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Abstract: Thermal discomfort body language has been shown to be a psychological representation of
personnel’s particular thermal comfort. Individual thermal comfort differences are ignored in public
building settings with random personnel flow. To solve this issue, we suggested a Bayesian group
thermal dissatisfaction rate prediction model based on thermal discomfort body language expression
and subsequently implemented intelligent indoor temperature and humidity control. The PMV-PPD
model was utilized to represent the group’s overall thermal comfort and to create a prior distribution
of thermal dissatisfaction rate. To acquire the dynamic distribution of temperature discomfort body
language, data on thermal discomfort body language expression were collected in a real-world
office setting experiment. Based on Bayesian theory, we used personalized thermal discomfort body
language expressions to modify the group’s universal thermal comfort and realized the assessment
of the thermal dissatisfaction rate by combining commonality and personalization. Finally, a deep
reinforcement learning system was employed to achieve intelligent indoor temperature and humidity
control. The results show that when commonality and personalized thermal comfort differences
are combined, real-time prediction of thermal dissatisfaction rate has high prediction accuracy and
good model performance, and the prediction model provides a reference basis for reasonable indoor
temperature and humidity settings.

Keywords: thermal discomfort body language expression; thermal dissatisfaction rate; Bayesian
theory; online regulation

1. Introduction

People now have higher expectations for the level of comfort in their living spaces due
to the rapid economic development and improvement in material living standards [1]. Due
to the numerous individual variances present, determining the group’s thermal comfort in
public building areas with random human movement can be difficult [2–4]. The thermal
dissatisfaction rate has emerged as a research hotspot for comfort and energy conservation
as a key indicator to assess the group’s thermal comfort. The requirements for human
comfort and building energy conservation can be efficiently satisfied by using the thermal
dissatisfaction rate in the intelligent setting of an inside thermal environment [5].

In accordance with ASHRAE [6], an indoor environment that provides thermal comfort
to its occupants makes at least 80% of its occupants feel comfortable. The PMV-PPD model
developed by Professor P.O. Fanger [7] is currently widely used internationally to assess
human thermal comfort. It was based on the heat balance theory and calculated the
predicted mean vote (PMV) and predicted percentage of dissatisfaction (PPD) by taking
six factors into account including indoor air temperature, mean radiation temperature, air
flowrate, relative humidity, metabolic rate, and thermal resistance of clothing. The PMV
measures the average thermal sensation of the population to the thermal environment,
and the PPD reflects the percentage of people who feel too cold or too hot. On the other
hand, the PMV-PPD model cannot satisfy individualized needs as it simply represents the
population’s average level of thermal comfort.
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Some researchers have developed thermal comfort prediction models utilizing ma-
chine learning techniques in order to increase the precision of thermal discomfort prediction
by taking into account individualized thermal comfort variances. Using Markov chain
Monte Carlo methods for parameter estimation and model validation, Liu Yongxin [8]
developed a prediction model of the thermal environment dissatisfaction rate based on the
Bayesian theory, taking into account individual variances in a human thermal sense. The re-
sults showed that the model could better reflect the actual thermal comfort of occupants but
failed to fully consider the inter and intra-individual thermal sensation. In order to predict
individualized thermal comfort while taking into account inter- and intra-individual ther-
mal sensation, J. Guenther et al. [9] used the Gaussian process regression (GPR) algorithm.
To reduce the risk of overfitting and increase the efficiency and accuracy of prediction, they
chose constrained LASSO regression as a feature selection method. However, because the
impact of weather forecast data was not taken into account, the system may not provide
timely and effective temperature management and comfort enhancement methods. In
order to effectively deal with complex nonlinear relationships, M. Sulzer et al. [10] com-
bined weather forecast data with indoor sensor data and used artificial neural networks to
adaptively learn and adjust the model. The research only used artificial neural networks as
a machine learning algorithm and did not compare it to other algorithms. Four machine
learning algorithms—artificial neural network, random forest, support vector machine,
and linear discriminant analysis—were compared by Pantavou Katerina et al. [11] and
found to have high accuracy and reliability in predicting thermal comfort while taking
into account all meteorological data and environmental factors. However, all of those
mentioned machine learning techniques use offline collections of subject parameters to
develop thermal comfort prediction models for certain situations, which are then used for
the prediction of a given person’s thermal comfort in a particular environment [12].

Real-time online human physiological data collection minimizes the restrictions
of particular areas and populations and provides a new way to predict thermal com-
fort [13]. B. Salehi [14] achieved thermal comfort prediction by collecting human skin
temperature, which was substantially more accurate compared to the traditional PMV
model. Wu et al. [15] established a prediction model using a classification tree to realize
the prediction of individual thermal comfort, further analyzed the influence of phys-
iological parameters and thermal history on individual thermal comfort and verified
the accuracy and reliability of the model through experiments. J. Ngarambe et al. [16]
used environmental monitoring devices to obtain indoor environmental parameters and
wearable devices such as wristbands to measure skin temperature, heart rate, and other
physiological parameters to predict the user’s thermal comfort. F. Salamone et al. [17]
measured human skin temperature and heart rate with a wristband device and combined
them with environmental parameters for thermal comfort prediction.

With the development of computer vision technology, the non-contact physiologi-
cal parameter detection method has been widely used. An innovative infrared imaging
method has been put forward by A. Ghahramani et al. [18] to measure skin temperature
and consequently analyze an individual’s level of thermal comfort. D. Li et al. [19] pro-
posed a novel non-invasive infrared thermography framework to collect skin temperatures
from different parts of the body as a way to estimate the occupant’s thermal comfort level.
S. H. Oh et al. [20] used non-contact sensors to detect heart rate to predict people’s ther-
mal comfort. N.S.M. Azizi et al. [21] combined sensors and thermal image recognition
techniques to obtain human physiological parameters to predict human thermal comfort.
However, thermal comfort is a subjective feeling of the human body and the method of
physiological parameter detection ignores the influence of human psychological factors on
thermal comfort generation.

