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Abstract: Precisely segmenting the hippocampus from the brain is crucial for diagnosing neurode-
generative illnesses such as Alzheimer’s disease, depression, etc. In this research, we propose an
enhanced hippocampus segmentation algorithm based on 3D U-Net that can significantly increase
hippocampus segmentation performance. First, a dynamic convolution block is designed to extract
information more comprehensively in the steps of the 3D U-Net’s encoder and decoder. In addition,
an improved coordinate attention algorithm is applied in the skip connections step of the 3D U-Net
to increase the weight of the hippocampus and reduce the redundancy of other unimportant location
information. The algorithm proposed in this work uses soft pooling methods instead of max pooling
to reduce information loss during downsampling steps. The datasets employed in this research
were obtained from the MICCAI 2013 SATA Challenge (MICCAI) and the Harmonized Protocol
initiative of the Alzheimer’s Disease Neuroimaging Initiative (HarP). The experimental results on
the two datasets prove that the algorithm proposed in this work outperforms other commonly used
segmentation algorithms. On the HarP, the dice increase by 3.52%, the mIoU increases by 2.65%,
and the F1 score increases by 3.38% in contrast to the baseline. On the MICCAI, the dice, the mIoU,
and the F1 score increase by 1.13%, 0.85%, and 1.08%, respectively. Overall, the proposed model
outperforms other common algorithms.

Keywords: hippocampus segmentation; dynamic convolution; attention mechanism; 3D U-Net

1. Introduction

The hippocampus is a portion of the brain located between the cerebral thalamus and
the medial temporal lobe; it is a crucial organ that is responsible for storing and organizing
memory [1]. Research on the main function and basic structure of the hippocampus is
essential for understanding the working principles of the brain and the pathogenesis of
neurodegenerative diseases and developing treatment methods. Many studies have shown
that the shape and texture of the hippocampus are related to neurodegenerative diseases
such as alzheimer’s disease (AD), epilepsy, etc. To some extent, atrophy of the hippocampus
can reflect the condition of these diseases [2,3]. Magnetic resonance imaging (MRI) is a new
medical imaging examination technique that creates high-definition images of organs and
tissues by using powerful magnetic fields and harmless radio waves [4]. MRI has become
increasingly crucial in disease diagnosis and research due to the rapid development of
neuroimaging technologies [5]. This technology can not only help clinicians detect lesions
but also provide more accurate information on the location and size of lesions, providing
significant assistance in disease diagnosis. Accurately segmenting the hippocampus from
brain MRI images and measuring its volume and morphological characteristics can provide
an essential foundation for early diagnosis, progress monitoring, and treatment evaluation
of these diseases. Thus, clinicians usually observe the shape of the hippocampus to diagnose
neurodegenerative diseases and conduct surgical planning and treatment evaluation. As a
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result, precisely segmenting the hippocampus from brain MRIs and observing its shape are
critical for disease diagnosis.

Segmenting the hippocampus from MRI images is a challenging task, as the quality
of the images may vary, the shape of the hippocampus is irregular, and the hippocampus
boundary is not distinct. Furthermore, manually segmenting the hippocampus from brain
MRIs is a professional task that needs to be carried out by experienced experts or clinicians.
Thus, accurately and automatically segmenting the hippocampus from brain MRI images
rather than manually segmenting has recently drawn a lot of attention.

MRI images are 3D data that contain more information than 2D images. Typically,
networks comprise numerous parameters and a high level of computational complexity
when processing 3D data such as MRI images, which may consume considerable compu-
tational and storage resources. A number of lightweight networks have been proposed
to reduce the network’s scale but may also limit their performance [6]. Thus, a 3D U-
Net-based segmentation model named Coordinate Attention and Dynamic Convolution
U-Net (CADyUNet) is introduced, which significantly improves the network’s performance
without expanding its scale by combining coordinate attention mechanisms and dynamic
convolution operations. We applied the CADyUNet to hippocampus segmentation tasks
and confirmed its effectiveness. The major contributions of this study are listed as follows:

