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Abstract: Ecoacoustics is arguably the best method for monitoring marine environments, but ana-
lyzing and interpreting acoustic data has traditionally demanded substantial human supervision
and resources. These bottlenecks can be addressed by harnessing contemporary methods for auto-
mated audio signal analysis. This paper focuses on the problem of assessing dolphin whistles using
state-of-the-art deep learning methods. Our system utilizes a fusion of various resnet50 networks
integrated with data augmentation (DA) techniques applied not to the training data but to the test
set. We also present training speeds and classification results using DA to the training set. Through
extensive experiments conducted on a publicly available benchmark, our findings demonstrate that
our ensemble yields significant performance enhancements across several commonly used metrics.
For example, our approach obtained an accuracy of 0.949 compared to 0.923, the best reported in the
literature. We also provide training and testing sets that other researchers can use for comparison
purposes, as well as all the MATLAB/PyTorch source code used in this study.
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1. Introduction

Marine ecosystems play a critical role in maintaining the balance of our planet’s
ecosystem by supporting food security and contributing to climate regulation [1], making
their preservation essential for the long-term sustainability of the earth’s environment.
Thus, there is a growing need to develop and test innovative monitoring systems to
ensure the natural preservation of marine habitats. Modern technologies have already
shown great potential in monitoring habitats and advancing our understanding of marine
communities [2]. Acoustic methods are commonly used for underwater investigations
because they can detect and classify sensitive targets, even in low visibility conditions.
Passive acoustic technologies (PAM), such as underwater microphones, or hydrophones,
are particularly attractive, as they allow for non-invasive continuous monitoring of marine
ecosystems without interfering with biological processes [3]. PAM has been shown to
achieve various research and management goals by effectively detecting animal calls [4].
These objectives may include tracking and localizing animals [5,6], species identification,
identifying individuals [3,7], analyzing distributions and behavior [8], and estimating
animal density [9].

The bottlenose dolphin (Tursiops truncatus) is a highly intelligent marine mammal
and a critical species for researchers studying marine ecosystems [10]. Like many other
marine mammals, dolphins are acoustic specialists that rely on sounds for communica-
tion, reproduction, foraging, and navigational purposes. The acoustic communication of
dolphins employs a wide range of vocalizations, including clicks, burst-pulses, buzzes,
and whistles [11]. Whistles, in particular, serve various social functions such as individual
identification, group cohesion, and coordination of activities, such as feeding, resting,
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socializing, and navigation [12]. Understanding and accurately detecting dolphin vocaliza-
tions is essential for monitoring their populations and assessing their role within marine
ecosystems.

Traditional bioacoustics tools and algorithms for detecting dolphins have relied on
spectrogram analysis, manual signal processing, and statistical methods [13]. For example,
the reference approach pursued in [14] applies three noise removal algorithms to the
spectrogram of a sound sample. Then, a connected region search is conducted to link
together sections of the spectrogram that are above a predetermined threshold and close
in time and frequency. A similar technique exploits a probabilistic Hough transform
algorithm to detect ridges similar to thick line segments, which are then adjusted to the
geometry of the potential whistles in the image via an active contour algorithm [15]. Other
algorithmic methods aim to quantify the variation in complexity (randomness) occurring
in the acoustic time series containing the vocalization; for example, by measuring signal
entropy [16]. While these techniques have helped the study of dolphin vocalizations, they
can be time-consuming and may not always provide accurate results due to the complexity
and variability of the signals. Researchers have thus turned to machine learning methods
to improve detection accuracy and efficiency.

Early machine learning studies in the field of dolphin detection applied traditional
classifiers, such as Hidden Markov Models (HMM) [17] and Support Vector Machines
(SVMs) [18]. For instance, in [19], a hidden Markov model was utilized for whistle classi-
fication, and in [20], classification and regression tree analysis was employed along with
discriminant function analysis for categorizing parameters extracted from whistles. In [21],
a multilayer perceptron classifier was implemented for classifying short-time Fourier trans-
forms (STFTs) and wavelet transform coefficient energies of whistles. Lastly, in [15] a
random forest algorithm and a support vector machine were combined to classify features
derived from the duration, frequency, and cepstrum domain of whistles (see [22] for a
review of the early literature).

