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Featured Application: Convolutional Neural Network (CNN) models are capable of learning
complex patterns and features from images. An automatic teeth segmentation CNN model can
accurately and efficiently identify the boundaries and contours of individual teeth in dental ra-
diographs or 3D dental scans. This can save significant time and effort compared to manual
segmentation by dental professionals. Precise segmentation of teeth can assist in the diagnosis
and treatment planning process. By accurately identifying the boundaries of teeth, dental prac-
titioners can more effectively analyze dental conditions, such as tooth decay, gum diseases, or
orthodontic abnormalities. This enables them to make informed decisions regarding appropriate
treatment options and personalized treatment plans.

Abstract: Background and purpose: Accurate instance segmentation of teeth in panoramic dental
X-rays is a challenging task due to variations in tooth morphology and overlapping regions. In this
study, we propose a new algorithm, for instance, segmentation of the different teeth in panoramic
dental X-rays. Methods: An instance segmentation model was trained using the architecture of
a Mask Region-based Convolutional Neural Network (Mask-RCNN). The data for the training,
validation, and testing were taken from the Tuft dental database (1000 panoramic dental radiographs).
The number of the predicted label was 52 (20 deciduous and 32 permanent). The size of the training,
validation, and test sets were 760, 190, and 70 images, respectively, and the split was performed
randomly. The model was trained for 300 epochs, using a batch size of 10, a base learning rate of
0.001, and a warm-up multistep learning rate scheduler (gamma = 0.1). Data augmentation was
performed by changing the brightness, contrast, crop, and image size. The percentage of correctly
detected teeth and Dice in the test set were used as the quality metrics for the model. Results: In the
test set, the percentage of correctly classified teeth was 98.4%, while the Dice score was 0.87. For both
the left mandibular central and lateral incisor permanent teeth, the Dice index result was 0.91 and
the accuracy was 100%. For the permanent teeth right mandibular first molar, mandibular second
molar, and third molar, the Dice indexes were 0.92, 0.93, and 0.78, respectively, with an accuracy of
100% for all three different teeth. For deciduous teeth, the Dice indexes for the right mandibular
lateral incisor, right mandibular canine, and right mandibular first molar were 0.89, 0.91, and 0.85,
respectively, with an accuracy of 100%. Conclusions: A successful instance segmentation model for
teeth identification in panoramic dental X-ray was developed and validated. This model may help
speed up and automate tasks like teeth counting and identifying specific missing teeth, improving
the current clinical practice.

Appl. Sci. 2023, 13, 7947. https://doi.org/10.3390/app13137947 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137947
https://doi.org/10.3390/app13137947
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7401-1971
https://orcid.org/0000-0002-8906-5665
https://orcid.org/0000-0003-0346-3724
https://doi.org/10.3390/app13137947
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137947?type=check_update&version=2


Appl. Sci. 2023, 13, 7947 2 of 14

Keywords: teeth segmentation; automatic segmentation; convolutional neural networks;
CNN; orthopantomography

1. Introduction

Orthopantomography (OPT), or panoramic radiography, is a dental imaging tech-
nique that captures a wide-view X-ray of the oral region. It provides a comprehensive
overview of the teeth, jawbones, and surrounding structures in a single image. Thanks to
its wide availability, low radiation exposure, and low cost, orthopantomography (OPG) is a
widely used dental imaging technique that provides a panoramic view of the upper and
lower jaws.

OPT offers several applications in dentistry: it allows dentists to diagnose various den-
tal conditions and abnormalities, it helps in identifying dental caries (cavities), periodontal
disease, impacted teeth, cysts, tumors, and fractures, and provides a panoramic view of the
entire dentition, enabling dentists to plan dental treatments, such as the optimal placement
of dental implants, assessing bone density and quality, and evaluating the presence of
any anatomical structures that may affect the treatment outcome. OPT also allows the
workup of orthodontic therapy through the assessment of dental and skeletal relationships,
crowding investigation, and the identification of missing or extra teeth [1–3]. Moreover,
OPTs are routinely used to assess bone age [4] and for forensic purposes [5].

