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Abstract: Eccentric resistance training that focuses on the lengthening phase of muscle actions has
gained attention for its potential to enhance muscle strength, power, and performance (among
others). This review presents a methodological proposal for classifying eccentric exercises based on
complexity, objectives, methods, and intensity. We discuss the rationale and physiological implications
of eccentric training, considering its benefits and risks. The proposed classification system considers
exercise complexity and categorizing exercises by technical requirements and joint involvement,
accommodating various skill levels. Additionally, training objectives are addressed, including
(i) Sports Rehabilitation and Return To Sport, (ii) Muscle Development, (iii) Injury Prevention,
(iv) Special Populations, and (v) Sporting Performance, proposing exercise selection with desired
outcomes. The review also highlights various eccentric training methods, such as tempo, isoinertial,
plyometrics, and moderate eccentric load, each with different benefits. The classification system also
integrates intensity levels, allowing for progressive overload and individualized adjustments. This
methodological proposal provides a framework for organizing eccentric resistance training programs,
facilitating exercise selection, program design, and progression. Furthermore, it assists trainers,
coaches, and professionals in optimizing eccentric training’s benefits, promoting advancements in
research and practical application. In conclusion, this methodological proposal offers a systematic
approach for classifying eccentric exercises based on complexity, objectives, methods, and intensity.
It enhances exercise selection, program design, and progression in eccentric resistance training
according to training objectives and desired outcomes.

Keywords: eccentric contraction; methodology; resistance training

1. Introduction

Skeletal muscles represent up to 40% of an organism’s body mass and are where nearly
all the oxygen is consumed in the human body during maximum sustained effort. Remarkably,
they are responsible for various essential functions, including locomotion, posture, endurance,
ballistic movements, and thermogenesis, where skeletal muscle’s phenotypic plasticity re-
sponds to the nature and magnitude of force-producing demands [1]. Regarding performance,
in competitions such as the Olympic Games or World Cups, the differences between 1st (Gold)
and 4th place (no medal) could be as small as ~1.5–2.0% for some sports such as rowing [2].
Therefore, the benefits that training (e.g., strength training) can deliver, even seemingly trivial
ones, can be substantial in elite sports and health-related parameters.
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Muscle actions modalities are represented as (i) isometric muscle action that involves
no change in muscle length, (ii) concentric muscle actions that involve the shortening of
muscle tissue, and (iii) eccentric muscle actions that implicate the active lengthening of
muscle tissue against an external force or load [3]. In sports, rehabilitation, and physical
activity, the rate at which eccentric actions are performed varies depending on the motor
acts of the movement. Therefore, the ability to store, amplify, and attenuate muscular
energy is essential to muscular health and allows for the development of efficient and effec-
tive training programs [4]. In almost any sport/discipline, movements involve concentric,
isometric, and eccentric muscle actions. During eccentric work, the musculotendinous
system lengthens and absorbs mechanical energy, which can be dissipated as heat. In this
situation, the muscle functions as a shock absorber (energy attenuation). For example, in
many sporting events involving landing, the body experiences high-impact forces, where
the vertical ground reaction forces can reach values that exceed body weight by up to
14 times [5–7]. Therefore, the ability of the active musculotendinous system to dissipate
mechanical energy can be essential in protecting passive anatomical structures [8]. In
addition, in some sports, the ability to absorb high-impact acceleration varies vastly be-
tween good and inexperienced athletes. Other sporting examples in which eccentric action
acts as a shock absorber include running downhill, landing movements in gymnastics,
or decelerations in team sports, which can vary in duration, magnitude, and contraction
speed [9].

During rapid and cyclic movements, the absorbed energy can be temporarily stored
as elastic energy and used during an immediate concentric contraction. This phenomenon,
called the stretch-shortening cycle (SSC), allows the muscle to act like a spring (an action
linked to energy storage and amplification) [4]. The SSC mechanisms include neuromus-
cular pre-activation, stretch-reflex contributions, and the recoil of elastic energy stored in
tendons [10]. The SSC is characterized by three phases (eccentric pre-stretch, amortization,
and concentric shortening phases) [11]. The eccentric pre-stretch phase stretches the muscle
spindle of the muscle-tendon unit and the non-contractile tissue within the muscle (series
elastic components and parallel elastic components). The pre-stretch phase depends on
the stretch’s magnitude, rate, and duration. Manipulating these variables could substan-
tially affect the energy stored during the eccentric pre-stretch action. The amortization
phase represents the time from the cessation of the eccentric pre-stretch to the onset of
the concentric muscle action. The shorter the amortization phase, the more effective and
powerful the SSC movement because the stored energy is used efficiently in the transition.
The concentric phase is the resultant power production performance phase and results from
many interactions, such as the biomechanical response that utilizes the elastic properties of
the pre-stretched muscles.