More recently, researchers have employed deep learning methods to detect whistle
vocalizations. Deep neural networks have demonstrated great potential in general sound
detection [23] and specific underwater acoustic monitoring [24]. The Convolutional Neural
Network (CNN) is one of the best-known deep learners. Though commonly considered an
image classifier, CNNs have been applied to whale vocalizations, significantly reducing the
false-positive rates compared to traditional algorithms, while at the same time enhancing
call detection [25,26]. In [27], the authors compared four traditional methods for detecting
dolphin echolocation clicks with six CNN architectures, demonstrating the superiority of
the CNNs. In [28], CNNs were shown to outperform human experts in dolphin call detec-
tion accuracy. CNNs have also been applied to automatically categorize dolphin whistles
into distinct groups, as in [29], and to extract whistle contours either by leveraging peak
tracking algorithms [30] or by training CNN-based models for semantic segmentation [31].

Several studies of dolphin whistle classification have used data augmentation on the
training set to enhance the performance of CNNs by reducing overfitting and increasing the
size and variability of the available datasets [29,30,32]. Dolphin vocalizations are complex
and highly variable, as analyzed in [33]. Unsurprisingly, some traditional music data
augmentation methods, such as pitch shifting, time stretching, and adding background
noise, have proven effective at this classification task. When synthesizing dolphin calls, care
should be taken to apply augmentations to the audio signal rather than to the spectrograms,
since altering the spectrogram could distort the time–frequency patterns of dolphin whis-
tles, which would result in the semantic integrity of the labels being compromised [29,34].
In [29], primitive shapes were interjected into the audio signal to generate realistic am-
bient sounds in negative samples, and classical computer vision methods were used to
create synthetic time–frequency whistles, which replaced the training data. Generative
Adversarial Networks (GANs) have also been employed to generate synthetic dolphin vo-
calizations [32]. This research underscores the efficacy of data augmentation and synthesis
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methods in enhancing both the precision and stability of dolphin whistle categorization
models, especially in situations where the datasets are restricted or imbalanced.

The goal of this work is to continue exploring data augmentation techniques for the
task of dolphin vocalization detection. To this end, we use the benchmark dolphin whistles
dataset developed by Korkmaz et al. [28], but apply data augmentation to the original test
set of spectrograms to enlarge it rather than the training set. The training set contains all
the spectrograms obtained from audio files recorded between 24 June and 30 June, while
the test set is composed of the spectrograms of audio files recorded between 13 July and
15 July, a three-day window. Aside from augmenting the test set, we extract a three-day
window (24–26 June) from the training set as the validation set.

The proposed system outperforms previous state-of-the-art methods on the same
dataset using the same testing protocol. We find our results interesting, especially since
many misclassified audio samples are unclassifiable, even by humans. Therefore, the
classification result of our method is likely very close to maximum performance (AUC = 1
is not obtainable).

The main contributions of this study are the following:

• The creation of a new baseline on this benchmark (note: using data augmentation on
the testing set increased performance);

• Clear and repeatable criteria for testing various new developments in machine learning
on this dataset by providing fixed training and test sets (both augmented and not
augmented) rather than a protocol involving randomization;

• Access to all the MATLAB/PyTorch source code used in this study https://github.
com/LorisNanni/ (accessed on 7 July 2023).

The remainder of this paper is organized into three sections. In Section 2, we present
the material and methods, and Sections 2.1 and 2.2 provide a complete description of
the dataset and baseline method presented in [28]. In Section 2.3, we offer a detailed
account of our proposed approach. In Section 3, we present the results of tests comparing
a standard ResNet with a set of ensembles, a comparison of our best ensemble with the
state-of-the-art, and the results of using data augmentation on both the training and the test
set. The conclusion in Section 4 discusses the shortcomings with the benchmark dataset
and suggestions for further research.

2. Materials and Methods
2.1. Dataset

In this section, we describe the dataset developed by Korkmaz et al. [28] and detailed
in that paper. The dataset contains 108,317 spectrograms, of which 49,807 are tagged as
noise and 58,510 as dolphin whistles. The test set contains 6869 spectrograms. The data
were collected with hydrophones during the summer of 2021 for 27 days from the dolphin’s
reef in Eilat, Israel. Following retrieval, a quality assurance (QA) process was conducted
on the data to eliminate occasional disruptions and prolonged periods of noise. This QA
procedure included the elimination of noise transients through wavelet denoising and the
identification and removal of cut-off events via thresholding and bias reduction.

