
Citation: Liu, Z.; Luo, W. FMGAN: A

Filter-Enhanced MLP Debias

Recommendation Model Based on

Generative Adversarial Network.

Appl. Sci. 2023, 13, 7975. https://

doi.org/10.3390/app13137975

Academic Editors: Konstantinos

Pliakos and Alireza Gharahighehi

Received: 24 May 2023

Revised: 29 June 2023

Accepted: 6 July 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

FMGAN: A Filter-Enhanced MLP Debias Recommendation
Model Based on Generative Adversarial Network
Zhaoxuan Liu 1 and Wenjie Luo 1,2,*

1 School of Cybersecurity and Computer, Hebei University, Baoding 071002, China
2 Laboratory of Intelligence Image and Text, Hebei University, Baoding 071002, China
* Correspondence: lwj12111@hbu.edu.cn

Abstract: In recommendation models, bias can distort the distribution of user-generated data, leading
to inaccurate representation of user preferences. Failure to filter out biased data can result in
significant learning errors, ultimately reducing the accuracy of the recommendation model. To
address this issue, this paper proposes a Generative Adversarial Network (GAN) model comprising
a filter-enhanced Multi-Layer Perceptron (MLP) generator and a linear discriminator to mitigate
bias and improve the accuracy of the recommendation. The proposed model leverages the GAN
architecture, where the filter structure in the generator enhances the data distribution before model
training, allowing for the generation of more precise recommendation lists. The discriminator learns
from the skew-corrected user review list to extract user features, which are then used alongside the
recommendation list generated by G in an adversarial process. This adversarial process enables each
component to optimize and improve itself while strengthening the correction effect. To enhance the
accuracy of G generation, we evaluate the influence of three different input lists on the filter effect.
Finally, we validate our model on two real-world datasets by comparing the effect of filter-augmented
MLP and pure MLP generators. Our results demonstrate the effectiveness of filters, and our model
achieves better recommendation accuracy than other baseline models.

Keywords: top-N recommendation; debias; filter MLP; generative adversarial networks

1. Introduction

Information retrieval systems play a vital role in information dissemination and
filtering. These systems encompass a range of applications, such as web search [1], rec-
ommendation systems [2], personalized advertisements [3], and text retrieval [4]. An
accurate and efficient recommendation system can mitigate the effects of information
overload by providing users with a curated list of relevant content that aligns with their
query conditions [5], thereby greatly improving the user experience. Collaborative filtering
(CF) [6] recommendation is commonly used in recommendation systems. CF generates
representation vectors of users and items by learning user history interaction information,
and calculates the similarities and associations between users and items based on the
representation vectors. CF has shown excellent performance in generating personalized
recommendations, but the computational complexity of CF increases as the system grows.
Handling large datasets and computing similarity measures can become challenging and
affect the algorithm’s scalability. Recently, the graph convolutional neural network [7] has
become the state-of-the-art method in the recommendation problem. This method has a
strong ability to process structured data. A well-designed graph convolutional model can
learn correlations of different data sources and high-order information. However, the graph
convolutional neural network model is usually not easy to construct suitable graph nodes
and edges, and the design of the network structure is also relatively complicated. It is also
necessary to use more side information in the dataset to extract features.

No matter what method is applied for recommendation, it needs to learn from the
user’s historical interaction information. Obtaining user history interaction information

Appl. Sci. 2023, 13, 7975. https://doi.org/10.3390/app13137975 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137975
https://doi.org/10.3390/app13137975
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2070-465X
https://doi.org/10.3390/app13137975
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137975?type=check_update&version=1

Appl. Sci. 2023, 13, 7975 2 of 17

for the recommendation process can be challenging as it is typically generated during
the user’s usage and not collected through questionnaires [8]. There are several ways
to collect data for recommendation models. One common approach is to obtain specific
evaluations of items from users, display these evaluations, and create a user–item index in
the evaluation matrix. Another method that aligns better with modern software operation
is to collect implicit feedback, where a user’s click on an item is considered a positive
evaluation, and non-clicked items are treated as negative evaluations. Implicit feedback
data are collected easily, and there is a greater abundance of interaction information than
with explicit feedback.

When users rely on software to make decisions, the collected data may be influenced by
a range of factors such as exposure, conformity, and location, resulting in data deviations.
Exposure bias, for instance, arises when users are only exposed to specific items, and
position bias is formed because users tend to interact more with items placed in front.
These deviations cause the interaction distribution of users and items to deviate from
their real preference distribution [9], thereby affecting the recommendation model’s input.
Consequently, it becomes challenging for the model to learn user preferences from noisy
data. For example, when using implicit feedback data, treating all uninteracted items as
negative feedback can create exposure bias. In such cases, the recommendation model may
fail to analyze items similar to the user’s favorite item i, which they have not yet observed.
To address this problem, evaluation indicators such as the propensity score method [10] or
sampling methods [11] can be employed to mitigate exposure bias. By using these methods,
the likelihood of exposure bias can be reduced, and the model can learn user preferences
more accurately.

User interaction with information is a spontaneous behavior, resulting in limited
amounts of data collected, reflected in a list of interaction histories of varying lengths.
Inconsistent data lengths can lead to inconsistencies in the training format of the recom-
mendation system, making it difficult to extract user and item features using a collaborative
method. This challenge has been partially resolved by applying vector training approaches
in various recommender methods. This approach combines a user’s preferences for items
into a vector, unifying the training format, which is the natural input format for neural
networks. Different network layers can be used to address the problem of large differences
in historical interaction data [12]. Filter-enhanced Multi-Layer Perceptron (MLP) is a novel
data processing module in the network form, originally used for signal processing by block-
ing signals of specific frequencies and allowing signals of other frequencies to pass. In the
recommendation models, it can be used as a learnable and efficient noise reduction method
incorporated into the network to further enhance the recommendation system’s efficiency.

In order to overcome the noise caused by the deviation in the collected data and
the data length inconsistency in the user interaction information, this paper proposes a
filter-enhanced Multi-Layer Perceptron recommendation model based on the Generative
Adversarial Network (GAN) framework. Firstly, a generative adversarial model is con-
structed using the GAN architecture, consisting of a generator G and a discriminator D.
G generates fake user interaction lists by learning from the real data distribution, while
D distinguishes between the probability of user interaction lists coming from real data
versus generated lists. Once the model converges, G generates high-confidence recommen-
dations for specific users. Secondly, to better extract user preferences from historical data,
G converts users and items into latent vectors and applies filters to remove noise from the
information in order to achieve the debias effect. Multiple linear layers are then utilized to
increase the model’s fitting nonlinearity data capabilities, thereby improving convergence.
D also utilizes multi-linear layers to process the data. Lastly, the study compared three
different conditional vectors to determine the optimal model input.

The major contributions of this paper are summarized as follows:

(1) We proposed a filter-enhanced MLP recommendation model based on the Gener-
ative Adversarial Network framework to solve the problem of recommendation
bias. Through comparisons of two real-world datasets from Movielens and Ciao, we

Appl. Sci. 2023, 13, 7975 3 of 17

demonstrated the effectiveness of filter-enhanced MLP to improve data partitioning to
address recommendation bias and achieve better results compared to baseline models.

(2) We designed three different condition vectors to enhance the learning ability of the
model and verified the influence of different condition vectors on the model effect
through experimental comparison.

This paper is structured as follows. Section 2 provides an overview of the key related
work. In Section 3, we present our proposed model, detailing its design and implementa-
tion. Section 4 presents the experimental results of our model on two real-world datasets
from Movielens and Ciao, comparing the performance to that of the baseline models. Fi-
nally, Section 5 concludes the paper by summarizing our findings and outlining areas for
future research.