From a practical point of view, a fast and slow SSC can be determined depending
on the eccentric-concentric contraction time [12]. Slow SSC occurs during jumps in team
sports (e.g., volleyball, football, rugby), when angular displacement is high and ground
contact time is long (>0.25 s). Fast SSC, e.g., in sprints, are characterized by less angular
displacement and a ground contact time of fewer than 0.25 s. Effective SSC during sport-
related movements is characterized by accentuated muscle pre-activation before landing, a
short and fast eccentric phase, and a rapid transition (amortization phase) from the eccentric
length to the concentric shortening phase during contact with the ground. Pre-activation
increases muscle spindle sensitivity, improving the regulation of reflex potentiation and
stiffness in eccentric phase [4]. Therefore, eccentric training planning will depend on the
training objectives (performance or health-related outcomes) and the type of eccentric
action (i.e., shock absorber or spring). To this end, it is crucial to consider the factors that
determine the efficiency of different eccentric actions [4,10] (Figure 1).
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Figure 1. Underlying factors that influence eccentric muscle activity (adapted from [4,10]).

2. Characteristics, Benefits, and Risks of Eccentric Muscle Action

Eccentric exercise is considered a unique muscle action modality based on the active
lengthening of muscle tissue. Muscles exposed to eccentric actions show a unique response
compared to other types of muscle contraction and are characterized by the following
(Figure 2):

1. A high force/tension ratio [3,13,14]. However, one study suggests that isometric
actions could produce higher force values than eccentric actions exert force at an
optimal joint angle [15].

2. A lower metabolic cost for muscular work produced at the same intensities as concen-
tric muscular work (Figure 2B) [13,16,17].

3. Increased muscle strength in all forms of muscle contraction [18–20].
4. Selective regional hypertrophy and the architectural remodeling of the muscles,

mainly in muscle length change [20–22].
5. Respond differently to the force/velocity curve, generating a mechanical paradox; the

higher the execution velocity, the greater the force generated (Figure 2A) [13,19].
6. Rely on different morphological structures that support the eccentric action (e.g., titin,

fascia, aponeurosis, and tendons (i.e., mainly connective tissue)) [23–25].

Considering all these factors, the muscle acts eccentrically as a shock absorber or
elastic spring (Figure 1), where strength needs vary depending on the sport, motor activity,
age, training level, health-related parameters, muscle strength capacity, training period,
and rehabilitation phase [26–28]. Accordingly, their development and implementation
require organization, structuring, and methodological control to guide training goals while
considering their benefits and risks.

Eccentric training is broadly used in sports training to improve performance during
eccentric tasks. The use of eccentric strength training enhances maximal muscle strength, ex-
plosive force (i.e., rate of force development), muscle hypertrophy, and muscular power, im-
proving athletic performance [3,29]. Also, evidence supports its broad prescription in sports
rehabilitation, notably in treating tendinopathies [30–33] and preventing/rehabilitating
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sports-related injuries such as muscle strain [34,35]. Additionally, since eccentric train-
ing provides high mechanical stress with low metabolic cost, it could be appropriate for
training special populations with health-related problems such as muscle wasting and
reduction in muscle strength, mobility, aerobic capacity, cardiorespiratory problems, sar-
copenia, cachexia, type 2 diabetes, and neurological and musculoskeletal diseases [35].
Eccentric strength training implementation directly relates to training methods and desired
adaptations (e.g., sporting performance and rehabilitation, muscle development, injury
prevention, and special populations).
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For young athletes in the early stages of muscle development, the stimulation of muscle
strength through resistance training methods is essential [36,37]. The use of overloading
in young athletes is paramount in developing strength and power qualities that support
athletic performance, where the physiological adaptations that support such benefits are
evident [36]. Similarly, a large body of evidence highlights the importance and efficacy of
using eccentric overload methods to improve young male and female athletes’ physical
capacities [36,38,39]. Accordingly, the athlete’s maturity stages, development, and technical
learning of the exercises must be considered. Additionally, as with any other training
modality, their training history, technical proficiency, and long-term physical development
guidelines must be carefully considered [36].