Although OPT is a valuable imaging technique and provides clinicians with valuable
diagnostic information, decision-making capabilities, and planning insights, this imaging
technique has some limitations. The absence of three-dimensionality, potential artifacts,
overlapping structure, and regional inhomogeneity may hinder an accurate interpretation
by clinicians. Moreover, OPT images are subject to distortion and magnification, which can
affect the accuracy of measurements. The positioning of the patient’s head, the size and
shape of the jaws, and anatomical variations can lead to image distortion and alter the true
dimensions of the structures being examined [6–8].

Teeth segmentation in OPT is the process of outlining and delineating the boundaries of
individual teeth on the panoramic radiograph manually to extract specific tooth information
from the overall image, which can be useful for various dental applications, such as
treatment planning, analysis, and research [9].

Manual segmentation is a meticulous and time-consuming process, requiring ex-
pertise in dental anatomy and familiarity with the imaging software, and it is often
limited by high inter-operator variability. Introducing an automated assistance system
could mitigate interrater variability and facilitate more reliable and precise evaluations of
panoramic radiographs, particularly for less experienced professionals while saving time
and improving efficiency [9].

In recent years, artificial intelligence—particularly deep learning—has gained traction
in computer-aided detection and diagnostics (CAD) [10,11]. Deep learning models, primar-
ily convolutional neural networks (CNNs), are multi-layered networks that transform input
data (e.g., images) into outputs (e.g., presence/absence of disease) while progressively
learning higher-level features. The notion of “deep” pertains to the multitude of layers
used to extract features from input data [10,12]. Deep learning models have demonstrated
comparable performance to seasoned clinicians in specific tasks such as skin cancer detec-
tion, diabetic retinopathy diagnosis, lung cancer, and tuberculosis identification [10,13,14],
resulting in a useful tool in an emergency setting [15].

Within dentistry, a limited number of studies have investigated the potential of CNNs
for automatically detecting or segmenting teeth on OPT(s) [6,8,16–24]. Nonetheless, none
have delved into automated multi-class detection, segmentation, and labelling on OPT(s).
The objective of this study is to develop and validate the detection, segmentation, and
labelling system founded on deep learning principles to enhance and further automate
diagnostics within dental and oral surgical practices.
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2. Materials and Methods
2.1. Data

In the present study, the model was trained using the Tufts Dental Database [25] built
by Panetta et al. from Tufts University, available online on a Kaggle page [26]. The original
dataset was constructed by randomly selecting radiographs from the electronic patient
database at the School of Dental Medicine. From this initial pool, the authors selected
1000 radiographs following these inclusion criteria: optimum diagnostic quality of the
image with minimal or no technical errors in the image [25].

Optimal diagnostic quality includes the absence of ghost images, which are radiopaque
artifacts related to the double penetration of the X-ray beam into the object; the absence
of lead apron artifacts, related to the use of a thyroid protection collar; the absence of
superimposed images related to a technical error; the correct inclusion in the image of
the mandibular condyle; and the absence of blurred/distorted front teeth due to wrong
positioning of the patient.

The images were deidentified before inclusion in the database so no information about
age and sex was available. Due to the nature of this study, it was not necessary to seek
approval from an Ethics Committee.

The dataset consists of six major components: (a) radiographs, (b) labelled masks,
(c) eye tracker generated maps (gray and quantized), (d) text information describing each
radiograph, (e) a teeth mask for each radiograph with labels, and (f) a maxillomandibular
region-of-interest mask. Annotations were made by both a clinical expert and students
through the use of Labelbox [25], which is a data labeling platform that provides tools and
infrastructure to annotate and label data for training artificial intelligence models. In the
context of this study, we are interested in the radiographs and the teeth masks annotated
by the clinical expert.

2.2. Data Annotation

The annotations of interest were related to the identification (bounding box), seg-
mentation (contour), and classification (name) of individual teeth. For tooth classification,
52 classes were used, representing 32 permanent and 20 deciduous teeth. The labelling
system used for the annotation was ISO 3950 [27].