• To maintain a balance between the model’s performance and scale, a dynamic convo-
lution block named dy-block is designed, which introduces new dynamic convolution
operations to substitute the normal convolution operations and spatial dropout blocks
to reduce the risk of overfitting. The dy-block can segment the hippocampus, espe-
cially its boundary, more precisely and quickly without increasing the depth of the
network, which is defined as the number of hidden layers, or the width of the network,
which is defined as the number of channels in each hidden layer;

• To improve the segmentation performance, an improved coordinate attention mech-
anism is utilized in 3D U-Net. The enhanced attention mechanism expands the
2D-suitable structure to a 3D-suitable structure and uses larger convolutional kernels
to extract spatial features, which can extract more spatial information compared to the
original mechanism;

• To preserve more important textural information and key background features, the
soft pooling method is introduced to replace normal pooling methods such average
pooling, max pooling, etc.

2. Related Work

In recent years, many researchers have segmented the hippocampus from brain MRI
images using machine learning algorithms such as k-means clustering, the watershed algo-
rithm, and the subtractive clustering algorithm [7–9]. These machine learning algorithms
can segment the hippocampus with more accuracy than manual segmentation. However,
the segmentation accuracy of machine learning algorithms is limited by image noise and
complex brain structure, which makes the segmentation performance very unstable. Re-
cently, deep learning algorithms typified by convolutional neural networks (CNNs), which
can automatically capture features, have demonstrated better advantages than machine
learning methods in the image processing field. Many studies have shown that CNNs
outperform typical semantic segmentation methods [10]. Thus, a range of deep learning
technologies are applied to the medical segmentation area, such as in retinal blood vessel
segmentation [11], brain tumor segmentation [12–15], breast cancer segmentation [16],
etc. These deep learning technologies can achieve excellent accuracy in hippocampus
segmentation tasks through large-scale dataset training.

U-Net is a broadly employed deep learning medical image segmentation algorithm.
It can integrate both global and local contextual features via the encoder and decoder,
then compensate for feature loss resulting from downsampling via skip connections [17].
Owing to U-Net’s simple structure and perfect performance, researchers have proposed
various variant networks based on U-Net for different application scenarios in recent years.
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Zhou [18] proposed UNet++ based on the UNet structure. UNet++ has more distinct scale
skip connections and improved feature concatenation methods than U-Net, enabling it to
capture targets of various scales and shapes. R2U-Net [19] is also an extension of U-Net that
introduces cyclic and residual connections to improve the network’s expression capabilities.
Other similar models based on U-Net include Res-UNet [20], MultiResUNet [21], etc. These
variant algorithms based on U-Net typically introduce attention mechanisms [22], residual
connections [20], or other new network structures to improve the algorithm’s segmentation
accuracy and robustness on different tasks and datasets. These algorithms provide impor-
tant tools for the development of medical image segmentation and make its accuracy more
accurate, faster, and more reliable.

U-Net is suitable for processing 2D but not 3D data. However, many 3D medical
images collected by electronic computed tomography (ECT), MRI, ultrasound, and other
medical imaging equipment contain more important spatial information and can provide
more comprehensive lesion information compared to 2D medical images. These 3D images
must be sliced into 2D images before being processed using U-Net, which may result in the
loss of key anatomical structure information. To address this issue, a 3D U-Net model is
designed, which is similar to U-Net in architecture [23]. The 3D U-Net, which substitutes
the 2D convolutional operations of U-Net with 3D volume convolutional operations, is
commonly used in the 3D medical image segmentation area. For instance, Mehta R et al. [24]
showed that segmenting the brain tumor using 3D U-Net can enable accurate identification
and segmentation of the brain tumor region, which contributes to the advancement of
brain tumor diagnosis. V-Net [25], UNETR [26], Swin UNETR [27], and other algorithms
have also been designed for 3D image segmentation. These 3D segmentation networks can
effectively utilize the three-dimensional information of medical images to achieve more
accurate segmentation results, helping doctors to comprehensively understand the spatial
distribution and morphological features of lesions to arrange the best treatment plans.

