stations, airports, and streets, has increased. However, dense crowds and various shooting angles
mean the pedestrians in the images are heavily occluded by each other, resulting in highly similar
proposals between pedestrians and their surrounding occluded pedestrians, and leading Greedy
NMS to mistakenly consider the proposals of occluded pedestrians as duplicate ones, and then,
discard them. The above-mentioned problem finally means that the detectors fail to meet the
demand for pedestrian detection in crowded scenes, as shown in Figure 1a.
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Figure 1. Results of different NMS algorithms. The yellow dashed boxes show the occluded pedestri-
ans that are incorrectly removed, and the red dashed boxes highlight the false positives mistakenly
retained by NMS. (a) The result of Greedy NMS; (b) the result of Soft NMS; (c) the result of Adaptive
NMS; and (d) the result of MA-NMS (ours).

Recent studies [16–18] have attempted to soften suppression in order to decrease
the tendency of NMS to incorrectly remove proposals belonging to occluded pedestrians.
Moreover, the authors of [19–21] attempted to remove duplicate proposals according to the
distance of their attributes from others. Though significant breakthroughs have been made,
numerous false positives are generated, and highly occluded pedestrians continue to be
missed, as shown in Figure 1. We compared the current NMS algorithms and found the
following common drawbacks:

• For each pedestrian, only a rigid or a dynamic threshold is used to divide the sin-
gle suppression interval, and all the proposals within the interval are considered
duplicates;

• A uniform suppression operation is applied in the suppression interval, such as
discarding, or a suppression weight function for re-scoring, making it more difficult
to remove the highly similar duplicate proposals of pedestrians while preserving the
proposals of occluded pedestrians.

The above-mentioned drawbacks make it difficult for the current NMS algorithms to
remove various duplicate proposals that are too close to or distant from the annotations,
and retain the proposals of occluded pedestrians at the same time. Thus, there is still room
for research on making an NMS that can accurately preserve occluded pedestrians while
removing duplicate proposals.

In this paper, we propose a Multi-Attribute NMS (MA-NMS), which adaptively ad-
justs suppression based on density and count attributes. It refines the traditional single



Appl. Sci. 2023, 13, 8073 3 of 20

suppression interval into strong and weak suppression intervals in order to separate the
proposals of potentially occluded pedestrians and duplicate ones. Within the correspond-
ing interval, strong or weak suppression is adaptively assigned in order to enhance the
penalties of duplicate proposals while preserving the proposals of occluded pedestrians.
Furthermore, suppression factors are applied to adjust the intensity of the strong and weak
suppression, in order to further suppress duplicate proposals. As shown in Figure 1d,
our proposed MA-NMS can effectively preserve occluded pedestrians while removing
duplicate proposals. A comparison of the flows of MA-NMS and other well-known NMS
algorithms is shown in Figure 2. It clearly reflects that Multi-Attribute NMS demonstrates
more adaptive treatments for proposals with different duplicate probabilities.
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In addition, an attribute branch (ATTB) was designed, with which to obtain the
density and count attributes of pedestrians, and simultaneously guide the adjustment of
suppression intervals and intensity of MA-NMS. Notably, ATTB can be easily embedded
into generic pedestrian detectors, which can then be used to guide the adjustment of NMS to
mitigate the impact of intra-class occlusion. With the proposed ATTB, a pedestrian detector
for crowded scenes was constructed based on MA-NMS, which enables more accurate
predictions for pedestrian detection in crowded scenes. Moreover, the annotations of
count and density attributes required for training are generated on the basis of the existing
full-body annotations, without additional annotations needed. Extensive experiments were
conducted using the CrowdHuman [22] and CityPersons [23] datasets. Our method delivers
promising progress in crowded pedestrian detection, most notably, a 6.5% improvement in
Recall compared with the baseline in CrowdHuman.

Our contributions can be summarized as follows:

• In order to accurately remove duplicate detections, a Multi-Attribute NMS (MA-NMS)
is proposed. Rather than using a uniform suppression interval, it refines the suppres-
sion intervals based on density attributes to perform adaptive suppression, which
effectively preserves potentially occluded pedestrians, while substantially removing
duplicate proposals. Additionally, the suppression intensity is further adjusted accord-
ing to the count attributes, which further reduces the generation of false positives.

• To obtain the density and count attributes of pedestrians, an attribute branch (ATTB)
is proposed. In ATTB, a context extraction module (CME) is designed to obtain the
context of pedestrians. Furthermore, it concentrates the context with the feature
of pedestrians from the generic detection branch to obtain more representative fea-
ture, which allows for a more comprehensive consideration of pedestrians and their
surrounding occluded pedestrians.
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• With the proposed ATTB, a pedestrian detector for crowded scenes is constructed
based on MA-NMS. It simultaneously considers the density and count attributes of
pedestrians and adjusts the NMS based on these two attributes for more accurate
pedestrian predictions in crowded scenes.

The subsequent sections of the paper are organized as follows. Section 2 provides
an overview of related works. Section 3 describes the fundamental flow of NMS and
our method. Section 4 introduces the details and analysis of the experiments. Section 5
discusses the results, theoretical support, application scenarios, and future work. Section 6
summarizes the entire paper and possible future work.

2. Related Works

In this section, we briefly describe related works, covering pedestrian detection, intra-
class occlusion handling and NMS in pedestrian detection.

2.1. Pedestrian Detection

Depending on the method of feature extraction, pedestrian detectors can be catego-
rized into the following types: handcrafted feature-based and deep feature-based pedes-
trian detectors. In early studies, handcrafted feature-based pedestrian detectors used
sliding windows to extract features, such as HOG [24], LBP [25], SIFT [26], and Haar [27].
Classifiers such as SVM, AdaBoost, and random forest were trained to filter out the back-
ground. Integral channel features [28] combine LUV channels, gradient magnitude, and
gradient histograms to effectively capture diverse information from input images. In ad-
dition, a deformable part model (DPM) was used in [10] to handle object deformation by
partitioning the human body into different parts.