As a psychological representation of individual thermal comfort, thermal discomfort
body language offers new research directions and opportunities for individualized
thermal comfort measurement and modulation [22,23]. Body language expressions
related to thermal comfort were carefully observed by J. Kim et al. [24], who found
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that thermal discomfort body language had a high degree of consistency in assessing
individual thermal feelings. By using a Kinect camera to record postures associated with
thermal discomfort, A. Meier et al. [25] developed a “thermal discomfort posture library”
that could be used to measure different thermal discomfort levels. Yang Bin et al. [26]
confirmed the feasibility of using human posture to assess thermal comfort and proposed
an algorithm for the identification of 12 postures related to thermal comfort to achieve
real-time contactless thermal comfort assessment. Thermal comfort for occupants should
ideally be maintained adaptively by adjusting the temperature in response to occupant
actions. Many studies have demonstrated that PMV can detect and maintain thermal
comfort levels. Another advantage is that it can deliver better energy savings than
traditional control systems [27,28].

Although body language can express psychological differences in thermal comfort,
given the uncertainty of body language, a separate analysis of the group’s thermal comfort
level will make it difficult to effectively take into account the commonality of thermal
comfort characteristics. Therefore, it would be more effective to combine generally accepted
indicators of group thermal comfort with individualized measures of thermal discomfort
body language.

To solve the above problems, this study proposed a prediction model of the thermal
dissatisfaction rate based on the expression of thermal discomfort body language and
further realized the online regulation of room temperature. Based on the PMV-PPD model
to characterize universal thermal comfort, combined with individual body language expres-
sion, real-time correction of group universality improves the compatibility of prediction
results with the actual thermal environment and effectively assesses the rate of human ther-
mal dissatisfaction to achieve intelligent setting of indoor temperature and humidity. This
study calculated the prior distribution of thermal dissatisfaction rate by collecting indoor
environmental parameters and human body parameters using the PMV-PPD model. We
collected personalized thermal discomfort body language expressions online to calculate
the posterior distribution of the thermal dissatisfaction rate. Furthermore, the Bayesian the-
ory was used to derive the predicted value of the thermal dissatisfaction rate. In addition,
this study also combined the advantages of online learning by reinforcement learning to
achieve intelligent settings of indoor temperature and humidity. Finally, the feasibility of
the proposed method was demonstrated by analyzing the effectiveness of the proposed
method in the thermal comfort prediction and room temperature setting.

2. Methods

Based on the thermal discomfort body language expression, the implementation
process of the Bayesian group thermal dissatisfaction rate prediction and room temperature
online regulation model was shown in Figure 1.

2.1. Thermal Dissatisfaction Rate Prediction
2.1.1. Bayesian Theory

The Bayesian theory was a statistical framework for updating probabilities based on
new data or evidence. It involved using prior knowledge represented as a prior distri-
bution and likelihood functions to calculate posterior distributions, which were updated
probabilities based on observed data. Bayesian methods were widely used in various fields,
including machine learning, artificial intelligence, and data analysis. They provided a
flexible and intuitive approach that could incorporate uncertainty and complexity into
statistical modeling and decision-making. Moreover, Bayesian models could be updated
iteratively as new information becomes available, enabling continuous learning and im-
provement. In this paper, θ denotes a possible event and π(θ) means the probability of
event θ occurring. If an observation experiment was conducted for the potential event θ,
the sample information reflected the magnitude of the likelihood of outcome x. It used the
density function f (x|θ) to represent its probability magnitude, combining the prior and
sample information; h(θ|x) represents the probability of the event θ under the occurrence
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of outcome x probability of occurrence, characterizing the quantitative assessment of the
likelihood of event θ occurrence in combination with the sample data. The Bayesian formu-
lation established a method for making a new evaluation of the prior distribution based on
actual research data, as shown in Equation (1).

h(θ) =
f (x|θ)π(θ)∫

θ f (x|θ)π(θ) f (x)dθ
(1)
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2.1.2. Prediction Model

In analyzing the real-time dissatisfaction rate of thermal environment groups, the prior
distribution indicated the distribution of dissatisfaction rate corresponding to a particular
PMV value. Although the PMV-PPD model could hardly reflect the influence of individual
variability on human thermal comfort, the model could characterize the average indoor
multi-user thermal comfort and thermal dissatisfaction rate. Therefore, the PMV-PPD
model was used to describe the prior information on thermal comfort and calculated the
average group thermal comfort and thermal. The objective quantity of dissatisfaction
rate was calculated. Based on the central limit theorem of probability theory, a Gaussian
distribution was used to characterize the prior information on the thermal dissatisfaction
rate, as shown in Equation (2).

π(θ) =
1√
2πσ

e−
(θ−PPD)2

2σ2 , (2)
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where θ denotes the thermal dissatisfaction rate, θ ∈ [0, 1]; σ denotes the variance of the
prior distribution of the thermal dissatisfaction rate. According to the PMV thermal comfort
index, the PPD is the group average thermal dissatisfaction rate calculated, as shown in
Equation (3).