To segment targets with excellent precision in medical image segmentation tasks,
a network must focus on specific target information while ignoring other unimportant
information. The attention mechanism can solve this problem. There are three commonly
used types of attention: spatial attention, channel attention, and mixed attention. The
convolutional block attention modulus (CBAM) suggested by Woo S. et al. is a representa-
tive of mixed attention mechanisms; it infers attention maps in both channel domains and
spatial domains [28]. However, CBAM’s channel attention mechanism ignores feature map
positional information, and the convolution operations used in CBAM’s spatial attention
can only capture local features but not long-distance information. Thus, Qi Bin Hou et al.
suggested coordinate attention (CA), which integrates coordinate features into channel at-
tention [29]. To obtain long-distance information, CA captures it along one dimension while
retaining accurate positional information along another dimension. Attention mechanisms
can significantly increase the model’s performance. For example, the Attention U-Net [22]
introduces an attention-gating module that sets high weights for segmentation targets and
low weights for other background positions. The attention-gating module significantly
improves the performance of 3D U-Net while maintaining computational efficiency. Other
networks with attention mechanisms include SA-UNet [30] and RA-UNet [31].

3. Methodology
3.1. Improved Coordinate Attention Mechanism

The CA mechanism is added to 3D U-Net to achieve high segmentation accuracy
in this work. A diagram of the CA is displayed in Figure 1. First, the input images
are divided into a one-dimensional aggregated feature on the width dimension and a
one-dimensional aggregated feature on the height dimension by the average pooling
method. Then, the two aggregated features are concatenated together and processed by a
1 × 1 convolution block to fully learn channel-domain information. Next, the concatenated
features are split into two one-dimensional features followed by a 1 × 1 convolution block
to learn the weight of each pixel of the two aggregated features. Then, the two aggregated
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features are multiplied by one another to obtain the final attention weight. Finally, to assign
each input element a different weight value, the attention weight element is multiplied by
the correlating input element.

Figure 1. Coordinate attention [29].

Many datasets for medical image segmentation tasks comprise 3D data, providing
additional depth-dimension information compared to 2D medical images. The depth di-
mension can capture contextual information about the segmentation target along the depth
direction, which is crucial for accurately locating and segmenting targets, as it provides
the relative position and relationship between targets and surrounding structures [32].
However, the CA mechanism is designed for 2D data [29]. Therefore, 3D images must be
sliced into 2D images before being processed by the CA mechanism. Thus, an additional
depth dimension structure is added to the CA structure, and the original 2D convolution
operations are replaced by 3D convolution operations in the CA structure to process 3D
images. Furthermore, convolution operations with a kernel size of 1 × 1 can only extract
channel-domain information and ignore adjacent features in the spatial domain. There-
fore, convolution operations with kernel sizes of 1 × 1 × 3, 1 × 3 × 1, and 3 × 1 × 1 are
substitutes for the 1 × 1 convolution layers to extract spatial domain features and chan-
nel features simultaneously. The average pooling operation also loses important texture
features. Inspired by the structure of CBAM [28], the combination of average pooling and
max pooling operations is used to preserve important texture features. Figure 2 shows the
framework of the improved CA mechanism.

As shown in Figure 2, the input images are pooled into six aggregated features: three
different dimensions of aggregated features by the average pooling method and three
different dimensions of aggregated features by the max pooling method. Similar to CA,
the two aggregated features from the same dimension are concatenated together. Then,
channel- and spatial-domain features are extracted using convolutional operations with
kernel sizes of 1 × 1 × 3, 1 × 3 × 1, and 3 × 1 × 1. Finally, to adaptively refine features,
these aggregated characteristics are multiplied by the input data. In the structure of the
improved CA, the combination of average pooling operations and max pooling operations
can reduce the loss of important texture features and background information. The larger
kernel of the convolution can extract more adjacent features of the spatial domain than
convolution operations with a kernel size of 1. The improved CA mechanism is introduced
in the skip connection of 3D U-Net to improve segmentation accuracy in this research.
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Figure 2. Improved coordinate attention.

3.2. Soft Pool

Pooling operations are applied to capture the most important characteristics and
reduce feature map dimensionality after convolutional operations [33]. Specifically, the
pooling operation splits the input feature map into many regions that are not overlapping,
with each region taking a representative value (such as maximum, average, etc.) as the
output feature value. The pooling operation can decrease the model’s computational com-
plexity while retaining important information and improving its robustness. Max pooling
and average pooling are the main pooling operations in convolutional networks [34].