Recently, a convolutional neural network [29] was proposed. Since then, numerous
deep feature-based pedestrian detectors have been designed, which have gradually replaced
handcrafted feature-based pedestrian detectors. Among these, the well-known object detector
Faster R-CNN [8] is widely utilized for various computer vision tasks, and has become one
of the most common pedestrian detectors after fine-tuning. In [30], a scale-aware weight
mechanism is proposed to detect large and small pedestrians separately, and then, assign
weights to them dynamically. CSP [13] treats pedestrian detection as a high-level semantic
feature [31,32] detection task by predicting the centroids and scales of pedestrians. Following
this idea, PP-Net [12] proposes a depth-guided module to capture higher-level information.
CSANet [33] uses channel attention and spatial attention together to model context [34–36]
dependencies and enhance pedestrian features. MAPD [19] optimizes a positive sample
allocation strategy and utilizes a triplet loss function to learn the high-level ID features of
pedestrians, which are then combined with the NMS algorithm. While mainstream detectors
can meet the requirements of pedestrian detection in simple scenes, such as sparse scenes,
their performance tends to degrade in crowded scenes due to ubiquitous intra-class occlusion.

2.2. Intra-Class Occlusion Handling

Intra-class occlusion is a significant challenge in pedestrian detection, especially in
crowded scenes, and profoundly impacts the performance of pedestrian detectors. To
address this problem, MGAN [37] utilizes masks to extract pedestrian features and guides
the detector to focus on the visible parts of pedestrians. In [38], three attention networks
were designed for the whole body, the visible parts and the body parts, to distinguish
between different pedestrians. Furthermore, a joint attention mechanism [18] was proposed
to extract more robust features of pedestrians using channel, spatial, and self-attention
mechanisms in the lateral connections of an FPN. In addition, NMS-loss was proposed
in [39], which pulls proposals belonging to the same pedestrian closer together while
pushing those belonging to different pedestrians away from each other. These methods
aim to detect more pedestrians, especially occluded ones, highlighting the significance
of post-processing algorithms. Consequently, several studies have attempted to improve
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NMS algorithms to accurately retain pedestrians, especially those occluded by others, and
remove numerous duplicate proposals generated by pedestrian detectors.

2.3. NMS

The NMS algorithm, initially known as Greedy NMS, is widely utilized as a post-
processing method in object detection. It uses a rigid threshold to divide a uniform
suppression interval for each pedestrian and directly discards all the other proposals within
the interval to remove duplicates. However, the rigid threshold and discarding operation
utilized in Greedy NMS tend to incorrectly remove the proposals belonging to occluded
pedestrians in crowded scenes. In order to handle this problem, Soft NMS [16] uses a re-
scoring strategy that replaces the discarding operation used in Greedy NMS. Furthermore,
Adaptive NMS [17] uses a dynamic threshold to replace the rigid threshold in the existing
NMS algorithms, and demonstrates improved performance, especially combined with
Soft NMS. Considering the sensitivity of hyperparameters in Soft NMS, a normalized
suppression function [39] was proposed to enhance the robustness of NMS. In addition,
MAPD [19] employs a triplet loss function to learn the high-level ID features of pedestrians
and uses a new segmented NMS algorithm. In [40], each pedestrian was predicted to have a
nearby object, and suppression was conducted based on the proximity between the current
bounding box and the nearby object. Alternatively, a pedestrian detector [41] predicts two
proposals for each pedestrian and conducts NMS within each branch. MB-CSP [42] predicts
the upper, middle, and lower parts of each pedestrian, and applies NMS based on occlusion
modes. Although the above-mentioned methods employ different approaches that attempt
to retain occluded pedestrians, they still encounter challenges where partial false positives
are mistakenly retained while highly occluded pedestrians are still removed.

3. The Proposed Method

In this section, to facilitate the understanding of our approach, we first review the flow
of the NMS algorithm by revisiting Greedy NMS. Next, we provide a detailed introduction
to the Multi-Attribute NMS (MA-NMS), the attribute branch (ATTB), and the pedestrian
detector for crowded scenes, which are proposed in this paper. Finally, we describe the
methods of obtaining annotations of density and count attributes with existing annotations.

3.1. Greedy NMS

Greedy NMS, as the initial Non-Maximum Suppression algorithm, plays a critical
role in removing duplicate proposals generated by pedestrian detectors. Each proposal is
represented by a pair of confidence scores and a bounding box. The algorithm follows the
steps outlined below:

1. Sort all the bounding boxes in set B in descending order based on their confidence scores.
2. Calculate the intersection-over-union (IoU) of the first bounding box M, which has

the highest confidence score, and the sequenced bounding boxes bi. If IoU(M, bi)
exceeds the rigid threshold Nt, the confidence score of bi will be set to zero.

3. Move the proposal m, with bounding box M, into the set F, which is initialized with
an empty set.

4. Repeat the above three steps for the remaining bounding boxes in B until complete traversal.

The set F represents the final predictions of the pedestrian detector. The above process
can be expressed as the following re-scoring function:

si =

{
si, IoU(M, bi) < Nt,
0, IoU(M, bi) ≥ Nt,

(1)

where si and bi represent the confidence score and bounding box of the ith proposal, and
Nt is a constant rigid threshold that ranges between 0 and 1.

Despite several studies [14–16] aiming to decrease the incorrect removal of occluded
pedestrians by adjusting the single threshold or weakening the suppression operation in
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Greedy NMS, these approaches tend to generate more false positives while still mistakenly
removing highly occluded pedestrians, as shown in Figure 1. Therefore, striking a balance
between removing false positives and retaining occluded pedestrians in NMS remains a
challenging task.