Due to its specific physiological and mechanical properties, eccentric exercise is of great
interest in rehabilitation processes of the muscle–tendon complex in special populations such
as older adults or patients with chronic diseases (e.g., neuromuscular pathologies) [13,21,35,40].
Aging, obesity, chronic illness, physical inactivity, muscular unloading, and prolonged states
of injury or rehabilitation affect the skeletal muscle and the tendon, causing quantitative and
qualitative tissue alterations that affect muscle function and mobility [33,35,41,42], potentially
exposing them to long periods of adaptation and recovery of their functions [33,35,43,44].
Consequently, eccentric training can be an alternative to counteract these effects in older adults
or special populations; however, it is essential to consider multiple factors, such as modality,
intensity, frequency/volume, and safety.

Eccentric exercise as a therapeutic model varies during the different phases of the muscle–
tendon complex rehabilitation processes, and in terms of application, it is usually used
as an injury prevention strategy in professional and amateur athletes [13,35,40,45,46]. The
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muscle–tendon complex interactions and adaptations related to mechanical load seem to
be directed toward regional or specific responses by muscle or muscle groups [21,33,35,47].
Accordingly, muscle remodeling and the reordering of tendon collagen fibers are the basis
of the therapeutic action of eccentric exercise [35,43]. Furthermore, eccentric mechanical
work can treat tendinopathies since the tendon responds to mechanical forces by adapting
its metabolism and structural properties, altering its genetic pattern, protein synthesis, and
phenotype, which could improve the healing process [33,35,43,44].

Finally, training regimes should consider delayed-onset muscle soreness (DOMS).
This muscular phenomenon generates a physiological alteration of the muscle’s functional
unit (the sarcomere). It presents structural and functional damage generated by applying
excessive eccentric actions in sedentary people, young athletes, and athletes with little expe-
rience. It is a complex of symptoms, pain experienced upon movement, weakness, stiffness,
and swelling of the muscles and areas of the muscle–tendon junction [48]. In addition, it
can cause muscles to lose their functional characteristics, such as force generation or de-
creased proprioceptive function [35]. Multiple factors, such as muscle architecture, muscle
phenotype, individual fitness, age, sex, and genetic variability, may contribute to the wide
inter-subject variability in response to eccentric exercise [32,35,49,50]. Symptoms usually
appear 8 to 10 h after work, reaching their highest peak after 24–48 h and progressively
decreasing until total cessation after 3 or 4 days [40,51]. While an initial unaccustomed
high-intensity eccentric exercise bout can induce a remarkable amount of muscle damage,
the magnitude of this muscle damage is usually attenuated in the subsequent bouts of the
same exercises (a phenomenon referred to as the repeated bout effect) [52]. Additionally, it
is essential to note that low-intensity eccentric actions attenuate muscle damage induced by
maximal eccentric actions [53], highlighting the relevance of managing different eccentric
training methods and considering the different factors that constitute the training load
(e.g., volume, intensity, rest, among others). Strength and conditioning practitioners should
consider several factors in order to avoid these potentially undesirable associated effects,
such as training experience, relative strength, the adaptations aimed during specific train-
ing phases, the progression of the complexity and technical requirements of the exercise,
and the ability to integrate eccentric training into a holistic resistance training program to
benefit a subject’s overall performance.

3. Methods and Purposes of Eccentric Muscle Training

Although functions of eccentric muscle actions in biomechanics and strength training
have been studied for decades, classification and evidence-based recommendations on
implementing each eccentric method are lacking [3]. Nevertheless, eccentric muscle training
methods can be grouped into seven types of work, differing in movement complexity,
intensity, volume, technology, and time under tension:

1. Tempo [3,54].
2. Isoinertial [3,27,45,54–56].
3. Plyometrics [3,38,54,57].
4. Moderate Eccentric Load [13,30,58,59].
5. Accentuated Eccentric Load [3,54,60–62].
6. Isokinetic Dynamometry [3,54,63,64].
7. Eccentric Endurance [13,16,17,59,65–67].