2.3. The Model

The neural network to be validated in this study was a convolutional neural network
known as Mask-RCNN [28]. Mask-RCNN, short for Mask Region-based Convolutional
Neural Network, extends Faster RCNN by adding an additional branch to predict pixel-
level segmentation masks for each object detected. It is a very suitable choice for this task
as it combines object detection and instance segmentation. Briefly, the network is built
using three main blocks: a convolutional backbone for feature extraction, a region proposal
network (RPN) that suggests regions of interest (ROI) for object segmentation, and a box
head and ROI head that select the proposed regions representing the objects of interest
and refining their boundaries for more precise segmentation. The implementation of the
network used for the model creation is based on the detectron2 library [29]. A visual detail
of the Mask-RCNN is reported in Figure 1, together with a visual representation of the
input and output of the model.
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Figure 1. Schematic representation of the Mask-RCNN implemented in the detectron2 library and
the 3 main components: Convolutional backbone, Region Proposal Network (RPN), and Head part
(ROI/box head).

2.4. Training

The application of a neural network involves a series of tensor operations that take
an n-dimensional input matrix and produce the desired output. To achieve the desired
result, the parameters that govern these tensor operations need to be adjusted. This is
where the training operation comes into play. First, a cost function needs to be defined,
which measures how close the network’s predictions are to the actual values. Then, using a
network with randomly chosen parameters, an initial prediction is made, typically with
poor performance. An optimization algorithm is used to update the parameters in each
prediction iteration, attempting to minimize the cost function. This process is repeated until
the parameters reach values that make the predictions as close as possible to the provided
training data. The training process occurs in iterations involving a subset of images from the
training set (batch size). The term “epoch” refers to the number of iterations required to use
all the images in the training set for the optimization algorithm (1 epoch is approximately
N/batch_size iterations, where N is the number of samples in the training set).

The cost function used by the Mask-RCNN for training is a weighted combination of
four terms:

RPN classification loss: This term calculates the classification error for the proposals
generated by the region proposal network (RPN). It is the cross-entropy between the
predicted and target classification probabilities.

RPN regression loss: This term calculates the regression error for the RPN propos-
als. It measures the error between the predicted and target coordinates using the mean
absolute error.

Box classification loss: This term calculates the classification error for the regions of
interest (ROI) generated by the RPN and passed to the second stage of the model, which
refines the position and shape of the object within the region. The cost function is again the
cross-entropy between the predicted and target classification probabilities.

Box regression loss: Finally, this term calculates the regression error for the regions
of interest. It measures the error between the predicted and target coordinates using the
negative of the Dice similarity index (for contours) and the mean absolute error for the
box coordinates.

The actual training was performed for 300 epochs using a batch size of 10 images.
The optimization algorithm used was stochastic gradient descent (SGD) with momentum,
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which is the default in the detectron2 library. The algorithm can be described by the
following equation:{

v(0) = 0 v(t) = βv(t−1) + (1− β)∇ f
(

x(t−1)
)

x(t) = x(t−1) − ηv(t)

where x is the value of the parameters updated in the new iteration, θ is the value of the
parameters in the previous iteration, ∇θ is the gradient of the cost function for the model
parameters, m is the exponential moving average of the gradient at iteration t, β is a weight
coefficient, and η is the learning rate that controls how much the gradient influences the
parameter update between iterations.

The learning rate used in the algorithm is not fixed but varies from iteration to it-
eration using a scheduler. The scheduler used is WarmupMultiStepLR in detectron2
(base learning rate = 0.001, gamma = 0.1).

During training, the technique of data augmentation was applied. It involves applying
various transformations to the original images so that in different iterations of the parameter
optimization algorithm, the same image is presented differently while retaining the same
informational content. This improves the algorithm’s generalizability and performance on
unseen data. The transformations used during the data augmentation included changes in
the brightness, contrast, and saturation of the image, cropping (selecting a portion of the
image), and resizing the image.

2.5. Validation and Testing

The dataset was divided into training, validation, and test sets. The training subset
was used to optimize the parameters of the neural network, as described in the previous
section, whereas the validation set was used to evaluate the generalizability of the model
on data outside the training set and determine the number of training iterations needed.
Typically, training stops when the quality metrics on the training and validation datasets
start to diverge (the validation performance begins to deteriorate instead of improve).
The test set was used to evaluate the quality metrics once the model training process was
complete. Dataset splits were chosen based on the typical range of values used commonly
for this task. First, the 0.05 of the entire dataset was allocated to the test set, and then the
remaining images were split between training and validation following rates of 0.8 and
0.2, respectively. The sizes of the subsets were 760, 190, and 50 images for the training,
validation, and test sets, respectively.