2. Related Work
2.1. Model-Based Collaborative Filtering

Among various collaborative filtering recommendation systems, model-based collab-
orative filtering has emerged as the most effective method for efficiently extracting user
representation vectors [13]. This type of recommendation system builds a model to learn a
user’s past preferences for items and stores this information in various ways. When the
user requests recommendation information, the model calculates the required information.
Matrix factorization (MF) is the most popular model, where a matrix is constructed to
represent a user’s historical interactions, with the rows representing the user index, the
columns representing the item index, and the values representing the user’s preference
for the item [14]. MF learns from this matrix, with items being linearly linked to provide
recommendation results. Model-based recommendation systems encompass a range of
methods, including PMF [15] for click rate prediction, BPR [16], and FISM [17] for TOP-N
prediction. Recently, DNN-based models have attracted significant attention [18]. The
powerful nonlinear fitting capability of DNNs enables them to fit any continuous func-
tion that describes the relationship between users and items. DNN-based models include
AutoRec [19] for click rate prediction and NCF [20] for TOP-N recommendation. The
collaborative recommendation filtering system based on cognitive similarity is famous for
its efficient extraction of user item similarity. Nguyen et al. [21] proposed a three-layer
structure that can extract cognitive similarity, which can accurately identify neighbors and
improve algorithm consistency.

2.2. Debias Methods

Exposure bias can be debiased during the evaluation process or model training. The
deviation correction method in the evaluation process includes the inverse properisty
score [22] method, which reduces the weight of items with high frequency of occurrence
and increases the weight of items with low frequency of occurrence during the evaluation
process. This method is also applicable to selection bias. There are many debias methods in
the model training process, including the confidence weight method, such as WMF [23], and
the exposure-based recommendation model, such as EXMF [24]. Sampling-based methods
use a sampling strategy to specify which samples are used to update the recommended
model parameters. For example, NCF applies uniform negative sampling through neural
network models.

Recently, a debias method based on invariant learning [25] has achieved great success.
The focus of this method is to separate various influencing factors in the recommendation
process and find out the most important influencing factors for learning. InvPref [26]
separates environmental factors and user preference factors. In InvCF [27], the influencing
factors of popularity bias are decomposed into preference factors and popularity factors,
the preference and popularity encoders are optimized through joint training, and only the
preference factors are applied in the recommendation process, so the deviation correction is
achieved by isolating the popularity factors. Invariant learning not only needs to accurately
analyze the influencing of bias factors but also needs to preprocess datasets to obtain

Appl. Sci. 2023, 13, 7975 4 of 17

the data of influencing factors, such as user popularity ranking, item location, and other
information. In the joint learning process, it is necessary to design the learning method and
parameter list reasonably to achieve the best recommendation effect.

2.3. Generative Adversarial Network and GAN-Based Recommendation

Ian Goodfellow proposed a novel approach called Generative Adversarial Network
(GAN) [28], which was initially applied in image generation and achieved significant
success [29]. The GAN architecture comprises a generator G, a discriminator D, and
adversarial learning between them. G generates fake data by learning real data, and its
objective is to produce synthetic data that is as close as possible to real data. D distinguishes
between real and fake data and aims to accurately differentiate the two. The adversarial
learning process of G and D in GAN can be viewed as a max–min game, where G continually
generates more accurate data through learning to reduce the probability of D identifying
real data, while D continuously learns to increase the difference between real and fake data,
improving its ability to distinguish between them. After adversarial learning, G can learn
to capture the ideal distribution of users and generate credible recommendation results
that differ from real data. GAN has not only been successful in image generation but has
also found applications in other domains, such as WaveGAN [30] for music generation and
SeqGAN [31] for sentence generation.

IRGAN [32] is an information retrieval system that combines recommendation systems,
web search, question answering systems, and GAN. In the domain of recommendation
systems, IRGAN employs GAN architecture where the generator G aims to produce item
IDs that match the user’s preferences, and the discriminator D estimates the probability
of an item ID originating from real interaction data or being generated by G. The IRGAN
method has successfully applied the GAN framework to the recommender system field,
and its effectiveness has led to further developments.

One such development is the CFGAN [33,34] model, which employs a vector train-
ing method instead of the pointwise [35] training method used in IRGAN. Vector data
have several inherent advantages, such as richer and more complete user features and
their compatibility with neural network input patterns. Additionally, updating network
parameters with stochastic gradient descent is feasible with vector data. In CFGAN, the
user interaction vector ru and random noise vector cu are used as inputs to the generator,
which directly generates the user interaction vector r̂u, represented as an n-dimensional
sparse vector. Unlike IRGAN, D evaluates the given vector as the user’s history interaction
vector ru, rather than calculating the probability that G generates the interaction vector r̂u.
While the original GAN model is primarily applied to dense data, the data in the recom-
mendation system are often sparse due to data collection issues. CFGAN utilizes binary
implicit feedback vectors, where 1 denotes user interaction with the item, and 0 denotes no
interaction. However, this type of bias data may cause G to generate an unhelpful output
consisting of all 1s.

To address the bias issue, CFGAN proposes three solutions, including zero-reconstruction
(ZR), partial-masking (PM), and a combination of both methods (ZP). The ZR method in-
tegrates the G-generated list with real interactions for MSE loss calculation, mitigating
overfitting. The PM method incorporates negative sampling into each user’s training
process. Specifically, a mask vector ku is formed by randomly selecting a certain number of
items, and an n-dimensional indicator vector eu is generated to represent user u’s interac-
tion with item i. By adding eu and ku and multiplying the resulting vector elementwise
with the user’s historical interaction data, a new interaction vector is generated, achieving
the desired sampling effect. Negative sampling enables the model to learn more diverse
user preferences, thereby improving its ability to analyze the optimal state and overcome
exposure bias. However, frequent item selection during training leads to high computa-
tional complexity in the model calculation process. Finally, the objective function of G

Appl. Sci. 2023, 13, 7975 5 of 17

in CFGAN is expressed as a combination of the adversarial loss, reconstruction loss, and
regularization term, expressed as:

JG = ∑u

(
log(1− D(r̂u � (eu + ku)|cu)) + α ·∑j

(
xuj − x̂uj

)2
)

(1)

where ku is the mask vector of the PM method, α denotes the hyperparameter for MSE loss,
x is the value in r̂, and x̂ is 0. On the other hand, D aims to maximize the classification
accuracy between the generated user interaction vector ru and the real interaction vector ru.
The objective function of D is:

JD = −∑u(logD(ru|cu) + log(1− D((r̂u � eu)|cu))) (2)

where eu is the indicator vector in Formulas (1) and (2) and � denotes elementwise multi-
plication in the vector. To accommodate vector data as the input, CFGAN employs a neural
network model that is well-suited for vectors, with both the generator and discriminator
implemented using multi-layer perceptrons.

