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* Correspondence: osenaras@gmail.com

Abstract: The utilization of low-cost AGVs in the industry is increasing every day, but the efficiency
of these systems is low due to the lack of a central management system. Low-cost AGVs’ main
characteristic is navigation via magnetic sensors, which they follow via magnetic tape on the ground
with a low-level automation system. The disadvantages of these systems are mainly due to only
one circuit assignment and the lack of system intelligence. Therefore, in this study, AGV pools were
employed to determine the required AGV number. This study begins by calculating the required AGV
number for each AGV circuit combination assigned to every parking station by the time window
approach. Mathematical-solution-based mixed integer programming was developed to find the
optimum solution. Computational difficulties were handled with the development of a genetic-
algorithm-based approach to find the solutions for complex cases. If production requirements change,
system parameters can be changed to adapt to the production requirements and there is a need to
determine the number of AGVs. It was demonstrated that AGVs and pool combinations did not
lead to any loss in production due to the lack of available AGVs. It was shown that the proposed
approach provides a fleet size which requires five fewer AGVs, with a 29% reduction in the number
of AGVs. The effects of system parameter changes were also investigated with artificial neural
networks (ANNs) to estimate the required AGVs in the case of production requirement changes.
It is necessary to determine the effect of the change in system parameters on the number of AGVs
without compromising on computational cost and time, especially for complex systems. Thus, in this
study, an artificial neural network (ANN), the response surface method (RSM), and multiple linear
regression (MLR) techniques were used to examine the effects of the system parameter changes on
the AGV number. In the present case, the ANN obtained the solution at a good rate with reduced
computational costs, time, and correction errors compared to the GA, at 0.4% (ANN), 7% (RSM), and
24% (MLR). The results show that the ANN provides solutions which can be used in workshops to
determine the number of AGVs and also to predict the effect of changes in system parameters.

Keywords: automated guided vehicles (AGVs); genetic algorithm (GA); artificial neural network (ANN);
AGV pools

1. Introduction

Automated guided vehicles (AGVs) are capable of automatic material transportation
without the need for a driver. AGVs are employed in manufacturing and service industries,
including automobile production plants, semiconductor manufacturing workshops, flexible
manufacturing systems (FMSs), seaport container terminals, and the health sector [1–3]. Ma-
terial handling has a significant impact on production costs in every production activity [4].
In Industry 4.0, AGVs are an indispensable solution and AGV developers must find solu-
tions to customer-specific and personalized demands, but solutions must fulfil economic
expectations [5–7]. Employment of AGVs is a capital investment that requires analysis of
station locations, optimal route design, determination of the optimal number of AGVs and
types, AGV positioning, assignment of the AGVs to collection requests, AGV routing and
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dispatch, resolving deadlocks and conflicts, scheduling and determination of the capacity,
and other factors. The AGV fleet size has a significant impact on the work conditions of
AGVs and the economy of AGV installation and implementation [8–10].

High investment costs force companies to adopt low-cost AGV solutions. Utilization
of low-cost AGVs in industry is increasing every day, but the efficiency of these systems is
low due to the lack of a central management system [11,12]. Although various numerical
and experimental studies have previously been conducted, the problem of grouping AGV
circuits and AGV assignments to parking stations to minimize the number of AGVs while
meeting demand is still being researched in the field of manufacturing.

Low-cost AGVs’ main characteristic is navigation via magnetic sensors, which they
follow by magnetic tape on the ground, and they require a low level of automation, so they
include a PLC or an embedded system [13]. These systems lack central control systems. A
centralized control system manages all AGVs, but it has some drawbacks mainly due to the
expensive cost, lack of flexibility, robustness, and scalability [11]. Therefore, decentralized
solutions are attracting attention in industry. On the other hand, low-cost AGVs are
assigned to a single AGV path, resulting in a low AGV efficiency. They reduce the AGV
cost, but growing the AGV fleet does not create an optimum investment cost. All AGV
circuits contain a waiting time, and if this time cannot be used for another part transfer, the
AGV will remain in a waiting state, which will cause the efficiency of the AGV to decrease.
Creating an AGV pool also makes use of these waiting times. The aim of this research is
to determine the optimum number of AGVs for decentralized low-cost AGV systems and
also to examine the effect of the change in system parameters on the required number of
AGVs when a change in production requirements is necessary.

This study begins by calculating the required AGV number for each AGV circuit com-
bination assigned to every parking station by the time window approach with a developed
algorithm. To determine the best solution, a mathematical model is presented to determine
the minimum number of AGVs for one or multiple automated guided vehicle pools. The
analytical mixed integer linear programming (MILP) method was introduced to achieve
an optimal solution. Mathematical-solution-based mixed integer programming provides
the optimum solution [14]. It was observed that the variables increased exponentially with
the number of AGV circuits, reducing the utility of the model in complex applications.
It becomes more complex with the increase in the number of stations. It is very difficult
to implement the MILP approach in complex problems since it takes time to determine
the equations and build the model for a particular problem. The problem turned in to
an NP hard problem. Thus, a heuristic genetic algorithm was proposed to determine the
number of AGVs with time windows for further complex situations. The present approach
was employed in a workshop and the solutions were validated through discrete event
simulation in the Witness program [15].

In workshops, production requirements may change. If production requirements
change, system parameters can be changed to adapt to production requirements. There is a
need to examine the required number of AGVs by estimating the effect of the change in
system parameters without compromising on computational cost and time. Therefore, an
artificial neural network was employed to estimate the number of required AGVs assigned
to AGV circuits and to parking stations. Artificial neural network (ANN), response surface
method (RSM) and multiple linear regression (MLR) techniques were used to investigate
the effects of the system parameter changes on the required AGV number. A comparison
of these techniques was implemented to find the most effective technique to examine the
effects of the system parameter changes on the required AGV number. The results show
that ANN-estimated solutions are in good correlation and can be used in workshops.

2. Literature Review

In the literature, several studies have approached AGVs and AGV systems from vari-
ous perspectives. Vis (2006) reviewed the existing methods in the literature and reported
that models developed to design and control AGV systems could overcome certain prob-
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lems, but new approaches were required to overcome long computation times and other
problems such as congestion, deadlock, and delays in extensive AGV systems [16].

An AGV moves on a path which is fixed or variable depending on the AGV type.
The path assignments affect the number of AGVs. Soylu et al. proposed the employment
of an artificial neural network to determine the shortest path for a single AGV. It was
aimed to determine the minimum total empty travel time. Good findings were reported for
computation time. Although the algorithm achieved acceptable solutions, none of them were
optimal or near optimal in certain sequential models [17]. In another work, the AGV path
was analyzed with the Ant Colony Optimization (ACO) algorithm, and it was demonstrated
that the route determined with ACO improved the efficiency within an acceptable time [18].
Bozorgi-Amiri et al. proposed a split delivery vehicle routing problem to minimize vehicle
travel on a path. They compared memetic heuristic and mathematical models [19].