The optimal model obtained by training and internal validation was used to evaluate
the quality metrics in the independent test set. The quality metrics used for the testing were
the accuracy and the Dice index. The accuracy is defined as the percentage of correctly
classified teeth; a tooth is considered correctly classified if the intersection over union (IoU)
of the original annotation (ground truth) with a predicted object of the same class is above
a threshold (IoU > 0.5 in this case). On the other hand, the Dice index is a metric that is
computed pixel-wise using the following formula:

Dice index =
1
n

n

∑
i=1

2TPi

2TPi + FPi + FNi

TPi, FPi, and FNi are the true positives, false positives, and false negatives for the
i-th class, respectively. The true positives are foreground pixels of class i that are correctly
identified, the false negatives are foreground pixels of class i that are not correctly identi-
fied, and the false positives are background pixels (class different from i) that have been
annotated as class i by the model.
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3. Results

The output produced by the model is displayed in Figure 2 and consists of a series
of contours, bounding boxes surrounding those contours, and a label indicating the teeth
(according to the ISO 3950 classification); the latter is accompanied by a confidence value.

Figure 2. Example of output of the Mask-RCNN on a panoramic RX.

The model achieved high detection accuracy on the test set (98.4%) with a Dice index of
0.87. This quality of the performance can also be illustrated by comparing the segmentation
with the corresponding ground truth, as shown in Figure 3.

Figure 3. Example of ground truths (A,B) and corresponding predictions (C,D) for two panoramic
RX images.

The teeth-specific distribution of the Dice index and accuracy are displayed in Table 1
for permanent teeth and in Table 2 for deciduous teeth.
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Table 1. Dice index and accuracy for the different permanent teeth.

ISO 3950 Code Name Dice Index Accuracy (%)

11 Maxillary central incisor (R) 0.78 86.67
12 Maxillary lateral incisor (R) 0.89 100
13 Maxillary canine (R) 0.88 100
14 Maxillary first premolar (R) 0.85 100
15 Maxillary second premolar (R) 0.85 97.61
16 Maxillary first molar (R) 0.88 100
17 Maxillary second molar (R) 0.88 100
18 Maxillary third molar (R) 0.90 100
21 Maxillary central incisor (L) 0.90 100
22 Maxillary lateral incisor (L) 0.89 100
23 Maxillary canine (L) 0.90 100
24 Maxillary first premolar (L) 0.88 100
25 Maxillary second premolar (L) 0.85 95
26 Maxillary first molar (L) 0.91 100
27 Maxillary second molar (L) 0.85 97.61
28 Maxillary third molar (L) 0.77 86.67
31 Mandibular central incisor (L) 0.91 100
32 Mandibular lateral incisor (L) 0.91 100
33 Mandibular canine (L) 0.88 94.59
34 Mandibular first premolar (L) 0.88 97.5
35 Mandibular second premolar (L) 0.86 95.45
36 Mandibular first molar (L) 0.88 97.83
37 Mandibular second molar (L) 0.85 100
38 Mandibular third molar (L) 0.86 100
41 Mandibular central incisor (R) 0.81 97.87
42 Mandibular lateral incisor (R) 0.82 97.83
43 Mandibular canine (R) 0.88 97.78
44 Mandibular first premolar (R) 0.86 97.67
45 Mandibular second premolar (R) 0.862 95.45
46 Mandibular first molar (R) 0.92 100
47 Mandibular second molar (R) 0.93 100
48 Mandibular third molar (R) 0.78 100

Table 2. Dice index and accuracy for the different deciduous teeth. Some cases do not show values
(n/a) because of a lack of those teeth in the 50 cases of the test set.