2.4. Filter-Enhanced Recommendation

The Filter-enhanced [36] paper proposes a novel neural network structure that incor-
porates learnable filters and MLP blocks to improve the performance of the network. Filters
are commonly used in digital signal processing to selectively modify certain aspects of a
signal by adjusting the frequency response, such as high-pass filtering or low-pass filtering.
Unlike traditional filtering methods that operate in the time domain, the proposed network
converts the input sequence into the frequency domain using the discrete Fourier transform
(DFT) before filtering. For a given input sequence {xn} where n ∈ [0, N − 1], the DFT is
defined by the following formula:

Xk =
N−1
∑

n=0
xne−

2πi
N nk, 0 ≤ k ≤ N − 1 (3)

where i is the imaginary unit, and Xk represents the frequency spectrum of the sequence
{xn} at frequency ω = 2πk/N. After filtering, the filtered signal can be restored to a real
vector {x̂n} through inverse Fourier transform (IDFT), which converts the signal back from
the frequency domain to the time domain:

x̂n = 1
N

N−1
∑

k=0
Xke

2πi
N nk (4)

The application of filters to the user’s historical data can mitigate the issue of exposure
bias. As a result, the filtered data x̂n contain more effective information and less noise,
leading to more accurate feature extraction by subsequent MLP models. Effective utilization
of the filter module can facilitate the generation of superior recommendation results by the
recommendation model.

2.5. Analytical Summary of the Literature

The traditional CF model is simple to calculate, but the learning ability of the model
will be slightly weak when the amount of data is too large. A graph convolutional neural
network can effectively improve learning ability, but it is challenging to construct proper
graph nodes and edges. Model learning ability affects the recommendation effect, and
the bias in the dataset also affects the recommendation effect. Traditional debias methods
need to design complex weight systems or use complex probability calculations to solve
specific bias types. Generative Adversarial Networks can automatically optimize the
recommendation list through adversarial learning. Different implementation methods of
the generator and discriminator bring differentiated recommendation results. Therefore,

Appl. Sci. 2023, 13, 7975 6 of 17

our target is to design a recommendation model based on a Generative Adversarial Network
with strong learning ability and general debias ability.

3. Methodology

This paper introduces a novel recommender model that leverages a GAN-based
model comprising a filter-enhanced Multi-Layer Perceptron (MLP) generator and a linear
discriminator. Figure 1 provides an overview of the proposed approach. Our system takes
a user’s interaction history data (consisting of n users and m items per user), a condition
vector, and a user ID as inputs. The generator and discriminator are trained using an
adversarial approach to learn user preferences and generate top-N recommendations. The
following sections delve into the specific details of the generator, discriminator, and the
adversarial training process.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 17

specific bias types. Generative Adversarial Networks can automatically optimize the rec-
ommendation list through adversarial learning. Different implementation methods of the
generator and discriminator bring differentiated recommendation results. Therefore, our
target is to design a recommendation model based on a Generative Adversarial Network
with strong learning ability and general debias ability.

3. Methodology
This paper introduces a novel recommender model that leverages a GAN-based

model comprising a filter-enhanced Multi-Layer Perceptron (MLP) generator and a linear
discriminator. Figure 1 provides an overview of the proposed approach. Our system takes
a user’s interaction history data (consisting of 𝑛 users and 𝑚 items per user), a condition
vector, and a user ID as inputs. The generator and discriminator are trained using an ad-
versarial approach to learn user preferences and generate top-N recommendations. The
following sections delve into the specific details of the generator, discriminator, and the
adversarial training process.

Figure 1. The overview of the proposed GAN-based recommendation model.

3.1. Generator
The purpose of the generator is to generate a top-N recommendation list based on

the user’s historical interaction and user characteristics. Figure 2 illustrates the structure
of our generator, which mainly includes input, embedding layer, combination layer, filter
layer, and output layer. We will introduce the role of each layer in detail.

Figure 1. The overview of the proposed GAN-based recommendation model.

3.1. Generator

The purpose of the generator is to generate a top-N recommendation list based on the
user’s historical interaction and user characteristics. Figure 2 illustrates the structure of our
generator, which mainly includes input, embedding layer, combination layer, filter layer,
and output layer. We will introduce the role of each layer in detail.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 17

specific bias types. Generative Adversarial Networks can automatically optimize the rec-
ommendation list through adversarial learning. Different implementation methods of the
generator and discriminator bring differentiated recommendation results. Therefore, our
target is to design a recommendation model based on a Generative Adversarial Network
with strong learning ability and general debias ability.

3. Methodology
This paper introduces a novel recommender model that leverages a GAN-based

model comprising a filter-enhanced Multi-Layer Perceptron (MLP) generator and a linear
discriminator. Figure 1 provides an overview of the proposed approach. Our system takes
a user’s interaction history data (consisting of 𝑛 users and 𝑚 items per user), a condition
vector, and a user ID as inputs. The generator and discriminator are trained using an ad-
versarial approach to learn user preferences and generate top-N recommendations. The
following sections delve into the specific details of the generator, discriminator, and the
adversarial training process.

Figure 1. The overview of the proposed GAN-based recommendation model.

3.1. Generator
The purpose of the generator is to generate a top-N recommendation list based on

the user’s historical interaction and user characteristics. Figure 2 illustrates the structure
of our generator, which mainly includes input, embedding layer, combination layer, filter
layer, and output layer. We will introduce the role of each layer in detail.

Figure 2. The generator structure in our model.

The input of G consists of two parts. One is the user ID used to obtain the user embed-
ding vector, and the other is the conditional vector c related to the historical interaction. The
embedding vector is used to save the user’s basic preferences and demographic informa-
tion. The embedding vector provides the generator with stable characteristics of the user,

Appl. Sci. 2023, 13, 7975 7 of 17

maintaining the basic learning ability of the model. The conditional vector c is an important
point of model input. The introduction of this vector is to solve the problem of exposure
bias in the recommendation process. This vector can be obtained from historical implicit
interaction data or by sampling methods such as negative sampling. The conditional vector
provides the generator with short-term preferences of users and alleviates exposure bias,
and the two-part input enables G to float up and down around stable features of users to im-
prove recommendation performance. The embedding layer obtains the embedding vectors
of users and items by querying user IDs: Uembd = {u1, u2, · · · , ud}, Iembd = {i1, i2, · · · , id},
where d represents the embedding dimension. The combination layer first calculates the
user’s stable feature: su = UT × I, and concatenates su and the conditional vector c to form
the user’s initial preference p = cat(su, c) ∈ R1×2m. p can be directly input into the linear
layer, giving a recommendation list, but it consists of two parts. su is the calculation data,
and c is collected through real-world user feedback; directly inputting into the linear layer
will mix the noise of the two, making the noise further amplified. So, we apply a filter layer
in the generator, which can better fuse information and remove part of the noise. The initial
preference p is first transformed to the frequency domain by fast Fourier transform:

Xl = F (p) ∈ C1×m (5)

where F (·) represents the one-dimensional fast Fourier transform, and Xl is a complex
vector representing the spectrum of p. This way, we can start the filtering (modulation)
operation by multiplying the learnable filter K ∈ C1×m with Xl to get the modulated
vector X̃:

X̃ = K�Xl ∈ C1×m (6)

where � represents elementwise multiplication. The filter K is a randomly initialized
complex vector. During training, its parameters are updated through the gradients of the
optimization function. Following modulation, the resulting vector X̃ remains in the complex
domain, necessitating conversion back to the time domain prior to further processing.

pl = F−1
(

X̃
)

(7)

where F−1(·) represents the inverse Fourier transform. After the last transformation,
the initial user preference p has been fused and denoised, resulting in a complete user
preference vector pl that is suitable for subsequent processing.

The final layer in the neural network architecture consists of two linear layers and an
activation function, which are responsible for generating the output. Upon completion of
the computation, the data contained in the list are transformed into a probability distribu-
tion through the application of the softmax function. This output layer effectively captures
the non-linear preferences of the user, ultimately yielding a list of ratings for the items:

r̂ = Softmax((ReLU(plW1 + b1))W2 + b2) (8)

where W1, b1, W2, b2 are trainable parameters. So far, the generator has generated a list
of scores for user u, which will serve as input for the discriminator during subsequent
adversarial training as fake data. This approach leverages the feedback loop between the
generator and discriminator to improve the quality of the generated outputs.