3.2. Multi-Attribute NMS

Based on the analysis above, we propose a Multi-Attribute NMS (MA-NMS) algorithm
that adaptively adjusts suppression based on density and count attributes. MA-NMS
takes into account that the proposals whose bounding boxes have moderate overlap with
their neighboring bounding boxes may still represent potentially occluded pedestrians.
Therefore, instead of using absolute operations like discarding or retaining, MA-NMS
applies suppression with weak intensity to provide protection. Specifically, for each pedes-
trian, MA-NMS refines the traditional single suppression interval into strong and weak
suppression intervals to adaptively handle duplicate proposals and proposals belonging to
occluded pedestrians. The division between the strong suppression interval (SSI) and weak
suppression interval (WSI) is determined as follows:

di := max
bj∈G,i 6=j

IoU
(
bi, bj

)
, (2)

Nm = max(di, Nt), (3)

SSI = [Nm, 1], (4)

WSI = [Nt, Nm), (5)

where Nt represents the rigid threshold used in Greedy NMS. The dynamic threshold Nm
is consistent with Adaptive NMS, and is calculated using Equation (3).

Within the SSI, numerous duplicate proposals that closely overlap with M are present,
while only a few pedestrians occluded by M may be included. Therefore, strong sup-
pression is applied within the interval to effectively remove duplicate proposals. In order
to ensure the fair treatment of occluded pedestrians with different densities, the strong
suppression weight function fs incorporates the parameter Nm, as shown in Equation (6).
Within the WSI, there are a number of occluded pedestrians, along with a few duplicate
proposals that are distant from the annotations. Hence, weak suppression is applied to
preserve the potentially occluded pedestrians, while mildly penalizing duplicate ones
as a complement to the strong suppression. The weak suppression weight function fw is
expressed in Equation (7). By utilizing both the strong and weak suppression, the re-scoring
strategy of MA-NMS is described in Equation (8).

fs(M, bi, dM) =

(
iou(M, bi)

Nm

)C1

, (6)

fw(M, bi, dM) = 1− (IoU(M, bi)− Nt), (7)

si =


si, IoU(M, bi) < Nt,
si fw(M, bi, dM), Nt ≤ IoU(M, bi) < Nm,
si fs(M, bi, dM), IoU(M, bi) ≥ Nm,

(8)

where C1 is a constant, and the experiments show that the detector achieves optimal
performance when a value of 4 is used.

Additionally, we note that the count of surrounding occluded pedestrians varies
greatly between pedestrians, particularly for pedestrians located at the edge of the crowd
and those in the center. For a given pedestrian, if all the occluded pedestrians surrounding



Appl. Sci. 2023, 13, 8073 7 of 20

them have been retained, the remaining proposals within the occluded pedestrian’s strong
and weak suppression intervals would only be duplicates. In order to further remove
duplicate proposals, MA-NMS takes into account the count attribute. Based on the count
attribute, the suppression intensity within each interval is adjusted using the suppression
factors. By considering both density and count attributes, MA-NMS can be described using
Algorithm 1. The re-scoring function of MA-NMS is expressed in Equation (9).

si =


si, IoU(M, bi) < Nt,
si fw(M, bi, dM, ci), Nt ≤ IoU(M, bi) < Nm,
si fs(M, bi, dM, ci), IoU(M, bi) ≥ Nm,

(9)

fw(M, bi, dM, ci) = ( fw(M, bi, dM))x, (10)

fs(M, bi, dM, ci) = ( fs(M, bi, dM))y, (11)

where ci is the count attribute of the ith pedestrian and represents the count of surrounding
pedestrians occluded by them. Specifically, x and y are suppression factors, which are
initially set to 1. If the surrounding occluded pedestrians of a pedestrian have been retained,
the suppression factors x and y are assigned the respective constants C2 and C3 for further
suppression. The experiments in the subsequent section show that values of 3 and 4 for C2
and C3 obtain the optimal performance.

Algorithm 1: The procedure of Multi-Attribute NMS.

Input: B = b1, . . . , bn, S = s1, . . . , sn,
D = d1, . . . , dn, C = c1, . . . , cn, Nt
B is the list of initial bounding boxes;
S is the list of corresponding confidence scores;
D is the list of corresponding density attributes;
C is the list of corresponding count attributes;
Nt is the rigid NMS threshold.
Output: F
1: begin:
2: F ← ∅
3: While B 6= ∅ do
4: m = argmaxS
5: M = bm
6: Nm = max(Nt, dm)
7: F ← F ∪ (sm, M); S← S− sm; B← B−M
8: for bi in B do
9: if IoU(M, bi) ≥ Nm then
10: if ci ≥ 0 then
11: si = si × fs(M, bi, dM)
12: else
13: si = si × ( fs(M, bi, dM))C3

14: ci = ci − 1
15: else if IoU(M, bi) ≥ Nt then
16: if ci ≥ 0 then
17: si = si × fw(M, bi, dM)
18: else
19: si = si × ( fw(M, bi, dM))C2

20: ci = ci − 1
21: end for
22: end while
23: return F
24: end
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3.3. Attribute Branch

In addition to category and location information, abundant attribute information is
contained in the feature map generated by the backbone network. In contrast to [17], which
solely focuses on learning the density attribute, an attribute branch (ATTB) is proposed to
simultaneously extract both the density and count attributes of pedestrians, guiding the
adjustment of the suppression intervals and intensity in MA-NMS. The structure of ATTB
is illustrated in the orange box in Figure 3.
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strong suppression using a score threshold of 0.01. Meanwhile, weak suppression is employed to
retain the occluded pedestrians (highlighted in green). Color printing is recommended.