The management of AGV traffic is another significant problem. Traffic management
entails the prevention of collisions and deadlocks that could block the AGV system. Man-
agement could be conducted with a central control system or various routing methods.
Nishi et al. (2007) proposed a decomposition method with a cut generation to efficiently
solve collisions or deadlocks across AGVs [20]. Rocak et al. presented a dynamic routing
method for multiple AGVs with time windows. In the case of a collision on the selected
route at a specific time, the algorithm looks for another route. The efficiency of the method
was demonstrated by simulation [21]. Cardarelli et al. suggested the use of real-time
AGV and route monitoring, which allowed the system to run AGVs online and avoid
problems such as deadlocks [22]. Parham suggested the employment of new-generation
AGVs during deadlocks that would allow θ◦ around the center of a circle, and after the
transition, the AGV would return to its original position [23]. Hsueh proposed a system
where the AGV could change its load in the case of a deadlock. These studies improved
AGV system flexibility, albeit by increasing the AGV cost, while maintenance problems
negatively affected the system performance [24].

Routing strategies and rules affect the number of AGVs in the system, as well as
other factors such as the Pick & Deposit (P&D) location. Vehicle requirements entail the
number of AGVs required to fulfill system transport demands. This issue is also known
as fleet sizing. According to Vis, the fleet is sized based on transport load demands, time
demands, AGV capacity, AGV speed, routing, traffic management, AGV assignment, and
P&D locations [16]. Ventura and Lee emphasized the response time as a factor in fleet size
calculations. The response time is the idle travel time until the next pickup. They tried to
minimize the reaction time [25]. The minimization of this non-value-added time would
reduce the total transport time. The minimization of the maximum response time with
positioned waiting points in an AGV system was analyzed by Ventura et al. to minimize
the average response time. A single loop pattern was analyzed and compared with the
mathematical model and genetic algorithm approach, and the authors observed that the
computation time increased with the model size and the GA could be optimized with the
mathematical model [26].

Nishi et al. proposed a distributed routing method with motion delay disorder to
minimize the transport time with multiple AGVs, which reduced the collision probability
and collision-related penalties. The findings demonstrated that the proposed method
could be implemented in real transportation environments [27]. Talbot developed and
investigated a queuing model to estimate AGV fleet sizes; however, the model produced
inferior solutions in light traffic [28].

Simulation techniques are frequently employed in the search for solutions to problems
associated with AGVs [2]. Valmiki et al. estimated the AGV fleet size in a simulation
based on minimizing the total travel time and total cost. It was reported that the simula-
tion method provided an accurate fleet sizing solution when compared to the analytical
method [29]. Viharos et al. proposed a simulation model to control the AGVs. A methodol-
ogy based on shortening the total operational manufacturing time was proposed [30]. In
another approach, Yifei et al. reported that it could be difficult to assign an accurate number
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of AGVs with the mathematical model and it could take time to simulate the entire system.
In the first stage, they estimated the required number of AGVs with the mathematical
model and reduced the computation time, since they utilized the output as the simulation
input. They reported that the fleet size estimation for multi-loaded AGVs with the heuristic
method was not accurate when compared to real- life requirements; however, simulation
methods led to a better solution [31].

Şenaras analyzed AGV parameters with the surface response and simulation method
to determine the optimal parameters to minimize the required number of AGVs [32].

Chang et al. applied simulation optimization and data envelopment for multi-objective
(minimum delivery time and maximum lot delivery) vehicle fleet sizing in an automated
material handling system. The numerical study demonstrated that the proposed method
provided accurate solutions [33]. Rashidi et al. proposed a minimum-cost flow model
for container terminals. A simplex algorithm and greedy search method were adopted to
solve the model. They demonstrated that the time-constrained greedy tool search could
complement the simplex algorithm, which requires further computation time. The AGV
simplex model provided the optimal planning solution; however, as the number of work
orders increased, the computation time forced the analyst to convert to the greedy algorithm.
However, this algorithm could not always determine the optimum solution and got stuck
at the local minimum [34].

Saidi-Mehrabad et al. proposed a model that included a workshop scheduling problem
and a conflict-free routing problem and utilized Ant Colony Optimization (ACO) to mini-
mize the AGV production time and guide the AGVs to avoid collisions. A mathematical
method and an ACO model were developed. It was suggested that the ACO model could
reduce the computation time [35]. The same topic was studied by Nishi et al. (2007), who
suggested the employment of a bilevel decomposition algorithm to solve simultaneous
scheduling and conflict-free routing problems and minimize the total weighted tardiness
of the task sets. Lagrangian relaxation reduced the computation time, which was an im-
portant issue in higher task counts [36]. The decomposition method has been frequently
used in scheduling and routing. Nishi et al. developed an AGV routing solution with a
Petri net by decomposing the problem into sub-problems that were solved with Dijkstra’s
algorithm [37].

Several cut methods, as well as heuristic methods, were studied to solve sub-problems.
Moghaddam et al. proposed an advanced particle swarm optimization algorithm for
vehicle routing problems under uncertain customer demand. The novel method was
reported to improve the solution quality and the algorithm was determined as adequate
for large-scale problems [38].

Another study was conducted with robust vehicle routing optimization under uncer-
tain demand by Moghadam et al. The application of robust optimization in vehicle routing
problems under uncertain demand reduced the unmet demand [39].

Fazlollahtabar proposed the employment of a scheduler to assign AGVs and machines
in the short term and a heuristic model was developed for this assignment. The proposed
framework included a two-level hierarchical dynamic decision for AGV dispatch and
selection of the next station based on the minimum cost flow, a machining scheduler, and
a station controller for operation control. The findings revealed the effectiveness of the
dispatch rule by decreasing the average flow time. Artificial intelligence and bi-level
programming could be investigated in a future study [40]. This study was conducted with
online scheduling, while other studies employed offline scheduling. Lacomme et al. studied
offline AGV and machine scheduling and proposed a framework based on a disjunctive
graph to model the common schedule problems and a memetic algorithm to schedule the
machines and AGVs. The aim was to minimize the production time. A comparison of
the results demonstrated that the proposed algorithm could provide optimal solutions to
schedule machines and AGVs concurrently [41].