2.1.1. Data Preprocessing and Tagging

As described in [28], the collected data were subjected to a bandpass filter in the range
of 5–20 kHz to align with the majority of dolphins’ whistle vocalizations. The data were
then passed through a whitening filter designed to rectify the hydrophone’s open circuit
voltage response ripples and the sensitivity of the sound card. The recorded audio files,
which consisted of two channels, were averaged before the creation of spectrograms to
decrease noise. In addition, the preprocessing pipeline eliminated signal outliers based
on their length using the quartiles-based Tukey method [35], which led to the exclusion of
signals that were longer than 0.78 s and shorter than 0.14 s.

The short-time fast Fourier transform of the signal was computed using MATLAB’s
spectrogram function from the digital signal processing toolbox to create the dolphin

https://github.com/LorisNanni/
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whistle spectrograms. SFFT was performed with a Blackman function window with
2048 points, periodic sampling, and a hop size achieved by multiplying the window length
by 0.8. The subsequent spectrograms were computed by shifting the signal window by 0.4
s. These spectrogram images were finalized by applying a gray-scale colormap, converting
the frequency to kHz and the power spectrum density to dB, and restricting the y-axis
between 3 and 20 kHz to emphasize the most significant (dominant) frequency range [36].

The spectrograms were then manually labeled by a human expert in two steps: initial
tagging and validation tagging. The first step involved precise annotation of 5 s spectro-
grams over ten days of data collection, which were used to train an initial version of a
deep learning classifier. This classifier was then used to select new portions of recordings
containing potential dolphin sounds, which made tagging the remaining data in the valida-
tion phase more efficient. The validation phase only required the verification of positive
samples detected by the preliminary deep learning classifier.

A human expert was tasked with identifying dolphin whistles as curving lines in
the time–frequency domain and disregarding the contour lines generated by shipping
radiated noise. When the discrimination process was complex, the expert directly listened
to the recorded audio track to identify whistle-like sounds. The tagging resulted in a
binary classification (whistle vs. noise) and a contour line marking the time–frequency
characteristic of the identified whistle. This contour was used to assess the quality of the
manual tagging by ensuring that the bandwidth of the identified whistle fell within the
expected thresholds for a dolphin’s whistle, specifically between 3 and 20 kHz. A second
quality assessment was conducted by measuring the variance of the acoustic intensity of
the identified whistle along the time–frequency contour, where the acoustic intensity of a
valid whistle was expected to be stable.

2.1.2. Original Training and Test Sets

As mentioned in the introduction, the training set [28] contained all the spectrograms
obtained from audio files recorded between 24 June and 30 June, while the test set was
composed of the spectrograms of audio files recorded between 13 July and 15 July, a
three-day window. The rationale given by the authors for dividing the training and test
sets in this manner was primarily to test the generalizability of models using completely
disparate sets of recordings, as this would better assess the detection accuracy amidst
varying sea conditions.

As detailed in Section 2.3, we extracted a validation set from the training set obtained
from audio files recorded between 24 June and 26 June. We used the validation set for
learning the weights of the weighted sum rule, and then the whole training set was fed
into the networks for classifying the test set.

2.2. Baseline Detection

PamGuard [14] is a widely used software designed to automatically recognize marine
mammal vocalizations. It provides an interesting baseline method since it is widely used.
The operational parameters of PamGuard were used as follows:

• The “Sound Acquisition” module from the “Sound Processing” section was included
to manage the data acquisition device and convey its data to other modules;

• The “FFT (spectrogram) Engine” module from the “Sound Processing” section was
incorporated to calculate spectrograms;

• The “Whistle and Moan Detector” module from the “Detectors” section was added for
detecting dolphin whistles;

• The “Binary Storage” module from the “Utilities” section was incorporated to preserve
information from various modules;

• A new spectrogram display was created by adding the “User Display” module from
the “Displays” section.