These methods can be applied and combined according to rehabilitation phases, biolog-
ical needs, or sporting requirements. When classifying eccentric exercises and methods, one
should consider training objectives and movement complexity for practical and method-
ological purposes. Accordingly, the methodological proposal grouped the population into
five large groups (Figure 3): (i) Sports Rehabilitation and Return to Sport, (ii) Muscle De-
velopment, (iii) Injury Prevention, (iv) Special Populations, and (v) Sporting Performance.
Multiple factors, such as sporting level and needs, type of injury or illness, training period,
age, and gender, determine its use and possible benefits [3,35,54].
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3.1. Types and Classification of Eccentric Exercise

Different types of eccentric exercise rely on mechanical characteristics, metabolic cost,
myotendinous unit compromise, and training purposes [4,18,19,29,68,69]. Franchi et al. state
that eccentric exercise (with or without concentric phase and accentuated load) includes three
different types of exercises: (i) eccentric exercises with constant speed (isokinetic), (ii) eccentric
exercises with constant weight (isoweight), and (iii) eccentric exercises with constant inertia
(isoinertial), with each one displaying diverse biomechanical patterns that result in different
acute and chronic responses [69]. Also, Mike J. et al. propose a simple reasoning or classification
based on concentric load intensity [18]. They divide the eccentric exercise into sub-maximal (less
than 100% of concentric 1RM), maximum (100% of one repetition maximum concentric 1RM),
or supramaximal (typically 105–140% of concentric 1RM), with the latter stimulating a greater
increase in exercises involving both concentric and eccentric actions. Although this classification
is helpful in clinical research, it is necessary to propose a broader and more accurate classification
based on training purposes.

In practical terms, our proposal is based on concentric one repetition maximum (1RM), the
rating perceived exertion (RPE), and exercise complexity (in single-joint and multi-joint exer-
cises). Although 1RM testing must be controlled to safeguard the subject and the surrounding
conditions, it is critical in determining accurate muscular workload [32,70–73]. This test must be
implemented carefully in special populations and subjects without previous strength training
experience. Thus, protocols and predictive equations for 1RM value are used successfully for
these populations to avoid the challenge of direct 1RM testing. One repetition maximum can be
accurately estimated in men, women, and special populations from multiple repetition tests,
with five to ten repetitions being the most sensitive values for estimating 1RM [71–73]. To
avoid excessive muscle damage and DOMS, which negatively affect participants’ adherence
and could harm those with pre-existing physical limitations [70,71], an adaptation period would
be necessary before testing or estimating 1RM.

Our proposal adapts the 1RM classification, adding a sub-classification in the sub-
maximal phase and considering the degree of complexity of the exercise, the RPE, and
training purposes. The main classification is shown in Table 1. The complexity of the
technical movement intersects with different stages of the subject’s preparation or rehabil-
itation. Therefore, each type of eccentric exercise fulfills different functions according to
those purposes. As a result, different methods and types of eccentric exercises can be used
at different classification levels by modifying one or more load components (i.e., intensity,
volume, rest, frequency) [4,54,69].

3.2. Determination of Intensity, Volume, Rest, and Frequency of Eccentric Exercises

The definition of resistance training load in the literature is still limited to the magni-
tude of the load, the number of repetitions and series, the rest between series, the number
of weekly interventions, and the training period [74]. Nevertheless, this information
complements our proposal to prescribe and control eccentric exercises.



Appl. Sci. 2023, 13, 7969 7 of 18

Table 1. Methodological classification of eccentric exercises: balancing intensity and technical
demand.

Eccentric Exercise
Classification Eccentric Training Methods Eccentric Training Purposes Example

Basic eccentric exercise Tempo; Moderate Eccentric
Load; Eccentric Endurance.