H. F. Rahman et al. investigated robot line balancing and AGV scheduling with a
two-stage heuristic approach to assist the manager to develop or modify an effective robot
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line. In the first stage, the consecutive algorithm is employed to balance the robot assembly
line, and in the second phase, Particle Swarm Optimization (PSO) was used to schedule
AGVs between robot stations [42]. Digital-twin-based solutions have also been used for
AGV scheduling. The battery charging problem was investigated with this method and a
1.32% energy saving was obtained [43]. Kim and Park tested various vehicle circulation
rules to minimize the average lead time. A simulation demonstrated the effect of the
rules on system effectiveness [44]. Generally, the dispatch and routing problem tackles the
problem of incapacitated AGVs. Miyamoto et al. employed the integer model to dispatch
capacitated AGV systems. First, the mathematical solution was studied, then local search
and random search methods were tested, and it was reported that the local search algorithm
led to a better solution for the large-scale problem [45].

Although various numerical and experimental studies have previously been con-
ducted, the problem of grouping AGV circuits and AGV assignment to parking stations
to minimize the number of AGVs while meeting the demand is still being researched in
the field of manufacturing. Several studies have been conducted on the design and control
of AGV systems; these were mostly based on computer-assisted high-cost AGV systems.
Considering low-cost AGVs, determination of the minimum fleet size by creating AGV
pools via time windows and examinations of the effects of the system parameter changes
on the required AGV number using ANNs if the production requirements change have not
been widely investigated in the literature.

3. State of the Problem

AGV systems include vehicles, control systems, and peripheral components. Depend-
ing on the selection of AGV systems, the investment is a major barrier for companies.
Therefore, utilization of low-cost AGVs in the industry is increasing every day [7,13].

Generally, low-cost AGVs follow magnetic tape on the ground and contain a PLC as a
controller. With the removal of the central control system, the AGV system evolves into
vehicles operating between a single production station (where the product is fabricated)
and a single consumption station (where the product is used), as shown in Figure 1. The
production station and the associated consumption station form an AGV circuit.
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Figure 1. AGV single circuit illustration.

The application of low-cost AGVs led to a less flexible system and difficulties in
changing the AGV path. As a result, this type of AGV operates with a low usage rate due to
waiting for production stations. The inclusion of decentralized control systems allows the
formation of AGV pools, where the AGV can service various AGV circuits. AGV programs
can be changed in a Parking Station, where a decentralized control device can communicate
via an optical device and change the AGVs’ program, as shown in Figure 2.

The problem turns into grouping the AGV circuits using AGV pools and assigning
these combinations to parking stations to achieve a minimal AGV fleet size while meeting
the production demand.
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3.1. Determination of the Required Number of AGVs

In this study, the problem is the determination of the number of AGVs and the effect
of the change of system parameters on the number of AGVs for low-cost AGV systems.
This study was presented in two stages. In the first stage, the proposed approach starts by
calculating the required AGV number for each AGV circuit combination assigned to every
parking station by time window and obtains the optimum AGV fleet size. The second stage
is concerned with examining the number of AGVs after the change in system parameters if
the production requirements change.

The developed mathematical-solution-based mixed integer programming provides
the optimum solution for the simple case. However, the problem becomes more complex
with the increase in AGV circuits. Since the mathematical model cannot solve large-
sized complex problems, GA is proposed to handle this type of problem. Computational
difficulties make it necessary to develop a genetic-algorithm-based approach to obtain
solutions for complex cases. Finally, an artificial neural network (ANN) was employed to
investigate the effects of the system parameter changes on the required AGV number.

3.2. Time Window Approach

In the first stage, the required AGV number was computed for each AGV circuit combi-
nation assigned to every parking station by the time window approach. The time windows
are from the beginning of the allowable service time (a) to the end of the allowable service time
(b) for each order. Each order should be fulfilled within these time intervals. The parameters
and notations used in this problem and their explanations are given in Table 1.

Table 1. The parameters and notations of the problem.

Notations Explanations

I Set of Parking Stations

S Set of AGV circuits that reflect the type of part carried by the AGV

J Set of AGV circuit combinations

B Total AGV circuits in a single parking station

O Set of transportation orders

L Time within which the new delivery should arrive at the consumption station

ao Beginning of the allowable service time o ∈ O

bo End of the allowable service time o ∈ O

K Set of AGVs

ts Time required to finish a tour depending on the AGV circuit s ∈ S

fok The time of assignment of the AGV k to order o k ∈ K; o ∈ O

eok Release time of AGV k is in order o; currently, AGV k is ready at the parking station k ∈ K; o ∈ O
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ao ≤ fok ≤ bo ∀o ∈ O ; ∀k ∈ K (1)

eok = fok + ts ∀o ∈ O; ∀k ∈ K; ∀s ∈ S (2)

An AGV cannot deliver the parts before the beginning and after the end of the allow-
able service time. (1) The release time of AGV k is calculated by adding an assignment of
time to the time required to finish a tour. (2) The first order (O = 1) is realized with the
first AGV (k = 1). If the above constraints are not satisfied with the current number of AGVs,
the required number of AGVs is increased by 1, otherwise k remains constant. This ap-
proach can easily produce a solution for low order numbers and AGV circuit combinations,
but if the complexity of the system increases, it needs to be solved with an algorithm, since
the number of calculations increases exponentially with the number of AGV circuits. The
algorithm first checks the AGV transfer order. If the AGV request is associated with this
AGV circuit combination, the request is assigned to the first AGV (k = 1) and the release
time of the AGV is calculated. When a new request arrives, the algorithm checks if there is
an idle AGV. If there is an AGV available, this AGV is assigned to the new order; however,
if an AGV is not available, an additional AGV is added to the system to meet the new
request. This algorithm was run on Matlab R17 for all AGV line combinations and all
parking stations [46]. The pseudocode for this algorithm is shown in Algorithm 1.