3.2. Discriminator

The primary objective of the discriminator is to assess the likelihood that a given
rating list originates from real data, as opposed to fake data. As depicted in Figure 3, the
discriminator structure differs from that of the generator, as it solely outputs floating-point
numbers representing the probabilities. This probability value serves as a reference point
for the generator to refine its output during the adversarial training, thereby facilitating
mutual progression. The discriminator comprises an input layer, a data combination layer,

Appl. Sci. 2023, 13, 7975 8 of 17

and an output layer that includes a linear discriminator. The input layer consists of two
real vectors with a length of m, the user real data r, and the fake data r̂. These vectors
are concatenated to form the input vector r for the discriminator. The linear discriminator
is then utilized for training and output. An output value close to 0 indicates that the list
was likely generated by the generator, while an output value close to 1 indicates that it is
more likely to be the user’s historical interaction data. The output layer includes two linear
layers and two activation functions, as expressed below:

o = sigmoid(ReLU(rW1 + b1)W2 + b2) (9)

where o is the output of the discriminator, and W1, b1, W2, b2 are trainable parameters.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 17

3.2. Discriminator
The primary objective of the discriminator is to assess the likelihood that a given rat-

ing list originates from real data, as opposed to fake data. As depicted in Figure 3, the
discriminator structure differs from that of the generator, as it solely outputs floating-
point numbers representing the probabilities. This probability value serves as a reference
point for the generator to refine its output during the adversarial training, thereby facili-
tating mutual progression. The discriminator comprises an input layer, a data combina-
tion layer, and an output layer that includes a linear discriminator. The input layer con-
sists of two real vectors with a length of m, the user real data 𝒓, and the fake data 𝒓. These
vectors are concatenated to form the input vector 𝒓 for the discriminator. The linear dis-
criminator is then utilized for training and output. An output value close to 0 indicates
that the list was likely generated by the generator, while an output value close to 1 indi-
cates that it is more likely to be the user’s historical interaction data. The output layer
includes two linear layers and two activation functions, as expressed below: 𝑜 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑅𝑒𝐿𝑈(𝒓𝑾𝟏 + 𝑏 𝑾𝟐 + 𝑏 (9)

where 𝑜 is the output of the discriminator, and 𝑾𝟏, 𝑏 , 𝑾𝟐, 𝑏 are trainable parameters.

Figure 3. The structure of the discriminator in our model. The green dots indicate that the output is
close to 1, and the red dots indicate that the output is close to 0.

3.3. Adversarial Training
In the GAN framework, the generator and the discriminator engage in an adversarial

training process where the generator generates samples, and the discriminator evaluates
their realism by assigning a probability value. This iterative process provides improve-
ment directions for both the generator and the discriminator and is considered the most
important aspect of GAN training. During the early stages of training, the generator’s
sample distribution can differ significantly from the historical interaction data used by the
discriminator, leading to high confidence discrimination and subsequent loss feedback to
the generator. The generator then uses this loss as guidance to improve its model param-
eters and generate more realistic data lists. This cyclic process of generating and confront-
ing continues, leading to mutual progress between the two structures.

The adversarial training process begins by iterating the discriminator on real data
and fake data generated by the generator. The discriminator learns the distribution of real
data, assigns a loss value, and then learns the distribution of fake data generated by the
generator and assigns another loss value. The objective function of the discriminator can
thus be expressed as: 𝐽 = min − 𝑙𝑜𝑔𝐷(𝒓 + 𝑙𝑜𝑔 1 − 𝐷(𝐺(𝑢|𝒄 (10)

where 𝒓 is the historical interaction data, and 𝒄 is the condition vector.
With each iteration of the adversarial training process, the discriminator improves its

discriminatory ability against the generator. The next step involves iterating the generator.

Figure 3. The structure of the discriminator in our model. The green dots indicate that the output is
close to 1, and the red dots indicate that the output is close to 0.

3.3. Adversarial Training

In the GAN framework, the generator and the discriminator engage in an adversarial
training process where the generator generates samples, and the discriminator evaluates
their realism by assigning a probability value. This iterative process provides improvement
directions for both the generator and the discriminator and is considered the most impor-
tant aspect of GAN training. During the early stages of training, the generator’s sample
distribution can differ significantly from the historical interaction data used by the dis-
criminator, leading to high confidence discrimination and subsequent loss feedback to the
generator. The generator then uses this loss as guidance to improve its model parameters
and generate more realistic data lists. This cyclic process of generating and confronting
continues, leading to mutual progress between the two structures.

The adversarial training process begins by iterating the discriminator on real data
and fake data generated by the generator. The discriminator learns the distribution of real
data, assigns a loss value, and then learns the distribution of fake data generated by the
generator and assigns another loss value. The objective function of the discriminator can
thus be expressed as:

JD = min
θ
−∑

u
(logD(r) + log(1− D(G(u|c))) (10)

where r is the historical interaction data, and c is the condition vector.
With each iteration of the adversarial training process, the discriminator improves its

discriminatory ability against the generator. The next step involves iterating the generator.
The generator generates fake data and then computes the mean squared error (MSE) loss
against real data:

lossMSE = 1
m (r̂u − ru)

2 (11)

The mean squared error (MSE) loss enables the generator to learn directly from the gap
between its generated data and real data; this loss prevents the score generated by G from
being too large, as the loss calculated by D is usually small. Excessive generation errors are
not easy to be optimized by small discrimination errors. Otherwise, there is a danger of
overfitting. The generator’s fake data are then input into the discriminator, which assigns

Appl. Sci. 2023, 13, 7975 9 of 17

another loss value. This loss serves as a guide for further training and pushes the generated
data towards a direction that is more difficult for the discriminator to distinguish, creating
an adversarial effect. The adversarial loss can be expressed as:

lossadv = ∑
u

log(1− D(G(u|c))) (12)

The objective function of the generator can then be determined according to the two
losses as:

JG = min
φ

∑u(lossadv + αlossMSE) (13)

where α is a hyperparameter. The adversarial training process involves the two modules
improving each other, leading to healthy progress. The generator improves its embedding
vector and generates a high-quality recommendation list that better captures the user’s
preferences. The discriminator initially distinguishes real and fake data but may not be
robust to noisy data. It continuously searches for small differences between real and fake
data to guide the generator towards the desired target through these slight differences. This
iterative process helps both modules improve and achieve better results.

3.4. FMGAN Recommendation

During the recommendation process, we use a given user ID and its historical interac-
tion data and index the items that the user has interacted with. Once the model converges,
we can perform the prediction process, which involves: (1) analyzing and extracting the
user’s characteristics and preferences from their historical interaction data using the model;
(2) storing this information in the embedding vectors of users and items; and (3) inputting
the user’s information into the model when a recommendation is needed, which then
generates an exclusive item recommendation list based on probability.

4. Experiment and Discussion

In the experimental part, we test the effectiveness of the model on two real-world
datasets from Movielens and Ciao. Based on the experiments, we will answer the follow-
ing questions:

• Effect of embedding dimensions and linear layers.
• Effect of the filter.
• Model performance under different condition vectors.
• Performance comparison of the model with other benchmark models.