Sports Rehabilitation and
Return to Sport; Muscle

Development; Injury
Prevention; Special

Populations.
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The choice of intensity is a critical factor in determining the results of training processes,
ranging from simple to complex, easy to difficult, and low to high load. Furthermore, the
RPE is used to complement the control and prescription of the intensity, determining the
internal load of the exercise [75]. When eccentric exercise is related to concentric 1RM
(sub-maximal, maximal, and supra-maximal), the intensity should range between 75 and
140%, and the rest between series should range from 45 to 240 s [27]. Lower load intensities
also apply under specific rehabilitation and muscle development conditions. Recovery
between exercises and training sessions also could impact RPE [76], modifying neural
and metabolic responses [3,54]. Accordingly, rest redistributions (e.g., cluster set) could
maintain peak force and velocity execution in different exercises [77–79], highlighting the
relevance of controlling training intensity by managing different load components (e.g.,
load, rest), exercise complexity, and RPE.
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Regarding the isoinertial method, low inertial loads allow greater concentric and
eccentric power output, while high eccentric overload maximizes the eccentric/concentric
ratio [27,80–83]. According to several studies, it is recommended that to maintain power
output between series, 1 min rest is insufficient, 2 min rest allows one to maintain power
output with light inertial loads (0.025 kg·m2), and 3 min rest supports physiological re-
covery, especially when isoinertial loads are high (≥0.075 kg·m2) [27,80–83]. Concerning
volume, there is a lack of research on the influence of this variable on acute and chronic
responses following eccentric training. Generally, it is recommended to perform 3–4 series
per exercise, 8–12 exercises per session, and 2–20 repetitions depending on the proposed
purposes. These recommendations also are valid and reliable for the accentuated, moderate,
and isokinetic eccentric methods [77–79,84].

Finally, the training frequency for eccentric exercise aligns with the guidelines pro-
posed by traditional strength training models [85–89]. Eccentric training is prescribed as
primary and complementary training one to three times a week with training periods of
4–24 weeks, depending on the selected training method [18,32,36,64]. The initial recovery
from the first training session should take at least 48 to 72 h and be reduced as the athlete
adapts to the training stimuli. Regarding sports context, eccentric training can be carried
out before, during, or after the daily technical–tactical sessions and must be considered
part of the training load (i.e., acute and chronic load) [3,39,54,56]. In the case of isoinertial
training, although clear guidelines are lacking, research shows that 2–3 sessions per week
completed for 5–10 weeks can sufficiently induce muscular adaptive effects [27]. Other
aspects, such as experience, technical execution, and exercise order, must be considered.

3.3. Preparation, Execution, and Order of Exercises

Determining the athlete’s or patient’s experience and technical competence is essential.
Athletes or patients undergoing eccentric training must have the support of an experienced ad-
visor who can determine training loads and teach them the technical execution of the exercises.
The latter is essential because the increase in eccentric strength depends on learning and the
correct execution of movements (among others) [18,27,54,77–79,84,86,90,91]. Regarding exer-
cise order, this should be related to the primary purpose of training [77,86]. For example, if the
purpose is to increase strength in the lower limbs, exercises targeting the lower limbs must be
executed in the first part of the session. In young/inexperienced athletes or athletes/subjects
in rehabilitation, the order does not affect DOMS and the protective influences of the repeated
bout effect. However, implementing a short period of muscular adaptation through low-
intensity eccentric or isometric exercises has a substantial protective effect [53,84,92,93]. These
recommendations are context-dependent and rely on the individual’s objectives, physical
capacity, and training status [78]. Finally, if the purpose is to increase strength and power,
eccentric training should be performed before or in the first part of a technical–tactical session
in team sports or in the first part of the training session for individual sports [4,27,94].

3.4. Execution Complexity of Eccentric Exercises

One essential variable that coaches and practitioners face when designing strength-
ening programs is the selection of exercises. Our classification proposal encompasses
the complexity of the eccentric exercises (Figure 4). This complexity is closely related to
eccentric exercise intensity, where the easiest or least complex exercises should start any
eccentric training program. In addition, it integrates all previously described training
load components (i.e., intensity, volume, rest, preparation, order, and technical execution),
which could directly impact the subject’s internal load [75]. The number of joints involved
also aligns with exercise complexity. However, although multi-articular (multi-joint) or
mono-articular (single-joint) exercises have many differences [88,95], there is no guideline
indicating which is more appropriate for different purposes [96,97]. It should be noted that
the sum of movements in multi-joint exercises generates greater complexity, increasing
intensity [96,98]. Accordingly, exercise selection with different numbers of joints should
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be based on individual purposes and practical aspects, individual preferences, movement
specificity, time commitment, and equipment availability.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 18 
 