Algorithm 1: Compute the required number of AGVs for each station combinations and each parking stations

1 Initialize
2 WHILE stop condition not fulfilled DO
3 Begin
4 FOR parking station: =1 TO I DO
5 FOR station combination: = 1 TO B DO
6 Assigned = 0
7 Used = 0
8 FOR order: =1 TO O DO
9 FOR station combination index: =1 TO S DO
10 IF order station == station combination index THEN
11 Find min agv release time, define as miniagv and agv row as miniindex agv
12 IF miniagv < aj THEN
13 Assigned = miniindex agv
14 fok = a j
15 eok = fok + ts
16 Else IF aj < miniagv < bj THEN
17 fok = miniagv
18 eok = fok + ts
19 Else IF bj < miniagv THEN
20 Used = Used + 1
21 Assigned = Used
22 fok = aj
23 eok = fok + ts Set of combinations for the sth AGV circuit sÎS
24 END
25 END
26 Usedagv(parking station, station combination) = Used
27 END
28 END

3.3. Mathematical Model and Optimization

In this stage, mathematical-solution-based mixed integer programming provides
the optimum solution. Linear programing consists of goals, constraints, and decision
variables [14]. The model becomes mixed integer programing (MIP) if at least one decision
variable is an integer [47]. The notation used in the proposed model is defined as fallows:

UPij; Model binary decision variable is equal to 1 when parking station i and circuit
combination j is assigned and 0 otherwise; i ∈ I and j ∈ J

GPij: The required number of AGVs for the combination of parking station i and AGV
circuit j I ∈ I j ∈ J
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Ωs: Set of combinations for the sth AGV circuit s ∈ S
The problem is formulated as follows,
The goal is:

Min Z = ∑
j ∈ J

∑
i ∈ I

GPijUPij (3)

Subject to:
∑

j ∈ Ωs

∑
i ∈ I

UPij = 1 ∀s ∈ S (4)

∑
j ∈ B

UPij = 1 ∀i ∈ I (5)

The objective function (3) minimizes the required number of AGVs. Constraint (4)
ensures that each AGV circuit is assigned to one parking station. Similarly, constraint (5)
ensures that each parking station is assigned to only one AGV circuit combination. In this
model, the equation constraints increase exponentially with the increase in AGV circuits.
This complexity renders the mathematical model unsuitable for complex problems, since
the mathematical model cannot be used easily to solve large-sized complex problems.
Therefore, heuristic algorithms were used to solve these kinds of problems. In this study,
the genetic algorithm (GA) is used to handle these kinds of problems. The pseudocode of
the GA is shown in Algorithm 2. The GA works with parameter codes called chromosomes
and each chromosome is a solution candidate. All chromosomes are analyzed with the
fitness function as it tries to find the optimal solution based on genetic operators and
continues until the criteria are met [48,49]. The pseudocode of the GA employed in the
current study is presented in Algorithm 2. Each chromosome includes S genes. Genes
reflect the parking stations to which the AGV circuits are assigned. In the initialization
phase, each gene (AGV circuit) is assigned randomly across I (the set of parking stations).
The single-point mutation method was adopted in the present study. A random number
was calculated for each chromosome gene, and mutation was implemented when the
mutation probability was greater than the random number. The mutation was low at Pm
= 0.05, and the mutated gene increased or decreased by 1 when compared to the second
calculated random number.

Algorithm 2: Compute Minimum Required Number of AGVs

1 Begin
2 Set iteration number
3 Initialize population
4 Evaluate population according to the fitness value
5 While stopping condition not fulfilled Do
6 Increase iteration number
7 Select parents from current population by roulette wheel selection and perform reproduction
8 Perform crossover operator to the randomly selected chromosomes
9 Generate new population
10 Evaluate population according to the fitness value
11 End
12 Return best fitness value and population
13 End

4. Results

The proposed approaches were applied to a generated dataset. Then, the proposed
methodology was applied to a case in an automobile production plant and the results are
given in the following sections.

4.1. Generated Dataset

The data generated were used in the methodology to be checked in different scenarios
where there are many AGV circuits. Therefore, an experimental dataset was generated and
seven AGV circuits were created. Circuits, the trolley capacity (pieces), and the service
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allowable time (minutes) are shown in Table 2. The experimental set began with three AGV
circuits and five parking stations. The GA was implemented to these datasets and the
obtained solutions are presented in Table 3. The difference is due to changes in AGV speed,
distance, and production rates. The number of AGV circuits and parking stations was
obtained by varying the speed of the AGV, the distance of the parking stations, and the
production rate (TCY). These trials are given in Table 3.

Table 2. Generated AGV circuits.

Circuit Capacity ao (min) bo (min)

1 30 20 22
2 20 8 10
3 10 4 6
4 60 20 22
5 80 30 32
6 10 40 42
7 10 60 62

Table 3. Required number of AGVs to meet the manufacturing demand.

Trial AGV
Circuit

Parking
Stations

TCY
(Parts/h)

Required AGV
Number 1 2 3 4 5 6 7 Explanation

1 3 5 60 5 1 2 3
2 3 5 30 3 1 2 3
3 3 5 80 6 1 2 3
4 4 6 60 6 1 2 3 4
5 4 6 60 6 1 2 3 4
6 4 6 60 6 1 2 3 4
7 5 6 60 7 1 2 3 4 5
8 5 7 60 7 1 2 3 4 5
9 5 8 60 7 1 2 3 4 5

10 6 9 60 8 1 2 3 4 5 6
11 7 9 60 9 1 2 3 4 5 6 7
12 7 10 60 9 1 2 3 4 5 6 7
13 7 11 60 9 1 2 3 4 5 6 7
14 7 12 60 8 1 2 3 4 12 12 12
15 7 13 60 8 1 2 3 4 12 12 12
16 7 13 60 8 1 2 3 4 13 13 13 A
17 7 13 60 8 1 2 3 11 5 11 11 B
18 7 13 60 7 10 10 3 11 10 11 11 C
19 4 6 45 5 6 2 6 6
20 5 8 20 5 1 2 3 4 5

Note: A: the velocity of an AGV between a parking station and a production station was increased to 25 m/min.
B: the distance to parking station was divided to 2. C: the distance to the parking station was divided to 4.

In the first 13 experiments, an AGV pool was not required. All AGV circuits use their
production station as the parking station. In the 14th trial, it is reasonable to create a pool
at parking station 12, and AGV circuits 5, 6, and 7 should use this pool. In the 18th trial,
two pools should be created, where the first pool should be at parking station 10 and AGV
circuits 1, 2, and 5 should be assigned to this pool, and the second pool should be created
at parking station 11 and AGV circuits 4, 6, and 7 should be assigned to the second pool.
AGV 3 was not assigned to any pool.

Then, the simulation model was run on the Witness system to check whether produc-
tion would be lost due to AGV transfer [15]. It was shown that the production demand was
met and there was no production loss due to AGV transfer. These results can be obtained
from machine occupancy rate results that are 100%. Thus, the AGV system is capable of
transferring all parts without production loss.

Considering example 15, the efficiency of AGV pooling can be noticed. If no AGV pool
is used, nine AGVs are required. Computation was realized with Witness Simulation [15].
In the case of a transition to the pool system, the GA found the required AGV number as
eight and AGV circuit 5, 6, and 7 use parking station 12. In this case, it was computed that
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the proposed approach allows to decrease required AGV number by 1 and provides 11% of
performance, which underlines that AGV pooling becomes more reasonable to be used.