In the attribute branch (ATTB), a context extraction module (CEM), consisting of a
5× 5 dilated convolution followed by a 1× 1 standard convolution, is designed. The CEM
is applied to capture the contextual information of pedestrians. The extracted context is
then fed into the Region Proposal Network (RPN) to generate regions of interest (RoIs).
These RoIs are subsequently concatenated with that from the detection branch, enabling
a more comprehensive representation of pedestrians and their surrounding occluded
pedestrians. Moreover, the concatenated ROIs are fed into two fully connected layers (FC
layers) to obtain the density and count attributes. Notably, the proposed ATTB can be easily
embedded into generic pedestrian detectors to acquire the density and count attributes,
which, in turn, guide the adjustment of the NMS. Consequently, the incorporation of ATTB
enhances the capabilities of NMS-based detectors in mitigating the impact of intra-class
occlusion.
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3.4. Pedestrian Detector for Crowded Scenes

Incorporating the proposed MA-NMS and ATTB, a pedestrian detector for crowded
scenes is constructed on the basis of Faster R-CNN, as shown in Figure 3. Notably, the de-
tection branch of the detector remains unchanged. Subsequently, the detector is trained on
two datasets separately, and extensive experiments are conducted to verify the effectiveness
of our proposed method.

During the training phase, the constructed detector optimizes the entire network using
a weighted loss function L, which is expressed in Equation (12).

L = λ1Lrpn_cls + λ2Lrpn_reg + λ3Lbox_cls + λ4Lbox_reg + λ5Ldensity + λ6Lcount, (12)

where λi is employed to balance the gradient magnitude of the corresponding loss. Lrpn_cls
and Lbox_cls are computed using cross-entropy loss, and the Lrpn_reg and Lbox_reg are calcu-
lated using smooth L1 loss, which is in line with [8]. Furthermore, the detector treats the
detection of density and count attributes as regression tasks, employing smooth L1 loss to
calculate Ldensity and Lcount.

During the inference phase, MA-NMS is utilized to suppress the numerous duplicate
proposals based on the count and density attributes. As illustrated in Figure 3, proposals
with bounding boxes that overlap with that of the current pedestrian will be removed
by strong suppression. Additionally, proposals belonging to occluded pedestrians are
retained by weak suppression. Eventually, our pedestrian detector obtains more accurate
predictions for pedestrian detection in crowded scenes.

3.5. Ground Truth for Pedestrian Density and Count Attributes

The constructed pedestrian detector additionally detects the density and count at-
tributes of pedestrians, which represent the maximum occlusion degree and the count
of surrounding occluded pedestrians for each pedestrian. Unfortunately, no specific an-
notations for the density and count attributes are available in the benchmark datasets
for pedestrian detection, and it is expensive to manually annotate a public benchmark
dataset. In order to address this challenge, recent studies [13,42] have proposed methods
to generate approximate annotations based on existing annotations. Inspired by these
methods, we generate annotations of the density and count attributes using the existing
full-body annotations.

Consistent with [17], we calculate the density attribute of each pedestrian by consid-
ering the maximum IoU value between their ground truth and that of the others, which
is expressed in Equation (2). Additionally, inspired by Greedy NMS, we account for the
occlusion between two pedestrians when their ground truths exhibit an IoU value above
the rigid threshold Nt. For each pedestrian, the count attribute is determined by summing
the number of pedestrians occluded by them. The quantization process is expressed in
Equation (13).

ci := ∑
bj∈G,i 6=j

h(iou(M, bi)− Nt), (13)

h(x) =
{

0, x < 0,
1, x ≥ 0,

(14)

where ci is the count attribute of the ith pedestrian and represents the count of surrounding
pedestrians occluded by them. G denotes the ground truths and bi represents the full-body
annotation of the ith pedestrian.

4. Experiments

In this section, we first introduce the datasets and evaluation metrics. Subsequently,
we provide a detailed description of the experimental setup, followed by a comprehensive
analysis of our proposed method.
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4.1. Datasets and Evaluation Metrics
4.1.1. Datasets

CrowdHuman [22], a challenging pedestrian benchmark, is widely used to evaluate
the performance of pedestrian detectors in crowded scenes. In this paper, we choose
CrowdHuman to evaluate the performance of our proposed method in crowded scenes.
CrowdHuman consists of images from over 40 different cities worldwide, which are
crawled by Google. These images depict dense and diverse crowds, posing significant
challenges for pedestrian detection. CrowdHuman comprises a total of 24,370 images,
with 15,000 images allocated for training, 4370 images for validation, and 5000 images for
testing.

CityPersons [23], a subset of Cityscapes [43], is a commonly used benchmark dataset
for pedestrian detection. It is selected in the paper to evaluate the performance of MA-NMS
in slightly crowded scenes. CityPersons exhibits a high level of diversity and depicts numer-
ous cities and countries in Europe. CityPersons comprises 5000 images, with 2975 images
allocated for training, 500 images for validation, and 1525 images for testing. Table 1
presents the statistics of the training sets for CrowdHuman and CityPersons.

Table 1. Statistics of CrowdHuman and CityPersons training sets.

Objects CrowdHuman CityPersons

Images 15,000 2975
Persons 339,565 19,238

Ignore regions 99,227 6768
Person/image 22.64 6.47

Unique persons 339,565 19,238

4.1.2. Evaluation Metrics

On CrowdHuman, we report the performance of our proposed method using various
metrics, including average accuracy (AP), Recall, MR−2, and FPS. On CityPersons, we
evaluate the performance of our detector using MR−2 on four subsets: reasonable (R), bare
(B), partial (P), and heavy occlusion (H). These subsets are divided based on the visibilities
of pedestrians, as shown in Table 2. More details of the evaluation metrics are given below

• AP: Average precision, which summarizes a precision–recall curve of detection results,
is one of the most popular evaluation metrics in generic object detection. In the
subsequent experiments, we follow the AP metric in PASCAL VOC [44] (the larger, the
better) and consider proposals with IoU ≥ 0.5 to be positive. This metric effectively
measures the accuracy of a detector.

• Recall: The maximum recall, for a fixed number of proposals, represents the proportion
of true positives detected by a detector out of the total number ground truths. This
metric evaluates the ability of a detector to accurately detect the true ground truths.
Larger values indicate better performance.

• MR−2: Log-average miss rate, which is calculated using false positives per image
(FPPI) in the range of

[
10−2, 100], is a commonly used evaluation metric in pedestrian

detection. This metric is particularly sensitive to false positives, especially those with
high confidence scores. Smaller values of MR−2 indicate better performance of a
pedestrian detector.