4.1. Experiment Setup
4.1.1. Datasets

Our study utilizes two real-world datasets: Movielens 100k/1M and Ciao [37]. For the
Ciao dataset, we use the high sparsity version from CFGAN [33]. Both datasets consist of
user ID, item IDs, and user ratings for items. Table 1 presents an overview of the datasets’
statistics, wherein explicit ratings of 1–5 points are assigned by users. To convert explicit
ratings to implicit ratings, we apply a scoring threshold of 3 points, wherein ratings greater
than or equal to 3 points are considered positive evaluations and recorded as 1 in the
interaction list. On the other hand, ratings lower than 3 points are recorded as 0. The
interaction list generated is used as the condition vector of the generator in our experiments.

Table 1. The overview of datasets.

Statics Movielens 100K Movielens 1M Ciao

users 943 6039 996
items 1682 3883 1927

ratings 100,000 1,000,209 18,648
sparsity 93.69% 95.72% 99.03%

Appl. Sci. 2023, 13, 7975 10 of 17

4.1.2. Evaluation Metrics

Our research employs four widely used evaluation metrics in top-N recommendation
models, namely precision at N (P@N) [38], recall at N (R@N) [39], normalized discounted
cumulative gain at N (NDCG@N) [40], and mean reciprocal rank at N (MRR@N) [41]:

Precision@N =
|G(u) ∩ R(u)|
|G(u)| (14)

Recall@N =
|G(u) ∩ R(u)|
|R(u)| (15)

NDCG@N =
DCG@N
IDCG@N

=
∑N

i=1
1

log2(i+1)

∑
|ITEM|
i=1

1
log2(i+1)

(16)

MRR@N =
1
N

N

∑
i=1

1
ranki

(17)

In the evaluation formulas, N represents the length of the recommendation list. In P@N,
G(u) denotes the set of items recommended by the generator for user u, while R(u) represents
the set of items that the user has previously interacted with. In MRR@N, ranki represents
the position of the first relsevant result in the i-th query. P@N measures the proportion
of correctly recommended items in the top-N positions, while NDCG@N and MRR@N
evaluate the accuracy of the ranking position of relevant items in the recommendation list.
Specifically, NDCG@N measures the quality of the position arrangement of all relevant
items in the top-N list, while MRR@N assesses the accuracy of the position arrangement of
the first relevant item in the top-N positions.

4.1.3. Implementation Details

The experimental settings and parameter selection in our study are as follows: During
the training phase, we randomly select 80% of the data in the dataset as the training set,
while the remaining 20% of the data are used as the test set. We implement the model with
Pytorch in our experiments. The settings and hyperparameters of the model are shown in
Table 2. In addition, G and D are optimized by the Adam algorithm, and the training ratio
of G and D is set to 1:1. After the model converges, we compare it with the benchmark
model based on P@N, R@N, NDCG@N, and MRR@N, where N is set to 5 and 20.

Table 2. Model settings and hyperparameters for FMGAN.

FMGAN Model Settings and Hyperparameters

Dataset α lr Hidden
Layers

First Layer
Input Size

Activation
Function

Second Layer
Input Size

Embedding
Dimension

Batch
Size

Movielens 100K 0.3 1 × 10−4 2 3306 ReLU 1983 10 64
Movielens 1M 0.3 3 × 10−4 2 7364 ReLU 4418 10 128

Ciao 0.3 7 × 10−5 2 2694 ReLU 1616 10 64

4.2. Discussion and Results
4.2.1. Effect of Embedding Dimensions and Linear Layers

To begin with, we assess the impact of user and item embedding dimensions, as
well as the number of linear layers, on the performance of the generator. The embedding
dimension determines the fundamental information learned by the generator. A dimension
that is too small is not conducive to maintaining the basic capabilities of the generator,
while one that is too large can impede the dynamic learning ability of the generator. The
linear layer acts as an operation following the filter, and the combination of multiple linear
layers can learn non-linear features and preserve the generator’s output. Figure 4 displays

Appl. Sci. 2023, 13, 7975 11 of 17

the top five recommendation results of our model, based on the MovileLens100k dataset,
for four embedding dimensions and four linear layer numbers. Our generator achieves
optimal performance with an embedding dimension of 10 and two linear layers. As the
embedding dimension ranges from 5 to 15, performance gradually declines with increasing
linear layers. For embedding dimensions of 10 and 20, performance trends consistently,
but performance is superior for an embedding dimension of 10.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 17

Table 2. Model settings and hyperparameters for FMGAN.

FMGAN Model Settings and Hyperparameters

Dataset 𝜶 lr
Hidden
Layers

First Layer
Input Size

Activation
Function

Second Layer
Input Size

Embedding
Dimension

Batch
Size

Movielens 100K 0.3 1 × 10−4 2 3306 ReLU 1983 10 64
Movielens 1M 0.3 3 × 10−4 2 7364 ReLU 4418 10 128

Ciao 0.3 7 × 10−5 2 2694 ReLU 1616 10 64

4.2. Discussion and Results
4.2.1. Effect of Embedding Dimensions and Linear Layers

To begin with, we assess the impact of user and item embedding dimensions, as well
as the number of linear layers, on the performance of the generator. The embedding di-
mension determines the fundamental information learned by the generator. A dimension
that is too small is not conducive to maintaining the basic capabilities of the generator,
while one that is too large can impede the dynamic learning ability of the generator. The
linear layer acts as an operation following the filter, and the combination of multiple linear
layers can learn non-linear features and preserve the generator’s output. Figure 4 displays
the top five recommendation results of our model, based on the MovileLens100k dataset,
for four embedding dimensions and four linear layer numbers. Our generator achieves
optimal performance with an embedding dimension of 10 and two linear layers. As the
embedding dimension ranges from 5 to 15, performance gradually declines with increas-
ing linear layers. For embedding dimensions of 10 and 20, performance trends consist-
ently, but performance is superior for an embedding dimension of 10.

Figure 4. Precision under different embedding dimensions and linear layers. Embed represents the
embedding dimension of users and items.

4.2.2. Effect of the Filter
Figure 5 illustrates the data distribution in the generator before the MLP extracts user

information. Figure 5a displays the data distribution in the user’s initial preference vector.
The figure reveals that the vector comprises nearly 1750 values concentrated around 0 and
displays the characteristics of a peaked and thick-tailed distribution, which differs from
the normal distribution fitting curve of the same data. This observation indicates that the
model’s analysis of the user’s initial preference is biased towards the items the user has
interacted with in the past, i.e., those items exposed to the user, which cannot mitigate the
impact of exposure bias. Conversely, Figure 5b presents the data distribution in the fil-
tered user preference vector. Notably, the figure does not exhibit any apparent high
points, and the data conform closely to a normal distribution fitting curve that is similar

Figure 4. Precision under different embedding dimensions and linear layers. Embed represents the
embedding dimension of users and items.

4.2.2. Effect of the Filter

Figure 5 illustrates the data distribution in the generator before the MLP extracts user
information. Figure 5a displays the data distribution in the user’s initial preference vector.
The figure reveals that the vector comprises nearly 1750 values concentrated around 0
and displays the characteristics of a peaked and thick-tailed distribution, which differs
from the normal distribution fitting curve of the same data. This observation indicates
that the model’s analysis of the user’s initial preference is biased towards the items the
user has interacted with in the past, i.e., those items exposed to the user, which cannot
mitigate the impact of exposure bias. Conversely, Figure 5b presents the data distribution
in the filtered user preference vector. Notably, the figure does not exhibit any apparent
high points, and the data conform closely to a normal distribution fitting curve that is
similar to the distribution of the same data. Therefore, the use of such user preference data
enables the subsequent MLP module to prioritize more interactive items, provide users
with additional recommendation options, and effectively mitigate exposure bias.