ISO 3950 Code Name Dice Index Accuracy

51 Maxillary central incisor (R) 0.90 100
52 Maxillary lateral incisor (R) 0.87 100
53 Maxillary canine (R) 0.72 100
54 Maxillary first molar (R) n/a n/a
55 Maxillary second molar (R) n/a n/a
61 Maxillary central incisor (L) n/a n/a
62 Maxillary lateral incisor (L) n/a n/a
63 Maxillary canine (L) 0.86 100
64 Maxillary first molar (L) 0.87 100
65 Maxillary second molar (L) 0.92 100
71 Mandibular central incisor (L) 0.87 100
72 Mandibular lateral incisor (L) 0.84 100
73 Mandibular canine (L) 0.83 100
74 Mandibular first molar (L) n/a n/a
75 Mandibular second molar (L) n/a n/a
81 Mandibular central incisor (R) n/a n/a
82 Mandibular lateral incisor (R) 0.89 100
83 Mandibular canine (R) 0.91 100
84 Mandibular first molar (R) 0.85 100
85 Mandibular second molar (R) 0.72 83.33
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The distribution of the Dice indexes around patients is displayed in Figure 4 where
it is possible to see that the range of values is between 0.19 (for outliers) and 0.92, but the
distribution is right skewed.

Figure 4. Distribution of the Dice index in the 50 patients of the test set.

From the graphic in Figure 4, it can be noticed that two patients had very low values
of the Dice score compared to the other 48 patients. Figure 5 shows an example of these
outlier patients: they are characterized by the absence of the majority of teeth.

Figure 5. Example of a patient with a low Dice score (=0.19), original radiograph (A), the correspond-
ing ground truths (B), and predictions (C).

Figure 6, another skewed distribution, shows the number of false negatives. False
negatives are teeth not identified or misclassified by the model per image. For 76%, all the
teeth were correctly detected, while 90% had at most one missed tooth.
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Figure 6. Distribution of the number of false negatives for the 50 patients of the test set.

4. Discussion

Accurate segmentation of teeth from OPG images is crucial for various dental ap-
plications, such as orthodontics, prosthodontics, and dental implant planning, but also
for bone age estimation [30] and forensic dentistry [31]. Manual segmentation of teeth
is time-consuming and prone to subjective errors. Therefore, there is a growing interest
in developing automatic segmentation methods to streamline the process and improve
accuracy, even if automatic segmentation could also be limited by different factors, such as
image quality, occlusions, and overlapping structures.

We proposed a CNN trained on images collected from one public database (Tufts),
divided into 760, 190, and 50 images for the training, validation, and test sets, respectively.
Our model achieved high detection accuracy on the test set (98.4%) with a Dice index of 0.87.
Through deepening the performance of individual teeth, it can be noted that some classes
do not achieve 100% accuracy. Among the various factors that can cause this lowering of
performance, panoramic RXs, in which many teeth are missing, have been identified as
particularly challenging cases. Due to the absence of teeth that are always present in the
most common cases, the model probably has fewer references for the correct identification
of the single tooth. It is more common in this situation that the few teeth that are present are
misclassified, the lower performance is, therefore, for the majority, due to these particular
and more challenging cases. The lower performance of these cases is also reflected in the
calculation of the Dice scores; the presence of two outliers (Figure 4) in fact can be attributed
to the same issue.

Limited experiences are reported in the literature on this topic. Different authors
applied different approaches mainly based on CNNs, reaching high levels of accuracy in
teeth segmentation, as in our case.

El Bsat et al. [32] focused on the development of a semantic segmentation method
to accurately delineate the maxillary teeth and palatal rugae in two-dimensional dental
images, as they serve as unique anatomical features for dental identification and analysis.
The authors used a dataset of 797 photographic images from the Division of Orthodontics
and Dentofacial Orthopedics at the American University of Beirut Medical Center, apply-
ing their analysis to colored two-dimensional (2D) images, instead of X-ray images, and
studying the maxillary teeth and palate belonging to various malocclusions. Due to this
different image collection approach, their results are not comparable to ours.
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The authors utilized a CNN architecture known as U-Net, which has demonstrated
excellent performance in image segmentation tasks. The network was trained using a large
dataset of annotated two-dimensional dental images, with each image labelled for the
maxillary teeth and palatal rugae. Semantic segmentation aims to assign a specific class
label to each pixel in an image, allowing for the precise localization and segmentation of
different objects or regions. In this study, the semantic segmentation network was trained
to distinguish between maxillary teeth and palatal rugae. By leveraging the unique features
and patterns of these structures, the network learned to accurately segment them from
dental images.

The performance of the proposed semantic segmentation method was evaluated using
various metrics, including accuracy, precision, recall, and IoU. The results demonstrated
high accuracy and effectiveness in segmenting both maxillary teeth and palatal rugae. The
trained network achieved a high IoU score, indicating a significant overlap between the
automatic segmentation results and the manual annotations.