• FPS: Frames per second, which represents the number of frames processed per second,
is a commonly used metric for measuring the speed of detectors. Larger values of FPS
indicate faster processing speed of a detector.
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Table 2. Subsets of CityPersons dataset based on visibility.

Subsets Visibility

Reasonable (R) [0.65, 1]
Bare (B) [0.9, 1.0]

Partial (P) [0.65, 0.9]
Heavy (H) [0.2, 0.65]

4.2. Implementation Details

In the subsequent experiments, we choose Faster R-CNN with ResNet-50 and a Feature
Pyramid Network (FPN) as the baseline, in which Greedy NMS is used for post-processing.
In order to obtain more accurate features, RoI Align [45] is employed. Given the varying
shapes of images in CrowdHuman, the input images are uniformly resized to 800 pixels
on the shorter side and kept below 1400 pixels on the longer side. The aspect ratios of
the anchors are resized to H

W = {1, 2, 3}. Following [8,23], the height and width of the
images in CityPesons are enlarged by a factor of 1.3, and the aspect ratios of the anchors
are adjusted to H

W = {2.44} to accommodate pedestrian scale.
During the training phrase, ResNet-50 is pretrained on ImageNet [46]. The remaining

parameters of our detector are initialized using Kaiming initialization [47]. Our detector
is trained on 2 NVIDIA Ampere A40 GPUs, with a minimum batch size of 16 images. We
employ Stochastic Gradient Descent (SGD) with a momentum of 0.9 and weight decay of
0.0001 as the optimizer. For CrowdHuman, our detector is trained for 39,979 iterations,
while for the CityPersons dataset, our detector is trained for 5580 iterations. In the case
of CrowdHuman, the initial learning rate is set to 0.04, and it is decreased by a factor of
10 after 18,750 and 28,125 iterations. For CityPersons, the initial learning rate is set to 0.02,
and it is decreased by a factor of 10 after 3720 and 4650 iterations.

During the inference phase, each image is subjected to a maximum of 100 detections.
The same resizing operation, as mentioned during training, is applied. To ensure a fair
comparison with other NMS methods, the value of the rigid threshold Nt is set to 0.5, unless
stated otherwise.

4.3. Ablation Study

To comprehensively evaluate the performance of the proposed method, detailed
ablation experiments are conducted on CrowdHuman. These experiments involve the
progressive application of strong suppression (SS), weak suppression (WS), and suppression
factors (SF). Table 3 shows the results of the ablation study, with the best results shown in
bold. This table clearly reflects the significant performance improvement of the pedestrian
detector following the sequential application of strong suppression, weak suppression, and
suppression factors in MA-NMS. Specifically, when strong and weak suppression are used,
there is a notable improvement of 6.1% and 1.1% in terms of Recall and MR−2 compared to
the baseline. This indicates that the adaptive application of strong and weak suppression
contributes to the retention of more pedestrians, especially those occluded pedestrians
that are incorrectly removed by the Greedy NMS used at the baseline, while effectively
removing duplicate proposals. Moreover, the additional application of suppression factors
results in further improvement of 1.1% and 1.7% for AP and MR−2. This suggests that
considering count attributes enables more precise suppression of duplicate proposals.
Ultimately, with the complete application of MA-NMS, a substantial improvement of 4.2%
and 6.5% is achieved for AP and Recall, strongly verifying the superiority of the proposed
MA-NMS in enhancing the performance of generic pedestrian detectors in crowded scenes.
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Table 3. Ablation experiments evaluated on CrowdHuman validation set. The baseline (the first line)
corresponds to Faster R-CNN [8] with ResNet-50, FPN, and Greedy NMS. MA-NMS—Multi-Attribute
NMS. SS—strong suppression. SW—weak suppression. SF—suppression factors.

Methods SS WS SF AP Recall MR−2

Baseline 85.0 88.1 44.8

MA-NMS(ours)

√
88.6 92.7 45.1√ √
89.1 94.2 43.7√ √
89.3 93.5 42.5√ √ √
90.2 94.6 42.0

Better performance is indicated by the table’s bold font. This also applies to subsequent tables.

4.4. Hyperparameters
4.4.1. Rigid Threshold

Our MA-NMS, along with well-known NMS algorithms, such as Greedy NMS, Soft
NMS [16], and Adaptive NMS [17], incorporates the hyperparameter Nt as the rigid thresh-
old. In order to achieve their optimal performances and sensitivities, different values of Nt
are employed in the experiments. The evaluation metric AP is used to measure the average
precision of the pedestrian detector. To ensure a fair comparison, all the NMS algorithms
are implemented using the same programming language and separately applied to the
baseline with the same settings. Figure 4 illustrates the results of NMS algorithms with
varying values of Nt. Obviously, MA-NMS achieves the best performance across all values
of Nt, and the optimal results for all the NMS algorithms in the experiments are obtained,
when Nt is set to 0.5. Furthermore, the results shows that Greedy NMS remains consistent
between 0.55 and 0.85, Adaptive NMS is stable between 0.80 and 0.87, while MA-NMS
remains stable between 0.85 and 0.90, with only 16.67% and 71.42% of their AP values
floating, which indicates that MA-NMS exhibits lower sensitivity to the hyperparameters
Nt compared to these well-known NMS algorithms.
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Figure 4. Results of NMS algorithms with varying values of rigid threshold Nt. The experiments are
conducted on the CrowdHuman validation set. To ensure a fair comparison, these NMS algorithms
are applied separately to the same baseline, with the same settings stated in Section 4.2. The higher
the AP value, the better the result.