4.2. Layout, Tests, and Results of the Production System

AGV systems are widely used in automobile production plants. A case study was
considered in a body department of an automobile production plant that uses a low-cost
AGV system. The layout of the analyzed case is shown in Figure 3. Ten AGV circuits
exist in the system and 17 AGVs are in use to satisfy the production requirements. Due to
the implementation constraint, only 12 parking stations can be found in the layout. If an
AGV circuit does not employ the pool methodology, its production station is utilized as a
parking station. Thus, there were twenty-two parking stations, and ten parking stations
were specific to an AGV circuit. AGV circuits, parts that are transported, their hourly
consumption, and the trolley capacity are shown in Table 4. Distances between production
stations and parking stations are given in Table 5.
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Table 4. AGV circuits with the consumption rate and trolley capacity.

AGV Circuit Part Name Consumption
(Parts/Hour)

Trolley Capacity
(Parts)

1 Right Front Beam 60 20
2 Left Front Beam 60 20
3 Left Coup 60 30

4 Front Pillar
Reinforcement 60 44

5 Heating Partition 51 15
6 Apron 51 18
7 Tunnel 60 18
8 Rear Floor 51 6
9 Skirt Reinforcement 51 32

10 Glazing Bead
Reinforcement 51 20
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Table 5. Distances between stations.

AGV Circuit 1 2 3 4 5 6 7 8 9 10

Production Station to
Consumption Station (m) 128 133 51 103 75 25 74 69 139 49

Consumption Station to
Production Station (m) 67 41 66 119 60 78 172 167 56 169

In the first stage, AGV circuit combinations with parking stations were calculated.
I = 22 and S = 10, and at the end, 210 × 22 = 22,528 (GPij) values were calculated by the
algorithm [50]. The next stage was about the selection of the optimum AGV fleet size with
the GA. Genes reflect the parking station to which the AGV circuits are assigned. The
population size was 300. Chromosomes are selected randomly such as 1-13-13-15-5-6-13-18-
9-22. First, the AGV circuit was assigned to the first parking station. AGV circuits 2, 3, and
6 were used as an AGV pool in parking station 13. The fitness function is the sum of GPij,
which indicates the required AGV number to fulfill production demands. GA solutions are
given in Table 6. Tables 6 and 7 are the solutions for the best chromosomes of the genetic
algorithm, showing which AGV circuits will be assigned to which parking stations.

Table 6. GA solutions.

AGV Circuits

1 2 3 4 5 6 7 8 9 10

1 22 22 21 16 14 7 8 18 14
1 22 15 21 16 14 7 8 14 14

20 22 17 22 5 12 7 8 20 11
21 20 22 15 16 13 7 8 21 15
21 20 19 22 16 12 7 8 12 13
1 2 17 22 16 16 7 8 13 12
1 2 19 17 5 11 7 8 16 16

As a second objective, the AGV service time is included. With this approach, the
minimum required AGVs that satisfy the minimum AGV investment and minimum service
time lead to the minimum energy consumption, because AGVs use the minimum energy in
waiting but moving on the ground increases the energy consumption. The pool combination
that satisfies the minimum required AGVs with the minimum service time was computed
as the optimal solution. The objective of the first fitness function was the required number
of AGVs; then, the AGV service time was added as a second target to avoid unnecessary
parking station assignments. To add this second objective, a new fitness function was
defined by using coefficients separating the AGV number from the service time as follows,

Fitness function = 1000 × Required AGV number + Service time/1000

The GA solutions with the new fitness function are given in Table 7.
According to the results, some circuits were repeatedly assigned to the original parking

stations; for example, AGV circuit 1 is usually assigned to the parking (production) station.
The second observation was regarding the sharing of parking stations. When certain circuits
do not share parking stations with other circuits, they use their own parking (production)
station as the desired state. As a result, the suggested solution is 1-2-3-4-16-15-7-8-16-15.
According to this solution, two pool systems should be created. The first pool should be at
parking station 16, and AGV circuits 5 and 9 should use this pool. A second pool should
be created at parking station 15, and AGV circuits 6 and 10 should use this pool. Other
AGV circuits should use the production stations as parking stations. It was shown that
the proposed approach provides a fleet size which requires five fewer AGVs, with a 29%
reduction in the number of AGVs.
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Table 7. GA solutions with a modified fitness function for circuits.

AGV Circuits

1 2 3 4 5 6 7 8 9 10

1 2 3 21 16 16 7 8 19 15
1 2 3 4 5 16 7 8 19 16
1 2 3 4 16 15 7 8 16 15
1 21 19 4 5 6 7 8 15 16
1 2 20 21 16 16 7 8 16 15
1 2 21 4 5 6 7 8 16 15
1 2 3 22 5 16 7 8 20 15

21 2 3 22 5 6 7 8 16 12

Additionally, the validity and efficiency of the results were checked with a simulation
technique to determine the status of the production loss, if it exists. Figure 4 shows the
simulation model designed to check the validation of the results obtained in this study. In
the simulation model, there are ten AGV circuits and two AGV pools, and as a result, no
production loss due to the AGV system was observed. The simulation model was run in
Witness program to check the validity of the results [15].
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It was obtained that AGV circuits 5 and 9 are assigned to parking station 16 and AGV
circuits 6 and 10 are assigned to parking station 15. The model was run for 1100 min. As a
result of the simulation, we conclude that the determined AGV number can provide the
required transfers because the occupancy rate of consumptions stations is 100.

5. Determination of the Effect of System Parameters on the Required AGV Number

Until this part of the study, we have assumed that the parameters of the AGV system
are considered at previously defined values and the results for the required AGV numbers
were obtained with MILP and the GA. However, sometimes production demands may
change; therefore, the AGV system must adjust to changing production demands. This
stage is concerned with examining the number of AGVs in the case of a change in system
parameters if the production requirements change. Although all system parameters of the
AGV are taken within certain levels, as given in Table 8, there may be changes in speed,
capacity, and distance due to change in production demands. In such a case, all calculations
have to be redone. In order to avoid this situation, it is important to estimate the amount
of AGVs for the new situation at a reduced computational cost and time lost. Especially
in cases outside the defined system parameter levels, the results can be found by using
intelligent-system-based estimation techniques, without using time-consuming MILP–GA
or simulation-based analysis methods. Therefore, in this study, an ANN is proposed to
predict the effects of the system parameters on the AGV number and to check the possibility
of reducing the AGV number under changing conditions in production, such as what the
effect will be if the speed is increased by 10%, how much AGVs are gained if the capacity is
increased by 5%, or to check the possibility of decreasing the required number of AGVs
due to changes in system parameters.
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Table 8. System input and output parameters.