Input spectrograms were devised utilizing the FFT analysis mentioned above with
identical parameters: FFT window length was assigned 2048 points, and the hop size was
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set to the length multiplied by 0.8 using the Blackman window in the “FFT (spectrogram)
Engine” module under the software settings. The frequency range was determined between
3 and 20 kHz, and the “FFT (spectrogram) Engine Noise free FFT data” was chosen as
the source of FFT data in the “Whistle and Moan Detector” module settings. During the
creation of a new spectrogram display, the number of panels was assigned as 2 to visualize
both channels. A detection by PamGuard was classified as a true positive if the signal
window identified by the software overlapped with at least 5% of the ground truth signal
interval. While this criterion may appear lenient, it allowed for the inclusion of many
PamGuard detections that might have otherwise been disregarded.

2.3. Proposed Approach

The approach proposed in this study is illustrated in Figure 1. Our method is based
on the combination of ten ResNet50 networks. The data augmentation phase was applied
only to the test set and not to the training set, since it is already a large set of spectrograms.
The data augmentation methods were selected using the validation set. Moreover, by using
the validation set, the weights of the weighted sum rule are fixed (see Section 2.3.2). As
illustrated in Figure 1, for each image of the test set, we classified three images: the original
and two created by the data augmentation methods. The scores of these three images were
combined using the weighted sum rule (see Section 3 for details), where the weights were
found using the validation set. The weighted sum rule is a machine learning approach that
combines the predictions of multiple models, in which a factor weights the contribution of
each model, here learned on the validation set. Altogether, we had ten ResNet50 networks
(each obtained by simply reiterating training), which produced ten weighted sums. These
ten scores (i.e., the output of the ten weighted sum rules, one for each network) were
combined with the classic sum rule, obtaining the final score of the method.
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Figure 1. Proposed ensemble: for each image in the test set, we classified three images (the original
and two augmented images) combined using the weighted sum rule.

In summary, we trained 10 resnet50 by simply tuning 10 times the ResNet50 network
on the training dataset, then we used each of these 10 networks to classify the three
images related to each pattern in the test set (original pattern and the two created by
unsupervised data augmentation). For each network, we calculated the final score of each
test pattern using the weighted sum rule, then these 10 scores (related to the 10 networks)
were combined using the sum rule. These steps are described in more detail below.
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2.3.1. ResNet50

ResNet50 is a convolutional neural network (CNN) architecture introduced by Mi-
crosoft Research in 2015 that belongs to a family of models called Residual Networks, or
ResNets [37], which are widely used for various computer vision tasks, including image
classification, object detection, and image segmentation. The key innovation of ResNet
is the introduction of residual, or skip, connections for optimal gradient flow. ResNet
enables the training of much deeper networks with improved performance by using skip
connections. The name “ResNet50” signifies that this particular model has 50 layers.

The architecture of ResNet50 can be divided into several blocks. The input to the
network is a 224 × 224 RGB image. The initial layer is a standard convolutional layer
followed by a batch normalization layer and a ReLU activation function. This layer is
followed by a max-pooling layer that reduces the spatial dimensions of the input. The
main building blocks of ResNet50 are the residual blocks. Each residual block consists of a
series of convolutional layers with batch normalization and ReLU activation. The output
of these convolutional layers is added to the original input of the block through a skip
connection. This addition operation allows the network to learn the residual information,
i.e., the difference between the desired output and the input, which can be thought of as
the “error” to be corrected.

ResNet50 contains several stacked residual blocks, with the number of blocks varying
depending on the specific architecture. The model also includes bottleneck layers, which
are 1 × 1 convolutional layers used to reduce the dimensionality of the feature maps,
making the network more computationally efficient.

Towards the end of the network, a global average pooling layer spatially averages the
feature maps, resulting in a fixed-length vector representation. This vector is fed into a fully
connected layer with a softmax activation function, producing the final class probabilities.

Overall, ResNet50 is a powerful and influential CNN architecture that has significantly
advanced the field of computer vision. Its use of residual connections has paved the way
for the development of even deeper and more accurate neural networks, and it continues
to serve as a benchmark for many state-of-the-art models in the field.

2.3.2. Validation Set Construction

The original training and test sets in [28], as described in Section 2.1.2, were used in
this study. However, unlike the original authors, we extracted a validation set from the
training set using all the spectrograms related to the three-day recording period of 24 June
to 26 June. The validation set was used to fix the parameters of the weights for combining
the scores using the sum rule of the different augmented spectrograms created for each test
pattern. Our testing set was composed of the original image and two augmented images.
The data augmentation approaches are detailed in Section 2.3.3.