PPD = 1 − 0.95 × exp(−0.03353 × PMV4 − 0.2179 × PMV2) (3)

Multi-user thermal discomfort body language expressions were independent of each
other. The binomial distribution could characterize the probability of thermal discomfort
body language occurrence in n independent Bernoulli experiments. Therefore, the binomial
distribution was selected to describe the distribution of thermal discomfort body language
in the group in this paper. At a particular moment, assuming that the number of people in
the room is n and the number of people expressing thermal discomfort body language is
x, the distribution of the number of people with thermal discomfort body language in the
field research is shown in Equation (4).

f (x
∣∣θ) = Cx

nθx(1− θ)n−x (4)

Based on information on thermal discomfort body language, the posterior distribu-
tion of the thermal dissatisfaction rate was obtained by synthesizing prior knowledge to
express the prediction results with individualized differences. Based on the Bayesian
prediction theory, the posterior distribution of the thermal dissatisfaction rate is shown
in Equation (5).

h(θ|x) = π(θ) f (x|θ)∫ 1
0 π(θ) f (x|θ)dθ

, (5)

where h(θ|x) denotes the posterior distribution of the thermal dissatisfaction rate, combin-
ing group thermal comfort characteristics and individualized thermal comfort differences.

The above formula combines the collected environmental parameters and human
physiological parameters to determine the objective amount of thermal dissatisfaction rate.
It monitors people’s subjective thermal comfort feelings towards the environment using
on-site research on thermal discomfort body language, etc. According to the posterior
distribution of the thermal dissatisfaction rate, the predicted value of the thermal dissat-
isfaction rate was calculated by the Bayesian theoretical point estimation method. The
expected value of the posterior distribution was used as the predicted result considering
the actual thermal environment so that the group universal thermal dissatisfaction rate can
be corrected in real-time to achieve the timely update of personnel thermal dissatisfaction
status, as shown in Equation (6).

BPD =
∫ 1

0
θh(θ|x)dθ. (6)

2.2. Setting of Indoor Temperature and Humidity

The real-time predicted thermal dissatisfaction rate values were applied to the on-
line learning of room temperature and humidity to obtain reasonable setting values for
indoor environmental parameters. The DDPG algorithm was a deep reinforcement learn-
ing algorithm based on the Actor-Critic structure, using a convolutional neural network
approximation to represent the policy function and the value Q function, corresponding
to the Actor-network and the Critic-network, respectively [29]. In the intelligent setting
model based on the DDPG algorithm [30], the controller adopted a deterministic strategy
to meet the comfort and energy-saving requirements of the room occupants based on the
current environmental state information, and the temperature and humidity setting value
for the next moment was related to the current occupant thermal dissatisfaction rate and
the adopted temperature and humidity setting value. The predicted thermal dissatisfaction
rate value and the environmental state were used as inputs to the DDPG controller to
output the indoor set values and achieve online regulation of indoor temperature and
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humidity. The controller learned to obtain the optimal indoor temperature and humidity
settings to change the thermal environment state, which is shown in Figure 2.
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Based on the DDPG algorithm, an online learning model for indoor temperature and
humidity was developed and the system state, action, and reward functions are as follows:

(1) State: A reasonable indoor temperature and humidity setting value can reduce
system energy consumption while ensuring human thermal comfort. The system
state was the relevant parameters affecting thermal comfort and energy-saving
including indoor temperature, relative humidity, airflow rate, clothing thermal
resistance, and human metabolic rate. Individual variability made some physical
quantities more difficult to measure such as human metabolic rate and clothing
thermal resistance, which could only be obtained by approximate values. Due to
the small range of airflow rate variation in the thermal environment of the closed
building and other reasons, the more difficult-to-measure parameters were fixed
as the average value in the current thermal environment, and the state space at
moment t is defined as shown in Equation (7).

St = [Tt, RHt, Tmrt, BPDt], (7)

where Tt, RHt, and Tmrt correspond to the indoor temperature, relative humidity, and mean
radiant temperature of time series t, respectively, and BPDt is the predicted value of thermal
dissatisfaction rate, and t is the time series, t = 1, 2, . . . .

(2) Action: The thermal environment state was changed by adjusting the room tempera-
ture and humidity settings. When the environment state is st, the room temperature
and humidity settings are used as action parameters, and when the environment state
is st+1, the action at+1 is executed. All actions are selected in the action space, and the
action space at time t is shown in Equation (8).

At = [Tset_t, Hset_t], (8)

where At is the action of the Markov decision process at moment t, Tset_t, and Hset_t are the
set values of indoor air temperature and relative humidity after the controller action, and
the control action is determined by the control strategy µ, as shown in Equation (9).

At = µ(St). (9)

Reward: In practical scenarios, thermal comfort and energy savings conflict with each
other. Setting a reward function to balance the conflict between them was the core of online
regulation of air conditioning systems. Designing a suitable reward function is beneficial to
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achieve the control effect of comfort and energy-saving; therefore, the integrated reward is
set as the sum of energy consumption and thermal comfort reward, the comforting reward
was set by combining PMV-BPD and PMV-PPD models, and the PMV-PPD relationship is
shown in Figure 3.
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The ASHRAE Standard 55-2020 [6] sets the human comfort range to −0.5 < PMV < 0.5,
but there is still a 20% thermal dissatisfaction rate due to the difficulty of achieving a 90%
thermal satisfaction rate in actual studies so that the thermal comfort value for the user
is between [−1, +1] as much as possible. Design thermal comfort reward for the group
thermal dissatisfaction rate brings the reward value, for the comforting reward, as far as
possible to make the indoor group thermal dissatisfaction rate value close to the thermal
comfort for [−1, +1] corresponding to the thermal dissatisfaction rate value of 26%, and
the closer the group thermal dissatisfaction rate is to 26%, the greater the reward value,
otherwise the system will get the penalty value and thermal comfort reward as shown in
Equation (10).

Rcom f ort =

{
−BPDt, BPDt > 26%

26%− BPDt, BPDt < 26%
, (10)

where Rcomfort is the reward value of the environmental state for St at moment t. In the
indoor thermal environment regulation model of comfort and energy-saving, the default
comfort and energy-saving are equally important.