3.4. Execution Complexity of Eccentric Exercises 
One essential variable that coaches and practitioners face when designing strength-

ening programs is the selection of exercises. Our classification proposal encompasses the 
complexity of the eccentric exercises (Figure 4). This complexity is closely related to ec-
centric exercise intensity, where the easiest or least complex exercises should start any 
eccentric training program. In addition, it integrates all previously described training 
load components (i.e., intensity, volume, rest, preparation, order, and technical execu-
tion), which could directly impact the subject’s internal load [75]. The number of joints 
involved also aligns with exercise complexity. However, although multi-articular (multi-
joint) or mono-articular (single-joint) exercises have many differences [88,95], there is no 
guideline indicating which is more appropriate for different purposes [96,97]. It should 
be noted that the sum of movements in multi-joint exercises generates greater complexi-
ty, increasing intensity [96,98]. Accordingly, exercise selection with different numbers of 
joints should be based on individual purposes and practical aspects, individual prefer-
ences, movement specificity, time commitment, and equipment availability. 

 
Figure 4. Understanding the interplay between eccentric exercise complexity and intensity. 1RMc: 
one-repetition maximum in the concentric phase. 

The exercise complexity is also associated with different equipment and technolo-
gies employed in eccentric exercise [3,19]. For example, a single-joint exercise in the knee 
extension machine could only be more complex if the intensity is increased at the eccen-
tric phase. Thus, although single-joint exercises performed on machines are beneficial, 
they are less complex due to the lower technical and coordination demands [99,100]. 
Conversely, performing the one-leg variant in free weight or isoinertial exercises such as 
the deadlift could induce a greater demand in coordination, stability, and core activation 
(i.e., more complexity). As a rule of thumb, executing multi-articular exercises with high 
eccentric intensities would have greater complexity (e.g., free weights, isoinertial, isoki-
netic dynamometry, plyometrics), leading to them being classified in the most advanced 
phases of eccentric training [95–100]. Finally, exercise complexity is associated with the 

Figure 4. Understanding the interplay between eccentric exercise complexity and intensity. 1RMc:
one-repetition maximum in the concentric phase.

The exercise complexity is also associated with different equipment and technologies
employed in eccentric exercise [3,19]. For example, a single-joint exercise in the knee ex-
tension machine could only be more complex if the intensity is increased at the eccentric
phase. Thus, although single-joint exercises performed on machines are beneficial, they are
less complex due to the lower technical and coordination demands [99,100]. Conversely,
performing the one-leg variant in free weight or isoinertial exercises such as the deadlift
could induce a greater demand in coordination, stability, and core activation (i.e., more
complexity). As a rule of thumb, executing multi-articular exercises with high eccentric
intensities would have greater complexity (e.g., free weights, isoinertial, isokinetic dy-
namometry, plyometrics), leading to them being classified in the most advanced phases
of eccentric training [95–100]. Finally, exercise complexity is associated with the practice
becoming less complex over time, creating a challenge for practitioners to modify the
exercise training to achieve the desired effect.

4. Methodological Proposal: Classification, Characteristics, and Examples of the
Proposed Eccentric Exercises

The methodological proposal is based on a % of the concentric 1RM (or % of body
weight), complemented with exercise complexity and RPE described in dynamic strength
exercises [101–103], and considers different aspects of eccentric training. Eccentric methods
alone or combined with other modalities of muscular activation may have different impli-
cations for musculoskeletal system structures (e.g., tendon Young’s modulus, muscle hy-
pertrophy, or fascicle length changes) [33,104]. These responses/adaptations have different
impacts on the eccentric action’s functions (i.e., the shock absorption or energy attenuation
functions, energy storage amplification or spring function, amortization phase) [4] and are
influenced by factors such as the training level or age [33,104]. Therefore, eccentric training
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planning may depend on the population, the purpose of the training (e.g., training phase),
the eccentric action that requires stimulation, and the adaptation process to training loads.