Using the validation set, we combined the following three spectrograms for each test
pattern using the weighted sum rule:

1. Original pattern;
2. Random shift with black or wrap;
3. Symmetric alternating diagonal shift.

2.3.3. Test Set Construction

The following two unsupervised data augmentation functions (see Figures 2 and 3)
were used to generate two images for each test image:

1 The Random shift with black or wrap (RS) augmentation function undertakes the
task of randomly shifting the content of each image. The shift can be either to the left
or right, determined by an equal probability of 50% for each direction. The shift’s
magnitude falls within a specified shift width. Upon performing the shift, an empty
space is created within the image. To handle this void, the function uses one of two
strategies, each of which is selected with an equal chance of 50%. The first strategy is
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to fill the space with a black strip, and the second is to wrap the cut piece from the
original image around to the other side, effectively reusing the displaced part of the
image. In our tests, we utilized a shift_width randomly selected between 1 and 90.

2 The symmetric alternating diagonal shift (SA) augmentation function applies diagonal
shifts to distinct square regions within each image. Specifically, the content of a
selected square region is moved diagonally in the direction of the top-left corner. The
subsequent square region undergoes an opposite shift, with its content displaced
diagonally towards the bottom-right corner. The size of the square regions is chosen
randomly within the specified minimum and maximum size range.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 12 
 

1 The Random shift with black or wrap (RS) augmentation function undertakes the 
task of randomly shifting the content of each image. The shift can be either to the left 
or right, determined by an equal probability of 50% for each direction. The shift’s 
magnitude falls within a specified shift width. Upon performing the shift, an empty 
space is created within the image. To handle this void, the function uses one of two 
strategies, each of which is selected with an equal chance of 50%. The first strategy is 
to fill the space with a black strip, and the second is to wrap the cut piece from the 
original image around to the other side, effectively reusing the displaced part of the 
image. In our tests, we utilized a shift_width randomly selected between 1 and 90. 

2 The symmetric alternating diagonal shift (SA) augmentation function applies 
diagonal shifts to distinct square regions within each image. Specifically, the content 
of a selected square region is moved diagonally in the direction of the top-left corner. 
The subsequent square region undergoes an opposite shift, with its content displaced 
diagonally towards the bottom-right corner. The size of the square regions is chosen 
randomly within the specified minimum and maximum size range. 

Figure 2. Spectrograms illustrating the RS method described in Section 2.3.3, with time on the x-axis 
and frequency in hertz on the y-axis. The left image showcases the original spectrogram. The center 
image presents the spectrogram after applying the random shift. The right image demonstrates the 
filled version of the spectrogram. 

  
Figure 3. Illustration of the SA method described in Section 2.3.3, with time on the x-axis and 
frequency in hertz on the y-axis. The left image showcases the original spectrogram. The right image 
presents the spectrogram after SA. 

We tested many data augmentation methods. Due to space constraints, we only 
present the the methods that were selected based on the validation set. 

3. Experimental Results 
The protocol used in our experiments mirrored that proposed in [28]. However, we 

used the validation set described in Section 2.3.2 to learn which data augmentation 
methods to apply and the weights of the weighted sum rule. After choosing the weights 
based on the validations set, we used the subdivision of the training and testing set 
described in [28]. We wish to stress that the validation set was extracted from the training 
set, so there was no overfitting on the test set. We gauged the performance of the model 
on the distinct test set by calculating the same performance indicators used in [28]. The 

Figure 2. Spectrograms illustrating the RS method described in Section 2.3.3, with time on the x-axis
and frequency in hertz on the y-axis. The left image showcases the original spectrogram. The center
image presents the spectrogram after applying the random shift. The right image demonstrates the
filled version of the spectrogram.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 12 
 

1 The Random shift with black or wrap (RS) augmentation function undertakes the 
task of randomly shifting the content of each image. The shift can be either to the left 
or right, determined by an equal probability of 50% for each direction. The shift’s 
magnitude falls within a specified shift width. Upon performing the shift, an empty 
space is created within the image. To handle this void, the function uses one of two 
strategies, each of which is selected with an equal chance of 50%. The first strategy is 
to fill the space with a black strip, and the second is to wrap the cut piece from the 
original image around to the other side, effectively reusing the displaced part of the 
image. In our tests, we utilized a shift_width randomly selected between 1 and 90. 