Symbol Meaning Min. Avg. Max.

Y Required AGV Number
A Velocity (m/min) 10 20 30
B Charging Time (min) 4 6 8
C Distance (ratio) 0.5 1 1.5
D Trolley Parts Capacity (ratio) 0.5 1 1.5

An artificial neural network (ANN), the response surface method (RSM), and multiple
linear regression (MLR) were used to examine the effect of the change in system parameters
on the required AGV number. Multiple linear regression is a statistical modeling technique
used to analyze data to make predictions of the response variable (y) with multiple ex-
planatory variables (x1, x2, . . . xp) with linear relation. In other words, it is used to predict
the outcome of the response variable [51]. The response surface method (RSM) explores
the relationship between various explanatory variables and the response. The aim is to
optimize this response [52]. Parameter optimization with RSM for one AGV circuit was
analyzed in 2019 by Şenaras, A.E. [32].

A neural network is a mathematical model of how the brain works neurologically.
It mathematically models the nerve cells to imitate the brain’s process of learning. It is
structured with interconnected items called neurons included in layers. Artificial neurons
are linked via artificial synapses and acquire knowledge through learning. The feed-
forward neural network is an artificial neural network architecture, which is also called a
multi-layer neural network. A feed-forward network is one in which information or signals
are only sent in one direction, from input to output [53–55].

In this study, the neural network model was used as a surrogate model to predict the
required number of AGVs by changing four parameters. A surrogate model is a statisti-
cal model which solves complex problems at a reduced computational cost by accurately
approximating a function instead of solving the problem with expensive computational sim-
ulations. It is widely used in solving complex engineering optimization problems. Surrogate
models are used when the outcomes of the problem cannot be easily computed, especially
for complex optimization problems. They provide an efficient way to define models, which
can be solved at a reduced computational cost instead of by complex simulations.

The structure of the ANN used in this study is shown in Figure 5. The ANN is com-
posed of a three-layer network. The inputs were the velocity, charging time, distance, and
hauled part count and the output was the number of required AGVs. Pearson correlation
coefficient (R) and mean absolute percentage error (MAPE) values were examined to find
the best ANN structure [53]. The hidden layer included five neurons. The training algo-
rithms of Levenberg–Marquardt and Bayesian regularization were used to train the neural
network model.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20 
 

  

structured with interconnected items called neurons included in layers. Artificial neurons 
are linked via artificial synapses and acquire knowledge through learning. The feed-for-
ward neural network is an artificial neural network architecture, which is also called a 
multi-layer neural network. A feed-forward network is one in which information or sig-
nals are only sent in one direction, from input to output [53–55]. 

In this study, the neural network model was used as a surrogate model to predict the 
required number of AGVs by changing four parameters. A surrogate model is a statistical 
model which solves complex problems at a reduced computational cost by accurately ap-
proximating a function instead of solving the problem with expensive computational sim-
ulations. It is widely used in solving complex engineering optimization problems. Surro-
gate models are used when the outcomes of the problem cannot be easily computed, es-
pecially for complex optimization problems. They provide an efficient way to define mod-
els, which can be solved at a reduced computational cost instead of by complex simula-
tions.  

The structure of the ANN used in this study is shown in Figure 5. The ANN is com-
posed of a three-layer network. The inputs were the velocity, charging time, distance, and 
hauled part count and the output was the number of required AGVs. Pearson correlation 
coefficient (R) and mean absolute percentage error (MAPE) values were examined to find 
the best ANN structure [53]. The hidden layer included five neurons. The training algo-
rithms of Levenberg–Marquardt and Bayesian regularization were used to train the neural 
network model.  

 
Figure 5. The structure of the ANN model. 

Cross-validation is a statistical technique to evaluate networks by partitioning the 
data into subsets of specified ratios. In this research, a hold-out method for cross-valida-
tion was used by partitioning the data into subsets, which are the data used for testing 
and validation and the data used for neural network model training. This technique is 
preferred as the dataset is small. The ANN model and predictions were saved when the 
Pearson correlation coefficient (R) of the test was higher than 0.998, as well as when find-
ing better mean square error (MSE) values. The reason for choosing the MSE over the R-
value is to prevent over-fitting and increase accuracy. For the dataset, 80% of the data are 
used as training, 10% for testing, and 10% for validation. The neural network model was 
run in Matlab [46]. The best performance for the training was realized with Bayesian reg-
ularization, and the performance was evaluated in terms of mean squared error (MSE) 
and Pearson correlation coefficient (R) values. The R-values for the neural network model 
were recorded for training and testing. All the R-values were computed as shown in Fig-
ure 6. Bayesian regularization backpropagation (BRB) and the Levenberg–Marquardt 
(LM) algorithm were used to train the neural network model. Bayesian regularization al-
lows for better values for R (0.998) and the MSE (2.088 × 10−5). The R-value must be close 

Figure 5. The structure of the ANN model.



Appl. Sci. 2023, 13, 7994 14 of 19

Cross-validation is a statistical technique to evaluate networks by partitioning the data
into subsets of specified ratios. In this research, a hold-out method for cross-validation was
used by partitioning the data into subsets, which are the data used for testing and validation
and the data used for neural network model training. This technique is preferred as the
dataset is small. The ANN model and predictions were saved when the Pearson correlation
coefficient (R) of the test was higher than 0.998, as well as when finding better mean square
error (MSE) values. The reason for choosing the MSE over the R-value is to prevent over-
fitting and increase accuracy. For the dataset, 80% of the data are used as training, 10%
for testing, and 10% for validation. The neural network model was run in Matlab [46].
The best performance for the training was realized with Bayesian regularization, and the
performance was evaluated in terms of mean squared error (MSE) and Pearson correlation
coefficient (R) values. The R-values for the neural network model were recorded for training
and testing. All the R-values were computed as shown in Figure 6. Bayesian regularization
backpropagation (BRB) and the Levenberg–Marquardt (LM) algorithm were used to train
the neural network model. Bayesian regularization allows for better values for R (0.998)
and the MSE (2.088× 10−5). The R-value must be close as possible to 1. The ANN estimates
successfully compared to RSM and MLR in R2 and mean absolute percentage error (MAPE),
which were used to evaluate the prediction accuracy. They are performance evaluation
results between the predicted and true value.
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The effect of system parameters on the required AGV number was investigated for
the velocity, charging time, distance, and trolley part capacity. These parameters and their
minimum, maximum, and average values are given in Table 8.