4.1. Basic Eccentric Exercise (Table 2)

Low-intensity eccentric exercise is recommended for subjects and athletes in phases
of muscle development, injury prevention, rehabilitation and return to sport, and general
adaptation processes. For example, these eccentric loads are essential for those returning
to competition after suffering joint and muscle injuries such as anterior cruciate ligament
(ACL) tears, hamstring tears, abductor/adductor tears, and quadricep strain [13,40,45,46,105].
It can also be applied to young athletes, older adults, and special populations (e.g., in
metabolic/ventilatory/cardiac rehabilitation phases) [3,13,40,45,46,54,106,107]. In addition,
several studies show the improvement of essential muscle physical conditions such as power
output, speed, and the ability to sustain high-intensity efforts [106,107]. Injury prevention
programs use eccentric loads, generating a broad consensus on the protection they confer
on the muscles exposed to injuries during training and competition. The incorporation of
eccentric exercises before, during, or after the main training session can significantly protect
the adductor/abductor (e.g., Copenhagen exercise) and hamstring (e.g., Nordic Hamstring
exercise) muscles. Regarding the latter, eccentric exercises have been shown to reduce ham-
string injuries by up to 51% [108–110]. Both exercises exert a low to moderate level of eccentric
loading when incorporated into training sessions. However, depending on the training level,
these exercises could be perceived as moderate or sub-maximal loads, so their inclusion in a
training program should be carefully analyzed.

Table 2. Suggested eccentric training at the basic level.

Intensity Body weight, body weight (%) up to 40% of concentric
1RM [30,59], and RPE up to 4.

Objective Sports Rehabilitation and Return to Sport; Injury
Prevention; Sporting Performance [59,105].

Examples of exercise complexity
Basic single- and multi-joint human movement skills,
low-impact plyometric and shock-absorbing movements,
body weight load, and therapeutic exercises.

4.2. Moderate Eccentric Exercise [33] (Table 3)

Moderate eccentric load intensities support different processes such as muscular
adaptation, advanced rehabilitation, injury prevention, and performance in the early stages
of young athletes or those in lower-ranked competitive divisions [36]. However, this level
must be cautiously implemented to prevent injuries or excessive DOMS [111]. Strength
and muscle mass are critical to support performance in tasks that involve rapid changes in
direction, vertical jumps, power output, sprints, and balance [36,74,112]. Skeletal muscle
rapidly adapts to the damage from eccentric exercise to prevent further damage. The
magnitude of the protective effect depends on variables such as load intensity, tempo, the
total number of muscle actions, muscle lengthening, muscle groups, age, sex, and previous
conditioning [52,53,84,92]. If muscle damage is unilaterally induced, the contralateral
muscle also benefits from this protective adaptation [113]. The protective effect could
be coordinated/influenced by neural and mechanical adaptations, selective hypertrophy,
muscle architecture, extracellular matrix remodeling, and molecular adaptations [51,114].
Finally, examples of training methods at this stage include low- to medium-intensity
plyometric work, box jumps, multi-jumps at small distances and heights, accelerations
and decelerations, and moderate to sub-maximal eccentric overload with elements such as
elastics, dumbbells, and bars.
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Table 3. Suggested eccentric training at the moderate level.

Intensity Body weight, body weight (%) up 40–60% of concentric
1RM and RPE between 4 and 6.

Objective Sports Rehabilitation and Return to Sport; Injury
Prevention; Sporting Performance.

Examples of exercise complexity
Basic to medium single and multi-joint, low to
medium-impact plyometric and shock-absorbing
movements, and balance exercises.