2 The symmetric alternating diagonal shift (SA) augmentation function applies 
diagonal shifts to distinct square regions within each image. Specifically, the content 
of a selected square region is moved diagonally in the direction of the top-left corner. 
The subsequent square region undergoes an opposite shift, with its content displaced 
diagonally towards the bottom-right corner. The size of the square regions is chosen 
randomly within the specified minimum and maximum size range. 

Figure 2. Spectrograms illustrating the RS method described in Section 2.3.3, with time on the x-axis 
and frequency in hertz on the y-axis. The left image showcases the original spectrogram. The center 
image presents the spectrogram after applying the random shift. The right image demonstrates the 
filled version of the spectrogram. 

  
Figure 3. Illustration of the SA method described in Section 2.3.3, with time on the x-axis and 
frequency in hertz on the y-axis. The left image showcases the original spectrogram. The right image 
presents the spectrogram after SA. 

We tested many data augmentation methods. Due to space constraints, we only 
present the the methods that were selected based on the validation set. 

3. Experimental Results 
The protocol used in our experiments mirrored that proposed in [28]. However, we 

used the validation set described in Section 2.3.2 to learn which data augmentation 
methods to apply and the weights of the weighted sum rule. After choosing the weights 
based on the validations set, we used the subdivision of the training and testing set 
described in [28]. We wish to stress that the validation set was extracted from the training 
set, so there was no overfitting on the test set. We gauged the performance of the model 
on the distinct test set by calculating the same performance indicators used in [28]. The 

Figure 3. Illustration of the SA method described in Section 2.3.3, with time on the x-axis and
frequency in hertz on the y-axis. The left image showcases the original spectrogram. The right image
presents the spectrogram after SA.

We tested many data augmentation methods. Due to space constraints, we only
present the the methods that were selected based on the validation set.

3. Experimental Results

The protocol used in our experiments mirrored that proposed in [28]. However, we
used the validation set described in Section 2.3.2 to learn which data augmentation methods
to apply and the weights of the weighted sum rule. After choosing the weights based on
the validations set, we used the subdivision of the training and testing set described in [28].
We wish to stress that the validation set was extracted from the training set, so there was
no overfitting on the test set. We gauged the performance of the model on the distinct test
set by calculating the same performance indicators used in [28]. The true positive rate and
the false positive rate was used to ascertain precision/recall. These metrics were used to
generate the receiver operating characteristic (ROC) curves and evaluate the corresponding
area under the ROC curve (AUC):

Precision = TP/(TP + FP) (1)
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Recall = TP/(TP + FN) (2)

True Positive Rate = TP/(TP + FN); (3)

where TP indicates true positives, TN indiates true negatives, FP indicates false positives,
and FN indicates false negatives.

In Table 1, we present a comparison between the baseline ResNet50 and the proposed
data augmented ResNet50 (named ResNet50_DA). ResNet50(x)_DA indicates the combina-
tion of x ResNet50_DA networks using the sum rule. Figure 4 reports the ROC curve for
ResNet50(1) vs. ResNet50(10)_DA.

Table 1. Comparison (Area under the ROC curve) of baseline ResNet50(1) with the proposed
augmented ensembles of ResNet50s (ResNet50(x)_DA (bold indicates best performance).

ResNets AUC

ResNet50(1) 0.960
ResNet50(1)_DA 0.964
ResNet50(5)_DA 0.972

ResNet50(10)_DA 0.973
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We acknowledge that the performance increase recorded in Table 1 may not appear
high compared to the baseline. However, our results are interesting because many of the
misclassified samples are unclassifiable by humans. Thus, we are likely already very close
to the maximum performance (AUC = 1 not obtainable). Furthermore, our results create a
new baseline on an available dataset that can be repeated for testing other methods. The
plot of the ROC curve in Figure 4 clearly shows that our proposed approach outperforms
ResNet50(1). It is important to note that we obtained a true positive rate of 0.9 and a false
positive rate of 0.02. Moreover, it is clear that the ResNet50(10)_DA improves ResNet50(1).
The number of false positives of the standalone networks was more then two times the
number of false positives of the ensemble.