The generator leverages filters for bias reduction and information combination to
efficiently extract user information. However, increasing the structure also escalates com-
putational complexity. To validate the filter structure’s effectiveness, we train a G and D
consisting of a pure MLP network. Table 3 displays the results. The evaluation reveals
that our model performs better, demonstrating that incorporating filters enhances the
model’s efficacy.

Appl. Sci. 2023, 13, 7975 12 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 17

to the distribution of the same data. Therefore, the use of such user preference data enables
the subsequent MLP module to prioritize more interactive items, provide users with ad-
ditional recommendation options, and effectively mitigate exposure bias.

(a) (b)

Figure 5. The figure represents the data distribution: (a) Initial preference distribution; (b) Prefer-
ence distribution after the filter layer. The blue line represents data probability density. The black
line represents normal distribution fitting curve on the same data.

The generator leverages filters for bias reduction and information combination to ef-
ficiently extract user information. However, increasing the structure also escalates com-
putational complexity. To validate the filter structure’s effectiveness, we train a G and D
consisting of a pure MLP network. Table 3 displays the results. The evaluation reveals that
our model performs better, demonstrating that incorporating filters enhances the model’s
efficacy.

Table 3. Performance comparison of FMGAN-im and MLP on Movielens 100K/1M and Ciao.

Datasets Model Prec@5 Recall@5 NDCG@5 MRR@5

Movielens 100K
FMGAN-im 0.467 0.154 0.496 0.698

MLP 0.421 0.139 0.449 0.657

Movielens 1M
FMGAN-im 0.435 0.110 0.458 0.650

MLP 0.402 0.101 0.425 0.629

Ciao
FMGAN-im 0.070 0.081 0.092 0.153

MLP 0.061 0.071 0.086 0.146

4.2.3. Model Performance under Different Condition Vectors
The generator’s generation process involves a condition vector c, which is selected as

the user’s interaction list in the paper, termed FMGAN-im (Implicit feedback). However,
c can take various forms, such as using a random noise vector (random noise). FMGAN-
ns (negative sampling) employs the negative sampling method to generate a pseudo-in-
teraction list by randomly selecting some uninteracted items. Noise vectors are generated
via uniform sampling with a length equal to the number of items. In negative sampling, a
certain proportion (0.8 times the number of items in this paper) of uninteracted item sub-
scripts is sampled with uniform probability, and the user interaction data (i.e., 0, 1) of
these subscripts are extracted as a pseudo-interaction list. The results are presented in
Figure 6. It is apparent that using random noise vectors yields poor results because the
filter structure used in this study truncates the noise vectors, resulting in similar filtered
vector distributions, making it difficult for each user to distinguish their respective char-
acteristics, thereby deteriorating the recommendation effect. The model employs the

Figure 5. The figure represents the data distribution: (a) Initial preference distribution; (b) Preference
distribution after the filter layer. The blue line represents data probability density. The black line
represents normal distribution fitting curve on the same data.

Table 3. Performance comparison of FMGAN-im and MLP on Movielens 100K/1M and Ciao.

Datasets Model Prec@5 Recall@5 NDCG@5 MRR@5

Movielens 100K
FMGAN-im 0.467 0.154 0.496 0.698

MLP 0.421 0.139 0.449 0.657

Movielens 1M
FMGAN-im 0.435 0.110 0.458 0.650

MLP 0.402 0.101 0.425 0.629

Ciao
FMGAN-im 0.070 0.081 0.092 0.153

MLP 0.061 0.071 0.086 0.146

4.2.3. Model Performance under Different Condition Vectors

The generator’s generation process involves a condition vector c, which is selected as
the user’s interaction list in the paper, termed FMGAN-im (Implicit feedback). However,
c can take various forms, such as using a random noise vector (random noise). FMGAN-
ns (negative sampling) employs the negative sampling method to generate a pseudo-
interaction list by randomly selecting some uninteracted items. Noise vectors are generated
via uniform sampling with a length equal to the number of items. In negative sampling,
a certain proportion (0.8 times the number of items in this paper) of uninteracted item
subscripts is sampled with uniform probability, and the user interaction data (i.e., 0, 1)
of these subscripts are extracted as a pseudo-interaction list. The results are presented
in Figure 6. It is apparent that using random noise vectors yields poor results because
the filter structure used in this study truncates the noise vectors, resulting in similar
filtered vector distributions, making it difficult for each user to distinguish their respective
characteristics, thereby deteriorating the recommendation effect. The model employs the
negative sampling list as the condition vector, which yields satisfactory results. However,
it uses a portion of the data for training, and multiple random selections lack substantial
user bases. During the generator’s training process, random sampling is necessary for each
iteration, and the computation cost varies. Hence, it is not employed as the final condition
vector in this study.

Appl. Sci. 2023, 13, 7975 13 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 17

negative sampling list as the condition vector, which yields satisfactory results. However,
it uses a portion of the data for training, and multiple random selections lack substantial
user bases. During the generator’s training process, random sampling is necessary for
each iteration, and the computation cost varies. Hence, it is not employed as the final con-
dition vector in this study.

Figure 6. Metrics of different condition vectors.

Figure 7 illustrates the Learning trend of FMGAN-im, FMGAN-ns, and MLP on Mov-
ielens 100K. The upward trend of both models is similar, but our model can continue im-
proving for an extended period to achieve superior results. Furthermore, the training
epoch does not significantly increase, and the degree of computational complexity re-
mains acceptable.

(a) Precision@5 (b) Recall@5

(c) NDCG@5 (d) MRR@5

Figure 7. Learning trends of FMGAN-im, FMGAN-ns, and MLP on Movielens 100K.

Finally, to validate the efficacy of our model, we compare it with the baselines in the
top-N recommendation task. The baseline models are defined as follows:

Figure 6. Metrics of different condition vectors.

Figure 7 illustrates the Learning trend of FMGAN-im, FMGAN-ns, and MLP on
Movielens 100K. The upward trend of both models is similar, but our model can continue
improving for an extended period to achieve superior results. Furthermore, the train-
ing epoch does not significantly increase, and the degree of computational complexity
remains acceptable.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 17

negative sampling list as the condition vector, which yields satisfactory results. However,
it uses a portion of the data for training, and multiple random selections lack substantial
user bases. During the generator’s training process, random sampling is necessary for
each iteration, and the computation cost varies. Hence, it is not employed as the final con-
dition vector in this study.

Figure 6. Metrics of different condition vectors.

Figure 7 illustrates the Learning trend of FMGAN-im, FMGAN-ns, and MLP on Mov-
ielens 100K. The upward trend of both models is similar, but our model can continue im-
proving for an extended period to achieve superior results. Furthermore, the training
epoch does not significantly increase, and the degree of computational complexity re-
mains acceptable.

(a) Precision@5 (b) Recall@5

(c) NDCG@5 (d) MRR@5

Figure 7. Learning trends of FMGAN-im, FMGAN-ns, and MLP on Movielens 100K.

Finally, to validate the efficacy of our model, we compare it with the baselines in the
top-N recommendation task. The baseline models are defined as follows:

Figure 7. Learning trends of FMGAN-im, FMGAN-ns, and MLP on Movielens 100K.

Finally, to validate the efficacy of our model, we compare it with the baselines in the
top-N recommendation task. The baseline models are defined as follows:

• ItemPop: A model that uses the most purchase records for recommendation, which is
the simplest non-personalized algorithm method.

• BPR: The model pairs purchased items with unpurchased items and optimizes the
correct ranking order between item pairs.