The energy-saving effect reward referred to the reward brought by the room tempera-
ture setting value. To make the output value of the deep deterministic strategy gradient
learning system more reasonable and reliable and reduce the number of controller learning,
the rule of room temperature setting value change was added, when BPDt > 26%, it indi-
cated that the user feels colder or hotter in the current indoor thermal environment, and the
indoor temperature and humidity should be adjusted reasonably at this time. In summer
conditions, the higher the room temperature setting value and the smaller the cooling load
within the indoor comfort zone, the lower the energy consumption of the air conditioning
system, and in winter conditions, the lower the room temperature setting value and the
smaller the heating load within the indoor comfort zone, the lower the energy consumption
of the air conditioning system. Therefore, to make the adjusted room temperature setting
value as close as possible to the current moment room temperature, the greater the bonus
value obtained by the system, the energy saving bonus as shown in Equation (11).

Renergy =

{
1−|Tset − Tr|, |Tset − Tr|≤ 1
−|Tset − Tr|, |Tset − Tr|> 1

. (11)
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Based on the above analysis, it is determined that the total reward of the DDPG-based
indoor thermal environment regulation method is the sum of the comfort reward and the
energy saving reward, and the design comfort and energy saving are equally important in
this study, and the calculation formula is shown in Equation (12).

Rsum = Rcom f ort + Renergy. (12)

(3) Cost minimization: The goal of indoor thermal environment regulation is to balance
the relationship between thermal comfort and energy consumption, get the maximum
reward value in return, and obtain the optimal setting value of indoor temperature
and humidity. The expression is shown in Equation (13).

max
µ

∞

∑
t′=0

γt′Rt+t′(St+t′ , At+t′). (13)

3. Experiments and Analysis of Results
3.1. Experiment Conditions and Procedure

The overall size of the laboratory was 10 m × 9 m, and the indoor office could
accommodate 39 people simultaneously. The personnel activity space was divided into two
cabinet air conditioning units with model KFR-72LW/DY-PA400(D2)A, a cooling capacity
of 7290 W, and rated power of 2190 W installed. The experimental environment is shown
in Figure 4.
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mum reward value in return, and obtain the optimal setting value of indoor temper-
ature and humidity. The expression is shown in Equation (13). 

max 𝛾 ′𝑅 ′(𝑆 ′ , 𝐴 ′)∞

′

. (13)

3. Experiments and Analysis of Results 
3.1. Experiment Conditions and Procedure 

The overall size of the laboratory was 10 m × 9 m, and the indoor office could accom-
modate 39 people simultaneously. The personnel activity space was divided into two cab-
inet air conditioning units with model KFR-72LW/DY-PA400(D2)A, a cooling capacity of 
7290 W, and rated power of 2190 W installed. The experimental environment is shown in 
Figure 4. 
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To better meet the specific requirements of thermal comfort, we took a series of
measures in the experimental design to avoid unnecessary influencing factors. Among
them, we paid special attention to the individual differences of the subjects including
age, height, body size, gender, and living habits. Considering those factors may produce
errors in the prediction results, we selected 16 graduate students from Xi’an University of
Architecture and Technology as our experimental subjects, which can further enhance the
representativeness of the experimental data. These postgraduates had lived in Xi’an for
more than one year, their lifestyle patterns were similar, and their body mass indexes ranged
from 17.2 to 26.3, within the normal range of the Chinese reference standard. The subjects’
basic information is shown in Table 1. Through these parameters, we can more accurately
assess thermal comfort and improve the reliability and validity of the experimental data.
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Table 1. Subjects’ basic information table.

Gender Quantity Age Height/m Weight/kg BMI/kg·m2

Male 8 25.0 ± 1.0 1.75 ± 0.1 68.5 ± 11.5 22.5 ± 3.8
Female 8 24.9 ± 2.2 1.60 ± 0.1 49.9 ± 14.0 19.3 ± 2.1

The experimental data were collected on 10 November 2022, and 11 November 2022.
The subjects’ clothing was long-sleeved and long pants. The sensitivity of all experimental
apparatus was checked and calibrated before the experiment to achieve accurate mea-
surements of indoor environmental parameters. Measurement points were based on the
requirements of the Evaluation Standard for Indoor Thermal and Humid Environment in
Civil Building [31], and the temperature and humidity sensors were placed at 1 m from the
ground to prevent large errors between the parameters of the subject’s environment and
those obtained from the measurements. The details of the experimental devices are shown
in Table 2.

Table 2. Detailed information on experimental devices.

Measurement
Parameters Test Instruments Measurement Range Accuracy Test Method

Indoor
temperature

HABOTEST HT
HT618 Temperature and

humidity data logger
−20~60 ◦C ±0.5 ◦C 1.1 m above the ground

Relative
humidity

HABOTEST HT
HT618 Temperature and

humidity data logger
0–99.9% ±3% 1.1 m above the ground

Airflow rate HABOTEST HT625A
Handheld anemometer 0.4~30.00 m/s ±0.5 m/s 1.1 m above the ground