The successful semantic segmentation of maxillary teeth and palatal rugae in two-
dimensional dental images has significant clinical implications. The accurate delineation of
these structures can aid in dental identification, forensic analysis, and treatment planning.
Furthermore, it can streamline the process of orthodontic treatment and prosthodontic
interventions by providing precise measurements and the localization of dental structures.
The proposed approach, based on deep learning techniques, demonstrates high accuracy
and effectiveness.

Arora et al. [33] presented an approach for automated teeth segmentation in dental
panoramic X-ray images using a multimodal convolutional neural network
(CNN) architecture.

The authors propose a multimodal CNN architecture that combines information from
multiple modalities for teeth segmentation. They utilize both the original grayscale X-ray
images and their corresponding edge maps as input to the network. The edge maps were
generated using an edge detection algorithm to capture the shape and boundaries of the
teeth. The multimodal CNN architecture was designed to leverage both the intensity
information and structural characteristics provided by the original images and edge maps,
respectively. The peculiarity of this study is the use of three different CNN-based archi-
tectures, i.e., conventional CNN, atrous CNN, and separable CNN, which were tested on
1500 panoramic images.

The authors trained the multimodal CNN using a combination of binary cross-entropy
loss and Dice coefficient loss, which encourages accurate segmentation. The performance
of the proposed method is evaluated using metrics such as accuracy, sensitivity, specificity,
and the Dice similarity coefficient.

The proposed method achieves high accuracy, sensitivity, specificity, and DSC, indi-
cating accurate segmentation and minimal false positives and negatives, with precision
and recall of 95.01% and 94.06%, respectively. A comparison with other methods shows
superior performance, highlighting the advantages of incorporating both intensity and
structural information through the multimodal approach.

Other authors [34] used forty dental images that were manually annotated to create
the ground truth to train two CNNs: U-net and Faster RCNN. These models were trained
and validated on a dataset including 40 OPTs. The CNN was trained to segment individual
teeth and assign correct numbering to them based on dental conventions.

The AI model employs the CNN architecture to perform teeth segmentation on OPG
images. The network learns to identify and delineate the boundaries of individual teeth
by analyzing patterns and textures. The training process involves iterative optimization
using annotated OPG images, where each tooth is manually labelled. The model learns to
accurately segment teeth by leveraging the patterns and similarities shared among different
OPG images.

Once the teeth segmentation is accomplished, the AI model assigns correct numbering
to the segmented teeth based on established dental conventions. The model incorporates
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dental knowledge and algorithms to determine the appropriate numbering scheme for
each tooth. The numbering process considers factors such as tooth position, dental arch,
and universal tooth numbering system.

The performance of the proposed AI model was evaluated using a dataset of OPG
images, both in terms of teeth segmentation accuracy (precision = 88.8%, accuracy = 88.2%,
recall = 87.3%, F-1 score = 88%, Dice index = 92.3%, and IoU = 86.3%) and correct numbering
assignment. The results demonstrated high accuracy and consistency in teeth segmentation,
achieving a significant overlap with manual segmentations. The assigned tooth numbering
was also compared with expert annotations, showing accurate and reliable numbering in
line with dental conventions.

A recent article reported the development of an advanced deep-learning approach to
improve the accuracy and efficiency of tooth segmentation in OPT [35].

The authors present the “Teeth U-Net” model based on the U-Net architecture that was
specifically designed to handle dental panoramic X-ray images and addresses the challenges
associated with tooth segmentation, including variations in tooth shapes, overlapping
structures, and image quality issues.

The authors employed a two-step approach, starting with the segmentation of context
semantics followed by contrast enhancement. This enabled the model to learn and distin-
guish between different dental structures while improving the visualization and definition
of tooth boundaries.

To evaluate the performance of the Teeth U-Net model, the researchers compared the
results obtained from their model with other existing segmentation methods, demonstrating
the superiority of the Teeth U-Net in terms of accuracy and efficiency.

The findings of the study highlight the effectiveness of the Teeth U-Net model in
accurately segmenting teeth in dental panoramic X-ray images. The accuracy, precision,
recall, Dice, Volumetric Overlap Error, and Relative Volume Difference were 98.53%, 95.62%,
94.51%, 94.28%, 88.92%, and 95.97%, respectively. The model’s ability to capture context
semantics and enhance the contrast improved the quality and reliability of tooth segmenta-
tion, thereby aiding in dental diagnosis, treatment planning, and research applications.