The max pooling method takes the maximum pixel value of the pooling region as
the output feature value, preserving the texture features of the input images but may lose
some useful background information [34]. The average pooling method computes the
mean value of pixels in each pooling region as the output value, preserving the overall
information of the image, but is more sensitive to noise than other pooling methods [34].
Thus, Stergiou A. et al. designed the soft pooling method, which calculates the weight of
each pixel in the pooling region, then multiplies each pixel by its corresponding weight, and
sums them up [35]. Soft pooling does not simply calculate the maximum or average value
of pixels in the pooling region as the representative feature but calculates the representative
feature based on the softmax weighting method [35]. Soft pooling balances the effects of
average pooling and max pooling while utilizing the beneficial characteristics of both. In
this study, to reduce the loss of important texture features in the downsampling step, the
soft pooling methods are a substitute for the max pooling methods in the downsampling of
3D UNet.

3.3. Dynamic Convolution Block

Over the years, CNN-based algorithms have made significant progress in the image
processing area. However, convolution operations use the same convolution kernel weights
for all inputs, which limits the representational capacity of the model. Thus, to increase the
complexity of the network, researchers extend the width or depth of the network, which
consumes considerable computational resources [36]. Therefore, Chen Y et al. proposed
dynamic convolution, which can considerably increase the network complexity without
expanding the model’s scale [37]. Standard convolutional operations use the same convolu-
tional kernel weight for all input images, which may lead to weak representational ability
and poor prediction for some complex input images [38]. Dynamic convolutional networks
can dynamically calculate the parameters of convolutional kernels based on input images,
thereby enabling better feature representational abilities of the model [36]. Compared
with standard convolution operations, dynamic convolution can utilize prior knowledge
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of input images to dynamically adjust convolutional kernel weights to enhance feature
representation capabilities and thereby improve model performance [38]. The calculation
process of dynamic convolution is displayed in Figure 3. In contrast to ordinary convo-
lution operations, dynamic convolution involves dynamically calculating the attention
weights of multiple parallel convolution kernels, then aggregating the attention weights
of these kernels to obtain the final kernel weights [37]. The inputs vary, and the dynamic
convolution kernel weights also change accordingly.

Figure 3. Dynamic convolution [37].

An overfitting problem occurs if the network structure is too complex or if the train-
ing data are too large. The phenomenon of overfitting means that the network performs
perfectly on the training datasets but terribly on the test datasets [39]. In order to avoid
overfitting, some regularization methods are usually added in the training phase of a net-
work, such as early stopping, batch normalization, dropout, etc. To decrease the possibility
of overfitting, the “dropout” method reduces information transmission between neural
nodes by randomly inactivating some neurons in the network during training. This method
is usually used as a regularization method for fully connected neural networks (FCNs) [40].
The datasets used in this research comprise 3D MRI images with strong spatial correlation.
A standard dropout strategy cannot effectively reduce overfitting, as the information can
still be transmitted through adjacent pixels in 3D space once a pixel is inactive [41]. Com-
pared to standard dropout, spatial dropout deactivates some channels of the 3D image
randomly, which can effectively prevent the transmission of information in the channels
and thereby reduce the possibility of overfitting. Thus, spatial dropout, as opposed to
standard dropout, is chosen as the regulation method in this work.

In this paper, a dynamic convolutional block named dy-block is designed as a sub-
stitute for the original 3D U-Net convolutional block (conv-block) to increase the model’s
representational ability. Dynamic convolution is a new form of convolution that can dynam-
ically calculate the weights of convolution kernels based on the characteristics of inputs.
Compared with standard convolutional kernels, dynamic convolutional kernels have prior
knowledge of inputs and can extract features with stronger ability. The dy-block designed
in this work has better feature representational capabilities compared to the conv-block
of 3D U-Net. The framework diagrams of the conv-block and the dy-block are shown
in Figure 4. The dy-block includes a dynamic convolutional layer to extract features, a
batch normalization layer to speed up the convergence of the 3D U-Net, a ReLU layer to
enhance the nonlinear representation ability, and a spatial dropout layer to reduce the risk
of overfitting. Compared to the framework of the original conv-block, the dy-block can
significantly increase target segmentation accuracy without expanding the model’s depth
or width.
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Figure 4. Conv-block and dy-block.