Thermal
discomfort body language

General camera
1920×1080p — — In front of

subjects

Each experiment started at 9:00, ended at 16:30, and lasted six and a half hours. During
the whole experiment, the subjects were kept in daily working and studying conditions
in the room. The air conditioning temperature was adjusted at intervals of 1 ◦C, and the
adjustment range was 16~30 ◦C. After each adjustment of the air conditioning temperature,
the indoor current air temperature and humidity were recorded at a fixed position with a
temperature and humidity recorder. The air conditioning temperature was adjusted once
in a cycle of 25 min. Each process was divided into three phases: personnel adaptation,
observation of personnel thermal discomfort body language expression, and the thermal
comfort feedback collection. The experimental procedure is shown in Figure 5.
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Personnel adaptation: the initial indoor air conditioning temperature was set at 16 ◦C,
and the subjects first underwent 5 min of environmental adaptation.
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Observation of thermal discomfort body language expression: Due to inter-individual
differences, existing studies provide small datasets of thermal discomfort body language,
which cannot predict thermal comfort and thermal dissatisfaction rate comprehensively
and accurately. Before the experiment, participants were informed that they could express
cold discomfort, such as stamping feet, narrowing shoulders, crossing arms, blowing into
hands, putting on a coat, and rubbing hands, as well as a list of hot discomfort body
language including shaking clothing, scratching head, fanning with an object, taking off a
coat, wiping sweat, or rolling up sleeves. Participants were also given the option not to
perform any of these actions. A general camera was used to automatically capture subjects’
thermal discomfort body language in office scenes. By collecting these data, we can better
understand people’s thermal discomfort body language expression performance under
different temperature conditions. This provided a reliable theoretical basis for thermal
environment assessment and regulation.

Thermal comfort vote: During the experiment, the thermal comfort vote was collected
from subjects at 25 min intervals, and the questionnaire included subjects’ personal infor-
mation and thermal comfort vote, personal information including subjects’ name, gender,
age, height, weight, body mass index, and clothing. The thermal comfort vote is shown
in Table 3. It was characterized by seven levels of thermal sensation index, which was
one of the most commonly used evaluation indicators, and the room temperature was
kept constant when users voted. Each vote was not affected by the last temperature. In
the experiment, the thermal comfort vote was used to calculate the actual prediction of
dissatisfaction (APD).

Table 3. ASHRAE thermal comfort scale [32].

Thermal Comfort Scale

Hot +3
Warm +2

Slightly warm +1
Netural 0

Slightly cool −1
Cool −2
Cold −3

3.1.1. Data Analysis

During the experiment, we set a series of different indoor air conditioning temper-
atures ranging from 16 ◦C to 30 ◦C to simulate different temperature conditions. Due to
the limitations of the experimental environment, when the indoor air conditioning tem-
perature was set to 16 ◦C, there was some deviation between the air conditioning display
temperature and the actual indoor air temperature. The lowest room air temperature of
16.8 ◦C was recorded during the experiment, which may have affected the subjects’ thermal
perception. The detailed results are shown in Figure 6. Figure 6a shows that when the
indoor air temperature was changed to a lower temperature of 16.8~20.1 ◦C, the subjects
will produce cold uncomfortable body language such as ‘rubbing hands’, ‘putting on a
coat’, ‘stamp one’s feet’, etc. At different indoor temperatures, there were differences in
the way multi-users express cold discomfort, that is, the type of body language expression
was in dynamic change. Figure 6b shows that when the indoor temperature changes from
21.2 ◦C to 25.6 ◦C, the expression type of the subjects’ body language is the same as that
of the indoor temperature from 16.8 ◦C to 20.1 ◦C, but the number of subjects decreases
gradually. At 25.6 ◦C, only three subjects had thermal discomfort body language; Figure 6c
shows that when the indoor temperature changes from 25.9 ◦C to 27.1 ◦C, the type of body
language expression of the subjects’ changes, and the body language of ‘rolled up sleeves’
will be produced to express the feeling of thermal discomfort. With the increase in room
temperature, the number of subjects with thermal discomfort body language expression
increases. At 27.1 ◦C, four users produce thermal discomfort body language expression.
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Figure 6d shows that when the indoor temperature changes from 27.3 ◦C to 27.9 ◦C, the
subjects gradually produce thermal discomfort body language such as ‘wipe sweat’, ‘fan
with hand’, ‘take off the coat’, and other expressions of thermal discomfort. Figure 6e,f
shows that when the indoor temperature is 28–30 ◦C, the number of subjects expressing
thermal discomfort body language increases. When the indoor temperature is 30 ◦C, only
two subjects do not do any thermal discomfort body movements. The results in the figure
showed that multi-users in the same thermal environment will express discomfort through
thermal discomfort body language, which proved that thermal discomfort body language
can indeed represent personalized thermal comfort differences and proved the effectiveness
of using it to predict thermal comfort.
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3.1.2. Parameters Setting

Based on the DDPG algorithm, the training process of indoor thermal environment
comfort and energy-saving is shown in Figure 7.

The DDPG controller achieved comfort and energy-saving regulation by interacting
with the building’s thermal environment. At the initial moment, the indoor thermal
environment state is St. The state is input to the strategy network, which outputs the
control action At. The value network evaluated the goodness of the action by calculating
the output action value of the strategy network. The pseudo-code of the training process
based on the DDPG algorithm is shown in Algorithm 1.
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Algorithm 1. Intelligent setting based on DDPG algorithm [33].

[1] Initialize the Critic-network Q(St, At
∣∣θQ) and Actor-network µ(St, At|θµ) with weights θQ

and θµ

[2] Initialize Target-network Q′(St, At

∣∣∣θQ′ ) and µ′(St

∣∣∣θµ′ ) with θQ′ ← θQ and θµ′ ← θµ

[3] Initialize replay buffer B
[4]for episode = 0, 1, . . . M do
[5] Obtain the initial thermal state S0
[6] for t = 0, 1, . . . T do
[7] Obtain control action At according to Equation (14)
[8] Update the set point for the next moment according to control action At
[9] Obtain new thermal state St+1 and calculate reward Rt according to Equation (12) at the end of
time slot t
[10] Store (st, at, rt, st+1) into replay buffer B
[11] Randomly select N transitions from replay buffer B
[12] Calculate the estimated reward for each selected transition using Equation (15)
[13] Update the Critic network by minimizing the MSE over the sampled minibatch and update
the Actor-network using the sampled policy gradient
[14] Update Target network Q′ and µ′ using Equation (16)
[15] end for
[16]end for
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During the experimental training, the controller explored the state space. The Ornstein–
Uhlenbeck procedure was used to avoid getting stuck in a local optimum solution. Each
exploration centered on the mean value to improve the thermal comfort control, with the
expression shown in Equation (14).