• FISM: The model uses two low-latitude latent vectors to simulate the item–item
similarity matrix.

Appl. Sci. 2023, 13, 7975 14 of 17

• IRGAN: The model applies the GAN architecture to the recommendation system and
uses the binary classification loss to train point states or point pairs. This method is
specifically introduced in Section 2.2.

• CFGAN: Improves the use of vectors as training parameters and introduces a sampling
method to improve the training process. This method is specifically introduced
in Section 2.2.

Tables 4–6 present the performance of the baseline model and our model on two
real-world datasets. Based on the experimental results, our model outperforms other
baselines on both datasets and has achieved remarkable enhancements on the Movielens
100k dataset. The results of the high sparsity Ciao dataset shown in Table 6 are very
noteworthy. Although it has a similar number of users and items to the Movielens 100k
dataset, the scarcity of interaction records greatly reduces the recommendation performance.
Comparing it with the baseline model indicates that the GAN model architecture can be
effectively applied in the recommendation system field, and the generator’s combination
of filters and MLP can efficiently extract user preference information.

Table 4. Performance comparison results in Movielens 100K.

Metrics P@5 P@20 R@5 R@20 G@5 G@20 M@5 M@20

ItemPop 0.182 0.139 0.105 0.253 0.165 0.196 0.255 0.293
BPR 0.350 0.237 0.117 0.288 0.372 0.381 0.558 0.575
FISM 0.428 0.285 0.146 0.354 0.464 0.429 0.675 0.686
IRGAN 0.320 0.223 0.110 0.278 0.346 0.370 0.539 0.525
CFGAN 0.445 0.327 0.149 0.360 0.477 0.440 0.682 0.701

FMGAN-ns 0.446 0.330 0.145 0.359 0.473 0.437 0.675 0.698
FMGAN-im 0.467 0.340 0.154 0.365 0.496 0.454 0.698 0.719

Table 5. Performance comparison results in Movielens 1M.

Metrics P@5 P@20 R@5 R@20 G@5 G@20 M@5 M@20

ItemPop 0.155 0.120 0.075 0.195 0.153 0.179 0.251 0.296
BPR 0.340 0.251 0.075 0.207 0.347 0.361 0.535 0.554
FISM 0.419 0.304 0.106 0.269 0.442 0.398 0.635 0.649
IRGAN 0.262 0.213 0.071 0.165 0.265 0.245 0.302 0.337
CFGAN 0.431 0.307 0.107 0.164 0.452 0.404 0.643 0.659

FMGAN-ns 0.433 0.308 0.106 0.162 0.451 0.402 0.641 0.654
FMGAN-im 0.435 0.311 0.110 0.169 0.458 0.406 0.650 0.662

Table 6. Performance comparison results in Ciao.

Metrics P@5 P@20 R@5 R@20 G@5 G@20 M@5 M@20

ItemPop 0.030 0.023 0.039 0.126 0.046 0.063 0.054 0.067
BPR 0.035 0.024 0.040 0.140 0.050 0.065 0.067 0.079
FISM 0.060 0.037 0.071 0.179 0.080 0.110 0.127 0.147
IRGAN 0.034 0.022 0.042 0.110 0.045 0.065 0.080 0.087
CFGAN 0.068 0.040 0.079 0.190 0.089 0.117 0.151 0.164

FMGAN-ns 0.065 0.039 0.076 0.186 0.087 0.113 0.149 0.163
FMGAN-im 0.070 0.043 0.081 0.192 0.092 0.120 0.153 0.166

The above experimental results show that the improvement of our model has achieved
certain results. The model generates embedding vectors based on user and item IDs to store
the information representation learned by the model. After improving the data distribution
through filters, MLP can generate recommendation lists more accurately. The introduction
of GAN architecture helps the model strengthen this learning process. The introduction of

Appl. Sci. 2023, 13, 7975 15 of 17

different input vectors expands the structure of the model and provides more directions for
future improvement.

5. Conclusions

In this paper, we provide an analysis of several approaches to address the bias problem
in recommender systems and propose our filter-enhanced MLP recommendation model
based on the GAN framework. The use of the GAN framework in image processing has
paved the way for its application in recommendation models, with IRGAN and CFGAN
being early examples. Building on these models, we further expand the generator and
employ a model composed of filters and MLP blocks to generate recommendation lists.
Selecting historical interaction data on the conditional vector proves to be effective, as there
is no need for negative sampling during each training epoch. We evaluate our model on
two real-world datasets from Movielens and Ciao, fine-tune the model parameters, test the
model under different conditional vectors, and demonstrate the effectiveness of the filter
through comparison with the pure MLP model. Our model outperforms other models in
the top-N recommendation task.

In future work, we aim to investigate alternative sampling methods [42,43] to re-
place the conditional vector to enhance the model’s robustness and explore the utilization
of additional user demographic information to provide more references for the model
training process.

Author Contributions: Funding acquisition, W.L.; writing—review and editing, W.L. and Z.L.;
methodology, Z.L.; writing—original draft preparation, Z.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Hebei Province (F2019201451).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Movielens 100K and 1M can be found from https://grouplens.
org/datasets/movielens/ (accessed on 3 June 2022). The original Ciao dataset was obtained from [37],
and this article uses the data version provided in [33].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Burges, C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds, M.; Hamilton, N.; Hullender, G. Learning to rank using gradient descent.

In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 89–96.
2. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42, 30–37. [CrossRef]
3. Qin, T.; Liu, T.-Y.; Xu, J.; Li, H. LETOR: A benchmark collection for research on learning to rank for information retrieval. Inf. Retr.

2010, 13, 346–374. [CrossRef]
4. Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible

extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [CrossRef]
5. Liu, T.-Y. Learning to rank for information retrieval. Found. Trends® Inf. Retr. 2009, 3, 225–331. [CrossRef]
6. Ekstrand, M.D.; Riedl, J.T.; Konstan, J.A. Collaborative filtering recommender systems. Found. Trends® Hum. Comput. Interact.

2011, 4, 81–173. [CrossRef]
7. Gao, C.; Wang, X.; He, X.; Li, Y. Graph neural networks for recommender system. In Proceedings of the Fifteenth ACM

International Conference on Web Search and Data Mining, Tempe, AZ, USA, 21–25 February 2022; pp. 1623–1625.
8. Zhao, Z.; Chen, J.; Zhou, S.; He, X.; Cao, X.; Zhang, F.; Wu, W. Popularity Bias Is Not Always Evil: Disentangling Benign and

Harmful Bias for Recommendation. arXiv 2021, arXiv:2109.07946. [CrossRef]
9. Zhou, Y.; Xu, J.; Wu, J.; Taghavi, Z.; Korpeoglu, E.; Achan, K.; He, J. PURE: Positive-Unlabeled Recommendation with Generative

Adversarial Network. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore,
14–18 August 2021; pp. 2409–2419.

10. Schnabel, T.; Swaminathan, A.; Singh, A.; Chandak, N.; Joachims, T. Recommendations as treatments: Debiasing learning
and evaluation. In Proceedings of the international conference on machine learning, New York, NY, USA, 19–24 June 2016;
pp. 1670–1679.

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1007/s10791-009-9123-y
https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1561/1500000016
https://doi.org/10.1561/1100000009
https://doi.org/10.1109/TKDE.2022.3218994

Appl. Sci. 2023, 13, 7975 16 of 17

11. Park, D.H.; Chang, Y. Adversarial Sampling and Training for Semi-Supervised Information Retrieval. In Proceedings of the World
Wide Web Conference, San Francisco, CA, USA, 13 May 2019; pp. 1443–1453.

12. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep Learning Based Recommender System: A Survey and New Perspectives. ACM Comput.
Surv. 2019, 52, 5. [CrossRef]

13. Ning, X.; Karypis, G. SLIM: Sparse Linear Methods for Top-N Recommender Systems. In Proceedings of the 2011 IEEE 11th
International Conference on Data Mining, Washington, DC, USA, 11–14 December 2011; pp. 497–506.

14. Dervishaj, E.; Cremonesi, P. GAN-based matrix factorization for recommender systems. In Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, Virtual Event, 25–29 April 2022; pp. 1373–1381.

15. Andriy, M.; Salakhutdinov, R.R. Probabilistic Matrix Factorization. Adv. Neural Inf. Process. Syst. 2007, 20, 1257–1264.
16. Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian Personalized Ranking from Implicit Feedback. arXiv

2012, arXiv:1205.2618. [CrossRef]
17. Kabbur, S.; Ning, X.; Karypis, G. Fism: Factored item similarity models for top-n recommender systems. In Proceedings of the

19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013;
pp. 659–667.

18. Xu, J.; He, X.; Li, H. Deep Learning for Matching in Search and Recommendation. In Proceedings of the 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 27 June 2018; pp. 1365–1368.

19. Sedhain, S.; Menon, A.K.; Sanner, S.; Xie, L. AutoRec. In Proceedings of the 24th International Conference on World Wide Web,
Florence, Italy, 18 May 2015; pp. 111–112.

20. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.-S. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182.

21. Nguyen, L.V.; Hong, M.-S.; Jung, J.J.; Sohn, B.-S. Cognitive Similarity-Based Collaborative Filtering Recommendation System.
Appl. Sci. 2020, 10, 4183. [CrossRef]

22. Yang, L.; Cui, Y.; Xuan, Y.; Wang, C.; Belongie, S.; Estrin, D. Unbiased offline recommender evaluation for missing-not-at-random
implicit feedback. In Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2 October
2018; pp. 279–287.

23. Hu, Y.; Koren, Y.; Volinsky, C. Collaborative Filtering for Implicit Feedback Datasets. In Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining, Washington, DC, USA, 15–19 December 2008; pp. 263–272.

24. Liang, D.; Charlin, L.; McInerney, J.; Blei, D.M. Modeling User Exposure in Recommendation. In Proceedings of the 25th
International Conference on World Wide Web, Montréal, QC, Canada, 11–15 May 2016; pp. 951–961.

25. Arjovsky, M.; Bottou, L.; Gulrajani, I.; Lopez-Paz, D. Invariant risk minimization. arXiv 2019, arXiv:1907.02893.
26. Wang, Z.; He, Y.; Liu, J.; Zou, W.; Yu, P.S.; Cui, P. Invariant Preference Learning for General Debiasing in Recommendation. In

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 14–18
August 2022; pp. 1969–1978.

27. Zhang, A.; Zheng, J.; Wang, X.; Yuan, Y.; Chua, T.-S. Invariant Collaborative Filtering to Popularity Distribution Shift. In
Proceedings of the ACM Web Conference 2023, Austin, TX, USA, 30 April–4 May 2023; pp. 1240–1251.

28. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680.

29. Choi, Y.; Choi, M.; Kim, M.; Ha, J.-W.; Kim, S.; Choo, J. StarGAN: Unified Generative Adversarial Networks for Multi-Domain
Image-to-Image Translation. arXiv 2017, arXiv:1711.09020. [CrossRef]

30. Donahue, C.; McAuley, J.; Puckette, M. Adversarial Audio Synthesis. arXiv 2018, arXiv:1802.04208. [CrossRef]
31. Yu, L.; Zhang, W.; Wang, J.; Yu, Y. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient. arXiv 2016,

arXiv:1609.05473. [CrossRef]
32. Wang, J.; Yu, L.; Zhang, W.; Gong, Y.; Xu, Y.; Wang, B.; Zhang, P.; Zhang, D. IRGAN: A Minimax Game for Unifying Generative

and Discriminative Information Retrieval Models. In Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 515–524.

33. Chae, D.-K.; Kang, J.-S.; Kim, S.-W.; Lee, J.-T. CFGAN: A Generic Collaborative Filtering Framework based on Generative
Adversarial Networks. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management,
Torino, Italy, 22–26 October 2018; pp. 137–146.

34. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. [CrossRef]
35. Li, P.; Wu, Q.; Burges, C. McRank: Learning to Rank Using Multiple Classification and Gradient Boosting. In Proceedings of the

NIPS’07: Proceedings of the 20th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada,
3–7 December 2007.

36. Zhou, K.; Yu, H.; Zhao, W.X.; Wen, J.-R. Filter-enhanced MLP is All You Need for Sequential Recommendation. In Proceedings of
the ACM Web Conference 2022, Lyon, France, 25–29 April 2022; pp. 2388–2399.

37. Tang, J.; Gao, H.; Liu, H. mTrust: Discerning multi-faceted trust in a connected world. In Proceedings of the Fifth ACM
International Conference on Web Search and Data Mining, Seattle, WA, USA, 8–12 February 2012; pp. 93–102.

38. Blair, D.C.; Maron, M.E. An evaluation of retrieval effectiveness for a full-text document-retrieval system. Commun. ACM 1985,
28, 289–299. [CrossRef]

https://doi.org/10.1145/3285029
https://doi.org/10.48550/arXiv.1205.2618
https://doi.org/10.3390/app10124183
https://doi.org/10.48550/arXiv.1711.09020
https://doi.org/10.48550/arXiv.1802.04208
https://doi.org/10.1609/aaai.v31i1.10804
https://doi.org/10.48550/arXiv.1411.1784
https://doi.org/10.1145/3166.3197

Appl. Sci. 2023, 13, 7975 17 of 17

39. Saracevic, T.; Kantor, P.; Chamis, A.Y.; Trivison, D. A study of information seeking and retrieving. I. Background and methodology.
J. Am. Soc. Inf. Sci. 1988, 39, 161–176. [CrossRef]

40. Järvelin, K.; Kekäläinen, J. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 2002, 20, 422–446. [CrossRef]
41. Voorhees, E. The TREC-8 question answering track report. In Proceedings of the Second International Conference on Language

Resources and Evaluation (LREC’00), Athens, Greece, 31 May–2 June 2000.
42. Saito, Y. Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback. In Proceedings of the 43rd In-

ternational ACM SIGIR Conference on Research and Development in Information Retrieval, Xi’an, China, 25–30 July 2020;
pp. 309–318.

43. Ding, J.; Quan, Y.; He, X.; Li, Y.; Jin, D. Reinforced negative sampling for recommendation with exposure data. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 2230–2236.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/(SICI)1097-4571(198805)39:3<161::AID-ASI2>3.0.CO;2-0
https://doi.org/10.1145/582415.582418

	Introduction
	Related Work
	Model-Based Collaborative Filtering
	Debias Methods
	Generative Adversarial Network and GAN-Based Recommendation
	Filter-Enhanced Recommendation
	Analytical Summary of the Literature

	Methodology
	Generator
	Discriminator
	Adversarial Training
	FMGAN Recommendation

	Experiment and Discussion
	Experiment Setup
	Datasets
	Evaluation Metrics
	Implementation Details

	Discussion and Results
	Effect of Embedding Dimensions and Linear Layers
	Effect of the Filter
	Model Performance under Different Condition Vectors

	Conclusions
	References