4.3. Submaximal Eccentric Exercise [115,116] (Table 4)

Eccentric exercises with greater loads are more complex, require previous strength
training experience, and, sometimes, specific equipment. Isoinertial equipment (e.g., isoin-
ertial pulleys and flywheels) was first introduced as exercise equipment for space travelers
exposed to non-gravity environments [117]. With isoinertial devices, the movement begins
with a concentric muscular action that unwinds the flywheel strap, followed by an eccen-
tric muscular action that winds the flywheel strap, immediately producing the following
concentric-eccentric cycles. The force applied in the eccentric action to stop the flywheel
will depend on the kinetic energy generated during the concentric action and the strategy
to apply the force in the last third of the eccentric muscle action [27]. Thus, the speed at
which the strap is wound depends on the speed at which it is unwound. If enough force is
applied during the concentric phase and resisted effectively in the eccentric phase, signifi-
cant muscle overload can be achieved, improving and increasing muscle strength [80,118].
Isoinertial training can reportedly reduce injury severity during competition by up to 65%
and lead to a substantial reduction in injuries per 1000 h of competitive play with respect
to soccer; however, previous experience is essential in achieving these objectives [45,55].
Isokinetic dynamometers are complex equipment of high commercial value. Despite the
continuous criticism against the limited information of exercise models in mono-articular
muscle actions with constant velocity, isokinetic dynamometers are valid to reproduce
eccentric muscle action with optimal neural control throughout a wide range of motion [69].
Isokinetic dynamometers also provide a highly reproducible measure of neuromuscular
response in rehabilitation and muscular performance. Finally, parameters such as maximal
force, mean force, power output, and angular work can be derived using relatively simple
maximal or sub-maximal protocols [69].

This group of sub-maximal eccentric exercises also incorporates plyometric training,
providing essential tools for performance development and final physical rehabilitation
before one returns to competition [11]. Plyometric exercises are explosive movements that
use the stretch–shortening cycle, where previous eccentric muscular action potentiates
concentric muscle action. Its inclusion in strength programs is probably due to its ballistic
nature and the ability to enhance power output and rate of force development (RFD) [112].
In addition, plyometric exercises for short periods (6–15 weeks) modify the stiffness of
elastic components of the plantar flexor muscle–tendon complex in both athletes and non-
athletes [57]. The mechanical and physiological responses to plyometric exercise and other
training methods improve athletic performance (jumping, sprinting, agility, and endurance)
and reduce injury risks in the lower limbs [38,57]. However, although plyometric exercise
widely crosses the different intensities of eccentric work, high-intensity plyometric exercises
require high levels of strength from the body parts involved [3,11,54].
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Table 4. Suggested eccentric training at the submaximal level.

Intensity Body weight, body weight (%) up 60–90% of concentric
1RM and RPE between 6 and 8.

Objective Return to Sport; Muscle Development; Injury
Prevention; Sporting Performance.

Examples of exercise complexity
Medium to complex single and multi-joint, medium- to
high-impact plyometric and shock-absorbing
movements, and competitive exercises.

4.4. Maximal and Supramaximal Eccentric Exercise [60–62,116,119] (Table 5)

Utilizing maximal or supra-maximal muscular loads through accentuated eccentric
or tempo training methods requires performing the eccentric phase with a higher load
than the concentric phase. Prescribing supramaximal loads (≥1RM) effectively improve
maximal strength, which is crucial for sporting performance [112]. For example, maximal
strength training in the lower limb extensor muscles (twice weekly) has been shown
to improve vertical jump heights and 10 to 20 m sprint times in semi-professional and
professional soccer players [120–122]. Maximal and supra-maximal loads induce high
mechanical tension, stimulate the recruitment of high-threshold motor units, and involve
changes in neuromuscular activity, the fibers’ size and length, and the myotendinous
junction’s stiffness [29]. Finally, high-eccentric loads appear to induce a shift toward a
faster athlete’s muscular phenotype, in addition to associated functional adaptations that
perform explosive movements [18,29,68].

Table 5. Suggested eccentric training at the maximal and supramaximal level.

Intensity Body weight, body weight (%) up 90–140% of concentric
1RM and RPE ≥ 8.

Objective Sporting Performance.

Examples of exercise complexity Complex single- and multi-joint high-impact plyometric
movements and competitive exercises.

5. Final Considerations

The decision to use different eccentric training methods together with other methods
must consider factors such as (i) age, (ii) sex, (iii) sporting needs, (iv) competition stage or
training level, (v) health status, (vi) training purpose, (vii) total time, and (viii) pre- and
post-testing. Accordingly, an individual training plan must be generated with basic training
principles, such as overload, individualization, progression, alternation, specificity, and
periodization, in mind. According to our methodological proposal, the passage from one
level to another considers the magnitude of the proposed intensity, applying the heaviest
and more complex eccentric exercises in the final phases of training (Figure 5).
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