At = µ(St|θµ) + N(t), (14)

where N(t) denotes the exploration noise, At describes the control action with added noise,
and µ represents a deterministic strategy.
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For each learned thermal environmental state (st, at, rt, st+1) ∈ N, the reward value
expression is shown in Equation (15).

R′i = Ri + γQ′(Si+1, µ′(Si+1|θµ′)|+ θQ′). (15)

On the sampled small batch data, the value network was updated by minimizing the
estimated reward, i.e., Equation (15), and the average absolute error of the value network
prediction. The Target network was updated with the expression shown in Equation (16).{

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ′ + (1− τ)θµ′ , (16)

where τ is the discount factor of the model. After training, only the policy network is
applied to control the actions.

The DDPG controller was used for the intelligent setting of indoor environmental
parameters. The value function was estimated approximately using a neural network.
The input features to the network were the building environment state. The Actor–Critic
network had two hidden layers with 128 neurons per layer. The tanh activation function
was used as a batch normalization, gradient-based optimization using Adam, a learning
rate of 0.001, a discount factor of 0.001 for model updates, a batch size of 128, a duration of
30 min for each period, and iterative training every 48 s. Parameters in the DDPG algorithm
are set as shown in Table 4.

Table 4. Parameter settings in the DDPG algorithm.

Parameter Value Parameter Value

Actor-network
learning rate 1 × 10−4 Soft update parameters

of target network 1 × 10−2

Critic-network
learning rate 1 × 10−3 Maximize reply

buffer capacity 50,000

discount factor τ 0.99 activation function tanh
batch_size 128

3.2. Analysis of Prediction Results
3.2.1. Quantitative Analysis of Prediction Results

The prediction results at different indoor temperatures are shown in Figure 8. The
predicted value of the thermal dissatisfaction rate expressed by thermal discomfort body
language was noted as BPD and the actual thermal dissatisfaction rate was noted as
APD. The Bayesian thermal dissatisfaction rate predicted values show a changing trend
of low in the middle and high on both sides, which was consistent with the changing
trend of PMV-PPD model predicted values and actual thermal dissatisfaction rate, and the
lowest Bayesian thermal dissatisfaction rate predicted value is 16.28% near the suitable
temperature. When the indoor temperature was low, the thermal dissatisfaction rate was
higher, and as the indoor temperature rises to the appropriate temperature, the thermal
dissatisfaction rate gradually decreases; at this time, when the indoor temperature is raised
again, the thermal dissatisfaction rate gradually increases.

Comparing the model strengths and weaknesses, Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE) were used for quantitative analysis of the prediction
results of the multi-algorithm thermal dissatisfaction rate. MAE and RMSE reflect the
degree of difference between the predicted and actual value, and their definitions are
detailed in Equations (17) and (18).

MAE =
1
m

m

∑
i=1

∣∣∣∣θ̂i −
∼
θ i

∣∣∣∣, (17)
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RMSE =

√√√√√ m
∑

i=1
(θ̂i −

∼
θ i)2

m
, (18)

where, θi is the Bayesian-based predictive value of the thermal dissatisfaction rate of the
ith set of experimental data, θi is the Actual thermal dissatisfaction rate of the ith set of
experimental data, i = 1, 2, . . . , m.
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Figure 8. Comparison of multi-method prediction results.

The method proposed in this paper exhibits higher accuracy and better prediction per-
formance than the PMV-PPD model in actual building thermal environments, as evidenced
by a reduction of 0.208 in MAE and 0.232 in RMSE. Table 5 presents the evaluation results
of the thermal dissatisfaction rate prediction model.

Table 5. Evaluation results of thermal dissatisfaction rate prediction model.

Model Evaluation Metrics PMV-PPD Model of This Paper

MAE 0.241 0.033
RMSE 0.269 0.037

3.2.2. Comparative Analysis of Prediction Results

In addition, we used machine learning methods such as Support Vector Machine
(SVM), Random Forest (RF), Decision Tree (DT), Artificial Neural Networks (ANN), and K-
Nearest Neighbors (KNN) to compare model prediction effects, and the model comparison
results are shown in Tables 6 and 7. Experimental results show that the error between the
true and predicted values of our proposed method was smaller compared to the prediction
method of thermal dissatisfaction rate without the inclusion of thermal discomfort body
language expression.

Table 6. Mean Absolute Error of the model.

Input Algorithms

Indoor Parameters Individual Parameters Discomfort Expression KNN SVM RF DT ANN Ours
√ √

× 0.0986 0.2000 0.0971 0.0619 0.1501 -√ √ √
- - - - - 0.033

Table 7. Root Mean Square Error of the model.