4.4.2. Exponential Constants

The strong suppression weight function of MA-NMS contains a hyperparameter C1,
which is used to enhance the suppression of duplicate proposals. Additionally, C2 and C3
are utilized as large suppression factors in strong and weak suppression to further remove
duplicate proposals, respectively. Extensive experiments are conducted to evaluate the
performance of MA-NMS using the control variables method. More concretely, when C1 is
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varied, C2 and C3 are set to 3 and 4. When C2 is varied, C1 and C3 are set to 4. When C3 is
varied, C1 and C2 are set to 4 and 3. Figure 5 shows the results of MA-NMS with different
values of these exponential constants. As depicted in Figure 5a, the best performance is
obtained when C1 is set to 4. Furthermore, it can be seen from Figure 5b,c that the optimal
performance is obtained when C2, C3 are set to 3 and 4.
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4.5. Speed

The inference speed is equally essential for NMS. In order to obtain a speed compari-
son, we apply the well-known NMS algorithms [16,17] to Faster R-CNN separately and
conduct the experiments in the same environment. Table 4 shows the results of the accuracy
and speed comparison. Despite exhibiting a slight decrease in speed, MA-NMS demon-
strates significant improvements in other metrics, particularly a 3.8% Recall improvement
and a 2.5% MR−2 improvement compared to Soft NMS [16]. The improvement in Recall
implies that MA-NMS retains more pedestrians than other NMS algorithms, especially
occluded pedestrians that are prone to being mistakenly removed, as no changes have been
made to the generic pedestrian detection branch [8]. Additionally, the improved MR−2

value indicates that MA-NMS performs more potent suppression on duplicate proposals,
resulting in fewer false positives. In summary, while the FPS of MA-NMS is slightly lower
than that of the previously superior Greedy NMS, the decrease is only 3.9%. On the other
hand, the accuracy is significantly increased. These findings imply that MA-NMS achieves
a balance between accurate detection results and comparable speed for pedestrian detection
in crowded scenes.

Table 4. Results of different NMS algorithms equipped on Faster R-CNN. MA-NMS—Multi-Attribute
NMS.

Methods Nt AP Recall MR−2 FPS

Greedy NMS 0.5 85.0 88.1 44.8 10.75
Soft NMS [16] 0.5 86.6 90.8 44.5 10.62

Adaptive NMS [17] 0.5 87.3 90.0 45.2 10.45
MA-NMS (ours) 0.5 90.2 94.6 42.0 10.33

4.6. Comparison
4.6.1. Results of CrowdHuman

The proposed detector is trained on the CrowdHuman training set, and then, compared
with other state-of-the-art methods on the challenging crowded dataset. Table 4 shows
the comparative results of the CrowdHuman verification set, where w (w/o) represents
with (without) suppression factors, and the best results are shown in boldface. The results
clearly show that our MA-NMS outperforms the other NMS methods [40,48] in terms of
the Recall metric, even with only the application of strong and weak suppression. This is
due to the fact that the adaptive application of strong and weak suppression allows for a
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divide-and-conquer strategy that effectively suppresses duplicate proposals while retaining
those of occluded pedestrians, which is challenging to achieve using the single uniform
suppression operation employed in other NMS methods [40,48]. Furthermore, with the
application of suppression factors, MA-NMS outperforms all the competitors, especially
considering its 3.3% improvement in MR−2 compared to IDADA [49]. Despite IDADA [49]
utilizing data augmentation to obtain high-quality proposals, more duplicate proposals
are incorrectly retained by its Greedy NMS, making IDADA [49] more sensitive to false
positives than MA-NMS, and a similar dilemma is also faced by method the method used
in [50,51]. Moreover, the authors of [39,52] trained their models to more accurately generate
bounding boxes to assist Greedy NMS in identifying duplicate proposals; however, their
assistance is limited in crowded scenes due to ubiquitous intra-class occlusion, and they
lack the adaptive suppression capability of MA-NMS, ultimately resulting in 3.6% and 6.2%
lag in Recall compared to MA-NMS. Furthermore, MA-NMS gains 1.4% improvement in
AP compared to JointDet [18]. This can be attributed to MA-NMS effectively leveraging
attribute information in pedestrian features for suppression, which is absent in JointDet [18],
despite its attempts to extract more robust pedestrian features. These results validate the
effectiveness of MA-NMS in improving the performance of generic pedestrian detectors in
crowded scenes, making it a competitive choice over other advanced models [18,49–51] in
crowded scenes.

4.6.2. Results of CityPersons

We train the proposed detector on the training set of CityPersons, and compare its
performance with the state-of-the-art detectors on the dataset. Table 5 shows the comparison
results of the CityPersons validation set. It clearly demonstrates that MA-NMS achieves the
best performance on the R, P, and B subsets, with the strong and weak suppression tokens.
In particular, our detector shows a significant 3.5% MR−2 improvement compared to NOH
NMS [40]. This improvement can be attributed to the adaptive application of strong and
weak suppression in MA-NMS, which imposes a stronger penalty on duplicate proposals
and better preserves numerous occluded pedestrians in the H subset. By additionally
applying suppression factors, MA-NMS further enhances its performance on these four
subsets, and outperforms CSP [13], with an 1.0% and 0.4% MR−2 improvement on the R
and H subsets. This can be attributed to the adaptive adjustment of suppression intensity
in MA-NMS, which is determined based on the density and count attributes of pedestrians,
leading to further suppression of duplicate proposals, and reducing sensitivity to false
positives. Moreover, MA-NMS gain a 5.5% and 2% MR−2 improvement compared to
TLL [47] and ALFNet [48] due to the comprehensive consideration of pedestrian density
and count attributes in MA-NMS, which enables more accurate suppression compared to
methods that rely solely on bounding box and confidence score information. The results
reported in Table 6 validate the superior performance of MA-NMS for pedestrian detection
in slightly crowded scenes.

Table 5. Comparison with the state-of-the-art methods on CrowdHuman validation set. w (w/o)
represents with (without) suppression factors.