A design of experiment (DOE) was carried out for the four determined system vari-
ables. Box–Behnken designs are experimental designs for response surface methodology.
They do not contain an embedded factorial or fractional factorial design. Box–Behnken
designs are created by combining factorial design with incomplete block designs, result-
ing in efficient solutions in terms of the number of runs required. This method allows
us to produce effective solutions with a smaller number of trials than incomplete block
design [52]. The Box–Behnken method was used, and 40 trials were carried out, including
four factors and one repetition. The dataset is given in Table 9. The required AGV number
was obtained by running the GA. RSM, ANN, and MLR were employed to examine the
AGV number and the results were compared with the GA as shown in Table 9.
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Table 9. Required AGV numbers with ANN, RSM, and MLR.

RSM MLR ANN

Trial Velocity Charging
Time Distances Trolley

Capacity GA Value MAPE Value MAPE Value MAPE

1 10 8 1 1.00 13 13.3 3% 11.7 10% 13.0 0.0%
2 20 8 0.5 1.00 7 7.3 5% 6.7 4% 7.0 0.1%
3 30 8 1 1.00 8 8.2 2% 9.6 19% 8.0 0.1%
4 10 6 0.5 1.00 9 9.9 10% 5.3 41% 9.0 0.0%
5 20 6 1.5 1.50 8 7.7 4% 9.8 23% 7.8 2.0%
6 20 6 0.5 1.50 5 6.3 27% 2.0 60% 5.0 0.1%
7 10 6 1 0.50 20 18.6 7% 11.4 43% 20.2 0.7%
8 10 6 1 1.50 9 10.1 12% 7.0 22% 9.0 0.0%
9 20 6 1 1.00 9 9.0 0% 8.1 10% 9.0 0.0%

10 20 6 1.5 0.50 17 15.7 8% 14.3 16% 17.0 0.1%
11 10 4 1 1.00 13 12.8 1% 6.7 48% 13.0 0.1%
12 10 6 1.5 1.00 16 15.2 5% 13.1 18% 16.0 0.0%
13 20 4 1 1.50 7 7.0 0% 3.4 52% 7.0 0.0%
14 20 8 1.5 1.00 12 10.7 11% 14.6 21% 12.0 0.0%
15 30 6 0.5 1.00 5 5.8 15% 3.1 38% 5.0 0.1%
16 30 6 1 0.50 11 9.9 10% 9.3 16% 11.0 0.0%
17 30 6 1 1.50 6 7.4 24% 4.8 20% 6.0 0.2%
18 20 6 1 1.00 9 9.0 0% 8.1 10% 9.0 0.0%
19 20 8 1 1.50 7 8.0 14% 8.4 20% 7.0 0.2%
20 20 4 1 0.50 13 12.5 4% 7.8 40% 13.0 0.0%
21 30 6 1.5 1.00 9 8.1 10% 11.0 22% 9.0 0.1%
22 20 4 0.5 1.00 5 5.8 17% 1.7 66% 5.0 0.0%
23 20 6 1 1.00 9 9.0 0% 8.1 10% 9.0 0.0%
24 20 4 1.5 1.00 10 10.2 2% 9.5 5% 10.0 0.0%
25 20 6 0.5 0.50 9 9.3 4% 6.4 29% 9.0 0.0%
26 30 4 1 1.00 7 6.7 5% 4.5 35% 7.0 0.1%
27 20 8 1 0.50 14 13.5 4% 12.9 8% 15.3 9.5%
28 25 4 1.5 1.50 7 6.6 6% 6.8 3% 7.0 0.1%
29 30 8 1 1.50 7 8.2 17% 7.3 5% 7.0 0.0%
30 30 6 1.5 1.00 9 8.1 10% 11.0 22% 9.0 0.1%
31 30 7 1.50 1.50 7 7.1 1% 10.0 43% 7.0 0.1%
32 30 8 1 1.50 7 8.2 17% 7.3 5% 7.0 0.0%
33 30 7 1.50 1.50 7 7.1 1% 10.0 43% 7.0 0.1%
34 30 6 1.50 1.50 7 6.8 2% 8.7 25% 7.0 0.5%
35 25 4 1.50 1.50 7 6.6 6% 6.8 3% 7.0 0.1%
36 25 6 1.50 1.50 7 6.9 1% 9.3 33% 7.0 0.0%
37 25 8 1 1.50 7 7.8 11% 7.9 13% 7.0 0.2%
38 15 6 1.50 1.50 9 9.0 0% 10.4 15% 9.0 0.1%
39 15 5 1.50 1.50 9 9.0 1% 9.1 1% 9.0 0.1%
40 15 7 1.5 1.5 9 9.1 1% 11.6 29% 9.0 0.1%

7% 24% 0.4%

RSM was run in Minitab [50]. The model successfully explains the effects of parameters
on the system. The R2 value is 0.9911 and the corrected R2 value is 0.9807. P values were
also obtained of less than 0.05. According to the model, the required number of AGVs can
be expressed as follows:

Y = 20.83− 1.008 A + 0.250 B + 17.33 C− 16.50 D + 0.01250 A×A
−0.00001 B× B− 2.000 C×C + 5.000 D×D
−0.0125 A× B− 0.1500 A×C + 0.3000 A×D
+0.000 B×C− 0.250 B×D− 5.00 C×D

(6)

Another investigation was realized with MLR using Matlab and the above equation
was obtained as below (system parameters, Y, A, B, C, D are in a normalized form) [46],

Y = −0.1454 A + 0.336 B + 0.522 C − 0.2958 D

The ANN obtained the solution at a good rate with a reduced computational cost, time,
and correction errors compared to the GA at 0.4% (ANN), 7% (RSM), and 24% (MLR) and
within a 2 min computational time compared to 20 min for the simulation-based analysis. It
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can be concluded that there is no need to repeat the GA optimization approach or simulation
process to achieve the minimum AGV fleet size, especially in case of production demand
changes. The ANN is suitable, especially for cases with production demand changes, since
the ANN learns from previous solutions and a new model design is not required to obtain
the solution for new cases. In the present case, the ANN obtained the solution at a reduced
computational cost compared to the GA and the simulation-based analysis.

6. Discussions and Conclusions

AGV projects involve significant investment costs. Firms tend to use low-cost AGVs
to decrease the cost, but the scheduling and efficiency of the system may be low in the
case of a lack of a central management system. Therefore, in this study, to overcome this
situation, AGV pools were designed to decrease the required AGV number and to obtain
the minimum required AGVs by increasing the utilization of AGVs through AGV pools to
meet the demand in manufacturing.

The main objective of this research was to determine the optimum number of AGVs for
decentralized AGV systems using the genetic algorithm (GA) and to estimate the required
number of AGVs in the case of system parameter changes using an artificial neural network
(ANN) and AGV pools with a reduced computational cost and time.