Input Algorithms

Indoor Parameters Individual Parameters Discomfort Expression KNN SVM RF DT ANN Ours
√ √

× 0.1217 0.2121 0.0760 0.1063 0.1730 -√ √ √
- - - - - 0.037
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3.2.3. Regression Analysis of Prediction Results

The relationship between PMV and the thermal dissatisfaction rate prediction result is
shown in Figure 9. The PMV-PPD thermal comfort prediction model predicted the lowest
value of thermal dissatisfaction rate to be 5% and the comfort interval to be (−0.5,0.5) at
a thermal dissatisfaction rate of 10%. The lowest value of the thermal dissatisfaction rate
predicted based on Bayesian theory is 16.28%, corresponding to a PMV value of 0.25.
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3.3. Intelligent Setting of Indoor Temperature and Humidity
3.3.1. Reward Value

The experiment sets the relevant initial parameters, learning and training based on the
DDPG algorithm, deriving the change of reward values during the training process, and
observing its convergence. According to most users’ demand for indoor thermal comfort,
the average reward value reflects the overall trend of the reward value. The trend of reward
value change during the training process is shown in Figure 10 and the algorithm converges
in a certain exploration process. The results show that the reward values in the online
room temperature regulation model based on the DDPG algorithm fluctuate in the initial
condition and finally stabilize. Initially, the controller learns and takes a trial-and-error
approach to explore the appropriate temperature and humidity, resulting in fluctuating
reward values. The DDPG algorithm updates the strategy during training, and the effect
improves with each training iteration, eventually converging. During training, the reward
values fluctuate due to noise and changes in the thermal environment during each iteration
that affect energy consumption and thermal comfort. After about 75 rounds of training and
learning, the reward value converges to a stable level.

3.3.2. Multi-Method Performance Comparison

The reward values based on the DDPG algorithm, SARSA, Q-Learning, and DQN
methods are shown in Figure 11. The results show that the DDPG controller can achieve
faster convergence compared with other methods because DDPG does not require action
space discretization and has a smaller number of network outputs to learn the air condition-
ing system temperature and humidity settings more effectively and obtain higher reward
values. Q-Learning and SARSA use Q-table to store and update discrete state-action values,
which is more effective when the state and action space is discrete and low-dimensional, but
if the state and action space is high-dimensional continuous, there will be an exponential
growth of computation as the number of dimensions increases. DQN uses an experience
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replay mechanism, which requires discrete action space and slower convergence speed.
Compared with SARSA, Q-Learning, and DQN methods, DDPG can obtain the highest
reward value and has more effective thermal control performance.
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3.3.3. Setting Values Based on the PMV-PPD Model

At 26.5◦, the occupants felt hotter. The results of the indoor temperature and humidity
settings based on the PMV-PPD model are shown in Table 8. When the occupants were
hotter, there was a decrease in the indoor temperature and humidity settings learned using
the reinforcement learning algorithm, an increase in occupant comfort, and a decrease in the
thermal dissatisfaction rate. Using different reinforcement learning algorithms, there were
differences in the learned indoor temperature and humidity, and the final thermal comfort
state of the group, where the deep deterministic strategy based on the gradient of the
algorithm learned the lower indoor temperature, the lowest group thermal dissatisfaction
rate and the highest overall comfort.
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Table 8. The final setting value is based on PMV-PPD Model.

Reinforcement
Learning Algorithms Indoor Temperature Setting/◦C Relative Humidity Setting/% PMV Thermal

Dissatisfaction Rate

DDPG 25.8 49.5% 0.23 6.09%
DQN 25.9 48.7% 0.25 6.29%

Q-Learning 26.1 49.1% 0.33 7.26%
SARSA 26.3 48.5% 0.4 8.33%

3.3.4. Setting Values Based on the PMV-BPD Model

The results of the indoor temperature and humidity settings based on the PMV-
BPD model are shown in Table 9. The lowest value of the thermal dissatisfaction rate
predicted by the PMV-BPD model was 16.28%, and the value of the thermal dissatisfaction
rate predicted based on the PMV-BPD model was added to the intelligent settings for
different reinforcement learning, and the learned room temperature settings differed. The
room temperature setting value of 25.5 ◦C and the relative humidity setting the value
of 45.6% were learned according to the DDPG algorithm, and the final learned thermal
dissatisfaction rate was 16.58%, which was 0.3% different from the lowest Bayesian thermal
dissatisfaction rate value expressed in thermal discomfort body language. The learned
indoor temperature setting value is closer to the indoor temperature corresponding to the
lowest thermal dissatisfaction rate than the learning result without the inclusion of body
language expression.

Table 9. The final setting value is based on PMV-BPD Model.

Reinforcement
Learning Algorithms Indoor Temperature Setting/◦C Relative Humidity Setting/% PMV Thermal

Dissatisfaction Rate

DDPG 25.5 45.6% 0.09 16.58%
DQN 25.8 45.3% 0.2 16.9%

Q-Learning 25.9 45.2% 0.23 17.8%
SARSA 26.0 44.8% 0.26 18.4%

The room temperature setting value learned according to the DQN algorithm is 25.8 ◦C
and the relative humidity setting value is 45.3%, and the final learned thermal dissatisfaction
rate is 16.9%, which is 0.62% different from the lowest Bayesian thermal dissatisfaction
rate expressed by thermal discomfort body language. Compared with the learning results
without the inclusion of body language expression, the room temperature setting value is
closer to the room temperature corresponding to the lowest thermal dissatisfaction rate,
the learned room temperature is lower and the human comfort level is higher. Comparing
the indoor temperature and humidity setting values obtained based on Q-Learning and
SARSA algorithms, the same conclusion can be obtained.

4. Discussion

The results of our study were conducted in public building spaces with random
movement of people. Based on the group universal thermal comfort, the PMV-PPD model
was modified in real-time by using personalized discomfort body language expression
to obtain predicted values that are closer to the real thermal comfort, and the means of
combining commonality and personalized thermal comfort characterization provides new
research ideas and possibilities for the prediction of thermal dissatisfaction rate, which
further provides a basis for the reasonable setting of indoor temperature and humidity.

In addition, this paper can reduce the disruption to the normal office of people in
public building spaces. In this study, the camera captures human thermal discomfort body
language to demonstrate its feasibility in expressing thermal discomfort. For example,
when users feel hotter, they produce fanning, wiping sweat, etc., and when users feel colder,
they produce breathing into their hands and stamping their feet. There were significant
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differences in the number of people expressing thermal discomfort body language when
the room temperature changed, and the type of body language expression was not fixed.