3.4. CADyUNet Architecture

The proposed CADyUNet consists of three separate components: the encoder, the
decoder, and the skip connections. The framework of CADyUNet is displayed in Figure 5.

Figure 5. The proposed CADyUNet.

The CADyUNet encoder, which contains four encryption blocks, is used to capture
image features. Every encryption block contains a dy-block and a conv-block to increase the
representational capacity of the proposed CADyUNet. Each encryption block is followed
by a downsampling layer, which uses the soft pool method to preserve critical information,
with the exception of the last encryption block.

The decoder of CADyUNet is used to recover image pixels, including three decryp-
tion blocks, each consisting of a conv-block and a dy-block. The images processed by a
decryption block are transmitted to an upsampling layer to restore the image pixels. Then,
through the skip connection structure, the recovered images are concatenated with images
of corresponding sizes coded by the encoder stage.

The skip-connection structure of CADyUNet is combined with an improved CA mech-
anism. The shallow features captured by the encoder are recoded through the improved
CA block before being transmitted to the decoder in the skip connection. The improved
CA mechanism recodes the data and sets different location pixels to different weights. The
pixels at the location of the hippocampus are set to high weights, and the other background
location pixels are set to low weights. The improved CA mechanism proposed in this work
can significantly increase hippocampus segmentation accuracy.
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The last layer of CADyUNet is a convolutional operation with a kernel size of
1 × 1 × 1, which restores the image’s number of channels to 1. Additionally, to conserve
computing resources, the number of channels in CADyUNet is decreased by four times
compared to the number of channels in 3D U-Net in this study.

The designed CADyUNet is an automatic hippocampus segmentation network sim-
ilar in architecture to 3D U-Net. In the structure of CADyUNet, dynamic convolution
operations with stronger feature extraction capabilities are introduced in the encoding and
decoding steps. The introduction of dynamic convolution greatly increases the network’s
performance without increasing its depth or width. In addition, enhanced CA mechanisms
are introduced in each skip connection so that shallow features are recoded with different
weights. Finally, soft pooling methods are used in each downsampling layer of CADyUNet,
which can greatly reduce the loss of important information.

4. Experiment and Analysis
4.1. Datasets

In our work, two datasets are used: the MICCAI 2013 SATA Challenge (MICCAI)
dataset and the Harmonized Protocol initiative of the Alzheimer’s Disease Neuroimaging
Initiative (HarP) [42]. The MICCAI contains 35 groups of T1-weighted images in the
training set and 12 groups in the testing set; every training image has its own corresponding
multi-atlas label. Every image in this dataset is in NIFTI format, and both images and labels
are 256 × 256 × 287 pixels, with a voxel spacing of 1 × 1 × 1 pixels. The MICCAI dataset can
be accessed publicly at https://my.vanderbilt.edu/masi/workshops/ (accessed on 15 April
2023). The HarP contains 135 groups of T1-weighted MRI images and their corresponding
hippocampus labels. All of the images and labels have a voxel size of 1 × 1 × 1 pixels
and a resolution of 197 × 233 × 189 pixels. The HarP dataset can be accessed publicly at
http://www.hippocampal-protocol.net (accessed on 23 March 2023).

For convenience of display, the segmentation labels are mapped in the original images
with the same resolution between the raw MRI image and its hippocampus segmentation
label in the HarP and the MICCAI datasets. We set the corresponding hippocampus label
pixel in the original MRI image to a specific value to represent the hippocampus, and other
non-hippocampus pixels were kept unchanged to distinguish them from the hippocampus.
The visualization segmentation results of the HarP and MICCAI datasets are displayed in
Figures 6 and 7, respectively. The area with a red pixel represents where the hippocampus
is located, and other pixel values are non-hippocampus areas.

Figure 6. Three different dimensional slices of the hippocampus segmentation labels on the HarP
dataset.