In Table 2, we present a comparison between our proposed method and two other
approaches using the same dataset with the same testing protocol, reporting a full set
of performance indicators (accuracy, AUC, precision, and recall). Clearly, the proposed
ensemble performed better than the methods reported in the literature, although with
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higher computational costs. We do not believe this is a problem, considering that the
current computing power of GPUs and the developments expected in the coming years will
reduce the considerations of such costs. For example, using a NVIDIA 1080, we were able
to classify a batch of 100 spectrograms in ~0.3 s (considering a standalone ResNet50). Using
a TitanRTX, we were able to classify a batch of 100 spectrograms in ~0.195 s (considering a
standalone ResNet(50).

Table 2. Comparison with the literature using four measures.

Method Accuracy AUC Precision Recall

Pamguard [14] 0.664 --- 0.755 0.195
[28] 0.923 0.960 0.905 0.896

ResNet50(10)_DA 0.949 0.973 0.965 0.902

In Table 3, we present a report of the confusion matrix obtained by our proposed
ensemble and the previous baseline on the same dataset. This test shows that the reliability
of the proposed method reduces the number of false noise and false whistle classifications
with respect to the previous baselines. In addition, Cohen’s kappa coefficient is also shown
in the same table; this performance indicator also shows that the proposed ensemble
outperformed the previous baseline.

Table 3. Confusion matrices and Cohen’s kappa coefficient.

Here [28] Pamguard [14] Cohen’s Kappa
Here [28] Pamguard [14]

Noise Whistle Noise Whistle Noise Whistle
0.8919 0.8383 0.1797Noise 4124 88 3963 249 4044 168

Whistle 260 2397 277 2380 2139 518

In addition to the tests reported above, we conducted experiments in which the two
data augmentation approaches selected on the validation set were applied to the whole
training set. Due to the large size of the augmented training set, the training time increased
to ~2100 min using a machine with a NVIDIA Titan X with 12 GB of ram. Increasing the
size of the training set only slightly increased the performance. Once again, applying data
augmentation to the test data using the weighted sum rule adopted in this paper resulted
in better performance than using only the original test set. We obtained the following
performance metrics:

1 Data augmentation applied to the training set, with the test set consisting of only the
original images: AUC: 0.968; Accuracy: 0.940; Recall: 0.911 Precision: 0.931;

2 Data augmentation applied to both the training set and test set, with the proposed
weighted sum rule used for the test set: AUC: 0.970; Accuracy: 0.941; Recall: 0.911;
Precision: 0.934.

4. Conclusions

The surge in human activities in marine environments has led to an influx of boats
and ships that emit powerful acoustic signals, often impacting areas larger than 20 square
kilometers. The underwater noise from larger vessels can surpass 100 PSI, disturbing
marine mammals’ hearing, navigation, and foraging abilities, particularly for coastal dol-
phins [38,39]. Therefore, the monitoring and preservation of marine ecosystems and wildlife
is paramount. However, conventional monitoring technologies depend on detection meth-
ods that are less than ideal, thereby hindering our capacity to carry out extensive, long-term
surveys. While automatic detection methods could significantly enhance our survey capa-
bilities, their performance is typically subpar amidst high background noise levels.



Appl. Sci. 2023, 13, 8029 10 of 12

In this paper, we illustrated how deep learning techniques involving data augmenta-
tion can identify dolphin whistles with remarkable accuracy, positioning them as a promis-
ing candidate for standardizing the automatic processing of underwater acoustic signals.
We obtained state-of-the-art results and provided a training and test set for fair comparison.
In terms of accuracy, we obtained a nearly 0.03 accuracy gain. The MATLAB/PyTorch
source code used in this study is freely provided (https://github.com/LorisNanni/ ac-
cessed on 7 July 2023).

Despite the need for additional research to confirm the efficacy of such techniques
across various marine environments and animal species, we are confident that deep learn-
ing will pave the way for developing and deploying economically feasible monitoring
platforms. We hope that our new baseline will further the comparison of future deep
learning techniques in this area.

Finally, we should stress the main cons of using this dataset as a benchmark: the
training and test set were from the same region (Dolphin’s Reef in Eilat, Israel), and the
samples were collected using the same acoustic recorder.
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