Method Backbone AP Recall MR−2

PBM + R2NMS [48] ResNet-50 89.3 93.3 43.4
NOH-NMS [40] ResNet-50 89.0 92.9 43.9

RepLoss [39] ResNet-50 85.6 88.4 45.7
AutoPedestrian [50] ResNet-50 87.7 93.0 46.9

LLA.FCOS [51] ResNet-50 88.1 93.4 47.9
JointDet [18] DarkNet-53 88.8 - 43.4
IDADA [49] ResNet-50 88.0 93.6 45.3
CouLoss [52] ResNet-50 89.8 91.0 42.4

MA-NMS (w/o) ResNet-50 89.1 94.2 43.7
MA-NMS (w) ResNet-50 90.2 94.6 42.0
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Table 6. Comparison with the state-of-the-art methods on CityPersons validation set. w (w/o)
represents with (without) suppression factors.

Methods Backbone R H P B

RepLoss [39] ResNet-50 13.2 56.9 16.8 7.6
TLL [53] ResNet-50 15.5 53.6 17.2 10.0

TLL + MRF [53] ResNet-50 14.4 52.0 15.9 9.2
ALFNet [54] ResNet-50 12.0 51.9 11.4 8.4

PBM + R2NMS [48] VGG16 11.1 53.3 - -
NOH NMS [40] ResNet-50 10.8 53.0 11.2 6.6

AutoPedestrian [50] ResNet-50 11.5 56.7 - -
CSP [13] ResNet-50 11.0 49.4 10.4 7.3

MA-NMS (w/o) ResNet-50 10.6 49.5 9.9 6.5
MA-NMS (w) ResNet-50 10.0 48.9 9.0 6.3

4.7. Visualization

Ubiquitous intra-class occlusion [55] in crowded scenes poses a challenge for pedes-
trian detectors, as proposals belonging to occluded pedestrians share a high similarity with
duplicate proposals, leading to inaccurate detection results. In order to provide a clear illus-
tration, we visualize the detection results of our proposed detector on the CrowdHuman
and CityPersons datasets. Figure 6 shows the visualization of our method on CrowdHuman.
It clearly shows that crowded pedestrians captured from multiple angles are accurately
detected by our proposed detector, even those who are occluded by others. This is owing
to the adaptive suppression in MA-NMS, which effectively preserves occluded pedestrians
while significantly suppressing duplicate proposals. Figure 7 presents additional visualiza-
tion examples on CityPersons, where our detector achieves accurate pedestrian detection
in slightly crowded scenes. The visualized results collectively demonstrate the superiority
of our MA-NMS in improving the performance of generic pedestrian detectors in both
crowded and slightly crowded scenes.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21 
 

Table 6. Comparison with the state-of-the-art methods on CityPersons validation set. w (w/o) repre-
sents with (without) suppression factors. 

Methods Backbone R H P B 
RepLoss [39] ResNet-50 13.2 56.9 16.8 7.6 

TLL [53] ResNet-50 15.5 53.6 17.2 10.0 
TLL + MRF [53] ResNet-50 14.4 52.0 15.9 9.2 

ALFNet [54] ResNet-50 12.0 51.9 11.4 8.4 
PBM + R2NMS [48] VGG16 11.1 53.3 - - 

NOH NMS [40] ResNet-50 10.8 53.0 11.2 6.6 
AutoPedestrian [50] ResNet-50 11.5 56.7 - - 

CSP [13] ResNet-50 11.0 49.4 10.4 7.3 
MA-NMS (w/o) ResNet-50 10.6 49.5 9.9 6.5 
MA-NMS (w) ResNet-50 10.0 48.9 9.0 6.3 

4.7. Visualization 
Ubiquitous intra-class occlusion [55] in crowded scenes poses a challenge for pedes-

trian detectors, as proposals belonging to occluded pedestrians share a high similarity 
with duplicate proposals, leading to inaccurate detection results. In order to provide a 
clear illustration, we visualize the detection results of our proposed detector on the 
CrowdHuman and CityPersons datasets. Figure 6 shows the visualization of our method 
on CrowdHuman. It clearly shows that crowded pedestrians captured from multiple an-
gles are accurately detected by our proposed detector, even those who are occluded by 
others. This is owing to the adaptive suppression in MA-NMS, which effectively preserves 
occluded pedestrians while significantly suppressing duplicate proposals. Figure 7 pre-
sents additional visualization examples on CityPersons, where our detector achieves ac-
curate pedestrian detection in slightly crowded scenes. The visualized results collectively 
demonstrate the superiority of our MA-NMS in improving the performance of generic 
pedestrian detectors in both crowded and slightly crowded scenes. 

 
Figure 6. Visualization of our method on CrowdHuman. Figure 6. Visualization of our method on CrowdHuman.



Appl. Sci. 2023, 13, 8073 16 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 21 
 

 
Figure 7. Visualization of our method on CityPersons. 

5. Discussion 
Dense crowds cause ubiquitous intra-class occlusion [55] between pedestrians, which 

is exacerbated by varying postures and different shooting angles. Consequently, dense 
and highly overlapped proposals are generated, posing a challenge for NMS algorithms 
to preserve the proposals of occluded pedestrians while removing duplicate ones. As a 
result, generic pedestrian detectors fail to meet the requirements of pedestrian detection 
in crowded scenes. 

To address the above-mentioned problem, this paper proposes a Multi-Attribute 
NMS (MA-NMS), which enables adaptive suppression based on the density and count 
attributes of pedestrians. Additionally, an attribute branch (ATTB) is proposed to obtain 
the density and count attributes, which guides the adjustment of suppression intervals 
and intensity in MA-NMS. Furthermore, leveraging the proposed ATTB, a specialized de-
tector based on MA-NMS is constructed for pedestrian detection in crowded scenes, 
which incorporates the density and count attributes of pedestrians and adjusts the NMS 
algorithm to enhance the accuracy of pedestrian detection in crowded scenes. 

Extensive experiments are conducted on CrowdHuman and CityPersons benchmark 
datasets to evaluate the performance of our method. The experimental results show prom-
ising progress in crowded pedestrian detection, especially a noTable 5.2% and 6.5% im-
provement in AP  and Recall  compared to Greedy NMS on CrowdHuman. These find-
ings strongly verify the advantages of the proposed MA-NMS in improving the perfor-
mance of generic pedestrian detectors in crowded scenes. 