Consistent with the conclusions reached in the study [31], the proposed method for
predicting the thermal dissatisfaction rate for a given condition considering the randomness
caused by inter- or intra-individual thermal sensory variability to obtain a comprehensive
understanding of the comfortable thermal environment and the human thermal comfort
response has shown good performance for predicting the occupant thermal dissatisfac-
tion rate. Compared with the PMV-PPD model, which considers indoor environmental
parameters and individual parameters to predict thermal dissatisfaction rate, this study
adds human thermal discomfort body language expressions based on this model and inte-
grates environmental parameters, human body parameters and thermal discomfort body
language expressions to predict thermal dissatisfaction rate, realizing real-time correction
of the PMV-PPD model, and the prediction effect is greatly improved. The improved
PMV-PPD model can evaluate the influence of individual differences on human thermal
comfort more conveniently and more closely to the real situation, and the evaluation effect
is better.

Compared with other thermal dissatisfaction rate prediction methods, such as the
adaptive dissatisfaction rate prediction model based on residential air conditioning turn-on
behavior in China [34], which considers residents’ adaptive behavior, extracts the data
of air conditioning turn-on from the original data through the air conditioning turn-on
judgment algorithm, adopts the Monte Carlo sampling method for transformation, obtains
the data set of the percentage of residents’ air conditioning turn-on behavior in a specific
indoor and outdoor environment, and establishes a nonlinear regression model, the final
R2 of this model is 0.833, while the R2 of the model proposed in this paper is 0.864. In
contrast to the literature [35], which considered the thermal dissatisfaction rate caused by
local thermal sensation, 16 subjects were selected for an experimental study in a climate
chamber to assess the effect of thermal sensation of whole-body thermal conditions on the
thermal dissatisfaction rate, and the predicted thermal environment dissatisfaction rate
with vertical air temperature difference had a predicted model MAE of 0.2739, while the
MAE of the model proposed in this paper was 0.033, which was reduced by 0.2409.

In line with the main idea of the literature [36], a human thermal comfort prediction
model was established and applied to the rational setting of indoor temperature and humid-
ity to maintain the occupants’ thermal comfort at a reasonable level. The difference is that
the literature used indoor air temperature as the main index for studying thermal comfort
in demand response (DR) and evaluated human thermal comfort using the PMV-PPD
model, where PMV was used to determine the minimum and maximum acceptable indoor
air temperature, and then evaluated the changing set point temperature using different
control strategies, focusing on the rational setting of indoor temperature and humidity.
And our study focused on combining group universal thermal comfort characteristics and
individualized differences to modify the PMV-PPD model in real time to obtain thermal
comfort values closer to the actual ones and further designed strategies for setting values
of indoor environmental parameters to verify the effectiveness of the prediction model,
focusing on the prediction of human thermal comfort. In the future, this study refers to
the advantages of literature to further compare the reasonableness of indoor temperature
setting values under different control strategies and also to further improve the advan-
tages of this paper. Furthermore, in this study, the predicted thermal discomfort rate is
applied to the intelligent setting of indoor temperature and humidity, and combined with
reinforcement learning methods, the real-time predicted thermal discomfort rate is utilized
for online learning of indoor temperature and humidity. The findings indicate that when
indoor occupants feel hot, compared to the PPD model, the indoor temperature setting
learned by the BPD model is lower, resulting in higher human comfort and a thermal
discomfort rate closer to the BPD prediction. Among the different reinforcement learning
methods [37,38], such as Q-learning, SARSA, and the DDPG algorithm performs better,
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achieving a reasonable indoor temperature and humidity setting while satisfying both
human comfort and energy efficiency.

There are two limitations to this study. First, the sample size is limited by the number
of subjects. Future studies can expand the sample size by collecting environmental data
from sensor monitoring, questionnaires, and video-recorded body language expressions
of thermal discomfort. Second, this study is an experimental study based on a real office
scenario. Future studies can investigate the number and distribution of buildings and
collect data from different building types to enhance the persuasiveness of the data and
the validity of the model. In summary, the common and personalized thermal comfort
characterization can be used to accurately predict the thermal dissatisfaction rate, which
fits better with the actual human thermal comfort and can provide a reliable reference basis
for indoor temperature and humidity setting values.

5. Conclusions

This study explored the potential of using thermal discomfort body language to predict
thermal dissatisfaction rate by considering thermal comfort differences among individuals
in groups, environmental factors, and human factors in public building spaces with random
movement of people.

The results show that thermal discomfort body language can effectively describe per-
sonalized thermal comfort differences, and in some cases, body language such as rubbing
hands and wiping sweat can characterize the discomfort feelings. By analyzing personal-
ized thermal discomfort body expressions in groups, applying Bayesian theory with the
PMV-PPD model as a benchmark, estimating probability density functions of model param-
eters, and validating the model using data collected from real office scenarios, the proposed
model can explain the effects of randomness and uncertainty of heat discomfort somatic
expressions on human thermal dissatisfaction rates under the same thermal conditions and
provide a means to predict the thermal dissatisfaction rate.

The proposed thermal dissatisfaction rate prediction model is applied to indoor tem-
perature and humidity settings for human comfort and building energy efficiency. Com-
pared with the thermal dissatisfaction rate prediction model PMV-PPD, which does not
incorporate body language expression, the learned indoor temperature and humidity set-
tings are all closer to the indoor temperature and humidity at the lowest group thermal
dissatisfaction rate with different reinforcement learning algorithms, and the group thermal
comfort is higher.
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