The main problems faced in the scheduling of a PLC or card-based and lane-guided
decentralized systems are mostly due to excessive experimental times, limited data, and
the complexity, since the variables increase exponentially with the number of AGV circuits,
reducing the utility of the model in complex applications. Therefore, in this study, a GA and
an ANN are proposed to determine AGV numbers in order to overcome the shortcomings
caused by the exponential increase in the variables with the number of AGV circuits, the
excessive experimental time, limited data, and the complexity.

In the first stage, a mixed integer model based on a time window analysis was de-
veloped to determine the optimum fleet size for low-cost AGVs with AGV pools. This
approach successfully obtained optimum solutions for low numbers of AGV circuits, but
a high computational time reduces the practicality of the model, especially in the case of
complex systems. Therefore, a GA-based method was presented to handle this shortcoming,
since Gas are an effective method in combinatorial optimization.

In this study, an ANN is proposed to predict the effects of the system parameters
on the AGV number and to check the possibility of reducing the AGV number under
changing production conditions. In the present case, the ANN obtained a solution at a
good rate with reduced computational costs, time, and correction errors compared to the
GA at 0.4% (ANN), 7% (RSM), and 24% (MLR), and within a 2 min computational time
compared to 20 min for the simulation-based analysis. The results showed that the ANN
provides solutions which can be used in workshops with a reduced computational cost and
time. It can be concluded that there is no need to repeat the GA optimization approach or
simulation process to achieve the minimum AGV fleet size, especially in case of production
demand changes.

It was demonstrated that AGVs and pool combinations did not lead to any loss in
production due to the lack of available AGVs. It was shown that the proposed approach
provides a fleet size which requires five fewer AGVs, with a 29% reduction in the number of
AGVs. The effects of system parameter changes were also investigated with artificial neural
networks (ANNs) to estimate the required AGVs in the case of production requirement
changes. The system designer could reduce the required AGV number by changing the
system design and finding the most effective parameter using the proposed neural-network-
based algorithm.

It was observed that the trolley capacity is the most effective parameter. The speed and
distance are the second and third most influential factors on the required number of AGVs.
In this study, the speed of AGVs was assumed as 20 m/min and an increasing velocity
could have a negative effect on AGV system safety as well as AGV system reliability. This
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plays an essential role in evaluating the processes and defining the operating strategy
according to different production requirement conditions.

Although several studies have been conducted on the design and control of AGV
systems, they were mostly based on computer-assisted high-cost AGV systems. It was
shown that this study contributes to this research area of PLCs or card-based and lane-
guided decentralized AGV systems lacking a central management system through AGV
pools using a GA and an ANN.

Although artificial neural network models, which are presented in this research, can
be used efficiently for the present problem and similar types of problems, if the problem
has a larger number of inputs, outputs, and system parameters and if the results of the
neural network model are not acceptably accurate, then deep learning neural network
architectures can be used to estimate the outputs in future research. The artificial learning
model choice depends on the complexity of the problem due to the input and output
parameters, the dataset, and other related modeling system parameters.

In this study, a GA is used as a heuristic optimization algorithm. An important feature
of GAs as a heuristic optimization algorithm is their applicability to and efficiency in
solving problems in a wide range of areas. Although in this research, a GA was applied as
an efficient way to solve the present problem, i.e., to calculate the required AGV number
assigned to every parking station, the efficiency and correctness of the results can be
improved with hybrid GA-based heuristic optimization. Therefore, hybrid GA-based
heuristic optimization techniques can be applied to the present study to compare the
accuracy of solutions as a future research study.
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and F.Ö.; Software, O.M.Ş.; Writing—original draft, O.M.Ş.; Writing—review & editing, O.M.Ş. and
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48. Ene, S.; Küçükoglu, İ.; Aksoy, A.; Oztürk, N. A genetic algorithm for minimizing energy consumption in warehouses. Energy

2016, 114, 973–980. [CrossRef]
49. Ho, W.; Ho, G.T.; Ji, P.; Lau, H.C. A hybrid genetic algorithm for the multi-depot vehicle routing problem. Eng. Appl. Artif. Intell.

2008, 21, 548–557. [CrossRef]
50. Minitab19. Available online: https://www.minitab.com/en-us/ (accessed on 16 November 2022).
51. Tranmer, M.; Murphy, J.; Elliot, M.; Pampaka, M. Multiple Linear Regression, 2nd ed.; Cathie Marsh Institute Working Paper

2020-01. 2020. Available online: https://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/working-papers/
2020/2020-1-multiple-linear-regression.pdf (accessed on 22 March 2023).

52. Montgomery, D.C. Design and Analysis of Experiments: Response Surface Method and Designs; John Wiley and Sons, Inc.: Hoboken,
NJ, USA, 2005.

53. Çallı, M.; Albak, E.I.; Öztürk, F. Prediction and Optimization of the Design and Process Parameters of a Hybrid DED Product
Using Artificial Intelligence. Appl. Sci. 2022, 12, 5027. [CrossRef]

54. Da Silva, I.N.; Spatti, D.H.; Flauzino, R.A.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial Neural Networks; Springer International
Publishing: Cham, Switzerland, 2017. [CrossRef]

55. Walczak, S.; Cerpa, N. Artificial Neural Networks. In Encyclopedia of Physical Science and Technology; Academic Press: Cambridge,
MA, USA, 2003; pp. 631–645. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1108/AA-08-2015-065
https://doi.org/10.1016/j.ijpe.2010.07.012
https://doi.org/10.1108/AA-03-2019-0057
https://doi.org/10.3390/app12073354
https://doi.org/10.1007/s10845-008-0159-4
https://doi.org/10.1016/j.cie.2015.10.017
https://www.mathworks.com/products/matlab.html
https://doi.org/10.1080/09537287.2011.609647
https://doi.org/10.1016/j.energy.2016.08.045
https://doi.org/10.1016/j.engappai.2007.06.001
https://www.minitab.com/en-us/
https://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/working-papers/2020/2020-1-multiple-linear-regression.pdf
https://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/working-papers/2020/2020-1-multiple-linear-regression.pdf
https://doi.org/10.3390/app12105027
https://doi.org/10.1007/978-3-319-43162-8
https://doi.org/10.1016/B0-12-227410-5/00837-1

	Introduction 
	Literature Review 
	State of the Problem 
	Determination of the Required Number of AGVs 
	Time Window Approach 
	Mathematical Model and Optimization 

	Results 
	Generated Dataset 
	Layout, Tests, and Results of the Production System 

	Determination of the Effect of System Parameters on the Required AGV Number 
	Discussions and Conclusions 
	References