The promising progress observed in these experiments are interpretable from the 
perspective of previous studies and hypotheses. Recent studies [17,18] have emphasized 
the importance of an appropriate suppression interval for more accurate predictions in 
crowded scenes. However, due to the presence of ubiquitous intra-class occlusion, deter-
mining a precise suppression interval for each pedestrian is challenging. In order to ad-
dress this problem, MA-NMS introduces strong and weak suppression intervals , provid-
ing an approximation of the precise suppression interval. Additionally, inspired by Soft 
NMS [16], MA-NMS proposes strong and weak suppression weight functions for re-scor-
ing in the corresponding interval. This adaptive approach enhances the adaptability of 
MA-NMS to complex crowded scenes, enabling more accurate predictions for pedestrian 
detection in crowded scenes. Moreover, inspired by [20,21], we propose an attribute 
branch (ATTB) to obtain the density and count attributes for post-refining the NMS-based 
pedestrian detectors. The ATTB guides the adjustment of suppression intervals and inten-
sity of MA-NMS, benefiting the accuracy of predictions from an overall perspective. 

Figure 7. Visualization of our method on CityPersons.

5. Discussion

Dense crowds cause ubiquitous intra-class occlusion [55] between pedestrians, which
is exacerbated by varying postures and different shooting angles. Consequently, dense
and highly overlapped proposals are generated, posing a challenge for NMS algorithms
to preserve the proposals of occluded pedestrians while removing duplicate ones. As a
result, generic pedestrian detectors fail to meet the requirements of pedestrian detection in
crowded scenes.

To address the above-mentioned problem, this paper proposes a Multi-Attribute NMS
(MA-NMS), which enables adaptive suppression based on the density and count attributes
of pedestrians. Additionally, an attribute branch (ATTB) is proposed to obtain the density
and count attributes, which guides the adjustment of suppression intervals and intensity in
MA-NMS. Furthermore, leveraging the proposed ATTB, a specialized detector based on
MA-NMS is constructed for pedestrian detection in crowded scenes, which incorporates
the density and count attributes of pedestrians and adjusts the NMS algorithm to enhance
the accuracy of pedestrian detection in crowded scenes.

Extensive experiments are conducted on CrowdHuman and CityPersons benchmark
datasets to evaluate the performance of our method. The experimental results show
promising progress in crowded pedestrian detection, especially a noTable 5.2% and 6.5%
improvement in AP and Recall compared to Greedy NMS on CrowdHuman. These findings
strongly verify the advantages of the proposed MA-NMS in improving the performance of
generic pedestrian detectors in crowded scenes.

The promising progress observed in these experiments are interpretable from the
perspective of previous studies and hypotheses. Recent studies [17,18] have emphasized the
importance of an appropriate suppression interval for more accurate predictions in crowded
scenes. However, due to the presence of ubiquitous intra-class occlusion, determining
a precise suppression interval for each pedestrian is challenging. In order to address
this problem, MA-NMS introduces strong and weak suppression intervals, providing an
approximation of the precise suppression interval. Additionally, inspired by Soft NMS [16],
MA-NMS proposes strong and weak suppression weight functions for re-scoring in the
corresponding interval. This adaptive approach enhances the adaptability of MA-NMS
to complex crowded scenes, enabling more accurate predictions for pedestrian detection
in crowded scenes. Moreover, inspired by [20,21], we propose an attribute branch (ATTB)
to obtain the density and count attributes for post-refining the NMS-based pedestrian
detectors. The ATTB guides the adjustment of suppression intervals and intensity of
MA-NMS, benefiting the accuracy of predictions from an overall perspective.
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MA-NMS can be easily integrated into generic pedestrian detectors based on the
ATTB. By mitigating the influence of intra-class occlusion on pedestrian detectors, MA-
NMS facilitates more accurate predictions for pedestrian detection in crowded scenes, in
turn, having a positive impact on subsequent tasks, such as face recognition [5], pedestrian
re-identification [6], and human interaction [7].

In the future, we will utilize MA-NMS to deal with other problems in pedestrian
detection, such as inter-class occlusion and inter-class confusion.

6. Conclusions

With the increasing demand for pedestrian detection in crowded scenes, traditional
pedestrian detectors face challenges due to their inability to handle ubiquitous intra-class
occlusion, for which NMS struggles to accurately differentiate between the proposals of
occluded pedestrians and duplicate proposals. To address the above-mentioned problem,
we propose a Multi-Attribute NMS (MA-NMS) that adaptively adjusts suppression based
on density and count attributes. MA-NMS strengthens suppression on duplicate proposals
while weakening that for potentially occluded pedestrians, thus leading to more accurate
predictions in crowded scenes. In addition, an attribute branch (ATTB) is designed to
obtain the density and count attributes and simultaneously guides the adjustment of MA-
NMS. ATTB uses a context extraction module (CEM) to extract the context of pedestrians,
and then, concentrates the context with the feature of pedestrians for accurate attribute
detection. Moreover, utilizing the proposed ATTB, a pedestrian detector based on MA-NMS
is constructed, which enables more accurate predictions in crowded scenes. Extensive
experiments on two challenging benchmarks are conducted, and the results demonstrate
the superiority of our method compared to existing approaches, sufficiently validating
the effectiveness of our model for pedestrian detection in crowded scenes. In the future,
we plan to extend the application of MA-NMS to address inter-class occlusion and inter-
class confusion in pedestrian detection. Additionally, a comprehensive evaluation of
the sensitivity of the proposed MA-NMS is planned, and the corresponding solution is
expected to be proposed in future work. Moreover, we will further attempt to use a lighter
object detector to replace the two-stage Faster R-CNN, and design lightweight modules to
improve the speed of the proposed MA-NMS algorithm.
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