In a recent review, Gardiyanoglu et al. [36] explored the advantages and challenges
associated with the automatic segmentation of various dental structures from OPG from
a database of 8138 images by reviewing and comparing various automatic segmentation
methods proposed in the literature.

The images were converted into PNG files and transferred to the segmentation tool’s
database, Computer Vision Annotation Tool, for the segmentation process.

The authors included in the study, not only the segmentation of teeth but also the anal-
ysis of caries, restorations, implants, and residual roots. The calculated DSC values were
0.85 for the teeth, 0.88 for dental caries, 0.87 for dental restorations, 0.93 for crown–bridge
restorations, 0.94 for dental implants, 0.78 for root canal fillings, and 0.78 for residual roots.

The authors stated that the automatic segmentation of OPT significantly reduces the
time and effort required for the procedure, allowing dentists to focus on other aspects of
diagnosis and treatment planning. Additionally, automatic segmentation can enhance accu-
racy and consistency compared to manual segmentation, potentially improving the quality
of dental care. The ability to segment multiple dental structures simultaneously, such as
teeth, restorations, implants, and caries, further adds to the convenience of these methods.

Despite the advantages, there are several pitfalls and challenges in automatic seg-
mentation. OPG images can vary in quality, resolution, and artifacts, which can affect
the accuracy of segmentation algorithms. The presence of overlapping structures, such as
adjacent teeth or restorations, poses a significant challenge to accurate segmentation. More-
over, the diversity of anatomical variations and pathologies among individuals can make it
difficult to achieve a one-size-fits-all segmentation model. Limited annotated training data
and a lack of standardized segmentation protocols also contribute to the challenges.
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5. Limitations and Future Directions

This is a preliminary study; further research is needed to validate and improve the
robustness of the segmentation method. The inclusion of a larger and more diverse dataset,
along with additional dental structures and different pathological conditions, could enhance
the generalization and applicability of the segmentation approach. In particular, a limitation
in this sense could be the total absence in the test set of some classes of deciduous teeth
for which no performance information is available. In a future expansion of the dataset, it
would be appropriate to have a test set that covers all the available classes.

Large-scale annotated datasets and standardized evaluation metrics are required to
facilitate the development and comparison of segmentation methods.

Additionally, in future studies, exploring the combination of two-dimensional and
three-dimensional imaging modalities could further improve the accuracy and comprehen-
sive analysis of dental structures.

6. Conclusions

The automatic segmentation of dental structures from OPG images offers convenience
and potential benefits in dental practice and may have significant clinical implications in
dental identification, forensic dentistry, and treatment planning. The accurate segmentation
of teeth can help the specialist in the accurate planning of orthodontics and implantology
that are properly fitted to the patient’s effective anatomy and can become a useful tool in
everyday clinical practice.

The proposed CNN showed high accuracy.
Further research is needed to address the challenges and expand the segmentation

method’s applicability, ultimately advancing dental imaging and analysis techniques.
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36. Gardiyanoğlu, E.; Ünsal, G.; Akkaya, N.; Aksoy, S.; Orhan, K. Automatic Segmentation of Teeth, Crown–Bridge Restorations, Den-
tal Implants, Restorative Fillings, Dental Caries, Residual Roots, and Root Canal Fillings on Orthopantomographs: Convenience
and Pitfalls. Diagnostics 2023, 13, 1487. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/diagnostics12092176
https://www.ncbi.nlm.nih.gov/pubmed/36140577
https://doi.org/10.1177/09544119231157137
https://www.ncbi.nlm.nih.gov/pubmed/36803221
https://doi.org/10.3290/j.ijcd.b3840535
https://doi.org/10.1016/j.compbiomed.2022.106296
https://doi.org/10.3390/diagnostics13081487
https://www.ncbi.nlm.nih.gov/pubmed/37189586

	Introduction 
	Materials and Methods 
	Data 
	Data Annotation 
	The Model 
	Training 
	Validation and Testing 

	Results 
	Discussion 
	Limitations and Future Directions 
	Conclusions 
	References