Figure 7. Three different dimensional slices of the multi-atlas labels on the MICCAI dataset.

https://my.vanderbilt.edu/masi/workshops/
http://www.hippocampal-protocol.net
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4.2. Evaluation Indicators

Comparison of each element of the output results with the corresponding label’s
element shows that if a positive element of the segmentation is correctly predicted as a
positive element, then the element is classified in the true-positive (TP) category. A negative
element is classified in the false-positive (FP) category when it is falsely predicted as a
positive element. The opposite is the case for elements that are divided into the false-
negative (FN) and true-negative (TN) categories. The dice, the mIoU, and the F1 are then
calculated according to the four variables to measure the model’s effectiveness in this study.
The formulas of these indicators are displayed below; among them, the F1 is determined
by precision and recall.

Dice =
2 ∗ TP

FP + 2 ∗ TP + FN
. (1)

mIoU =
1

k + 1

k

∑
i=0

TP
FP + TP + FN

. (2)

Precision =
TP

TP + FP
. (3)

Recall =
TP

TP + FN
. (4)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
. (5)

4.3. Implementation Details

The segmentation labels of the MICCAI dataset are multi-atlas, including 15 different
labels, such as amygdala, caudate, hippocampus, etc. Howerver, in this work, only the
labels of the hippocampus are useful. Thus, the segmentation labels of the hippocampus
are first separated from the multi-atlas MRI images of the MICCAI. The processed MICCAI
labels are displayed in Figure 8.

Figure 8. Three different dimensional slices of the hippocampus segmentation labels on the MICCAI
dataset.

To reduce computation and conserve resources, the MICCAI dataset and the HarP
dataset are cropped to 64 × 64 × 96 pixels with the hippocampus preserved. Because the
datasets are too small, some commonly used data augmentation strategies that do not cause
MRI resolution change or MRI distortion, such as random flipping and random rotation,
are used to expand the two datasets. Random flipping makes the model learn hippocampus
features in a broader direction, and random rotation improves the recognition ability of
the model for the hippocampus at different angles. The HarP dataset is expanded from
135 groups to 540 groups. Among them, 400 groups are used for training, and 140 groups
are used for validation. The MICCAI dataset is expanded from 35 groups to 140 groups.
Among them, 100 groups are used for training, and 40 groups are used for validation.

In this research, the dice loss and the binary cross-entropy loss are combined for the
loss function.The Adam optimizer with a weight decay of 0.0001 is utilized. The model is
trained multiple times with different values of hyperparameters, and the results of each
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training step are recorded. Finally, the hyperparameter settings with the best performance
are obtained. The spatial dropout rate is 0.1, and the early stopping epoch is set to 20. The
hyperparameters used in the HarP experiment include a learning rate of 0.01, a batch size
of 16, and a total of 50 epochs. The learning rate for the MICCAI dataset is set to 0.005, the
batch size is set to 4, and the number of epochs is set to 50. The proposed CADyUNet is
based on Pytorch, and all experiments in this research were performed on two NVIDIA
Tesla GPUs, each with 14.8 GB of memory.

4.4. Experimental Results

To demonstrate the efficacy of CADyUNet on hippocampus segmentation tasks, some
commonly used medical image segmentation models are selected to conduct comparison
experiments on the HarP and MICCAI datasets, including 3D U-Net, Attention U-Net,
UNETR, Swin UNETR, and our proposed model. The dice, the mIoU, and the F1 were used
to analyze the experimental results. Tables 1 and 2 display the results of the contrastive
experiment on the HarP and MICCAI datasets, respectively.

Table 1. Contrastive experimental results on the HarP dataset.

Model Year Dice mIoU F1

3D U-Net 2016 0.8428 0.8628 0.8439
Attention U-Net 2018 0.8507 0.8687 0.8516

UNETR 2022 0.8322 0.8544 0.8327
Swin UNETR 2022 0.8667 0.8799 0.8659

Ours 2023 0.8780 0.8893 0.8777

Table 2. Contrastive experimental results on the MICCAI dataset.

Model Year Dice mIoU F1

3D U-Net 2016 0.8586 0.8741 0.8593
Attention U-Net 2018 0.8608 0.8764 0.8623

UNETR 2022 0.8092 0.8387 0.8124
Swin UNETR 2022 0.8572 0.8730 0.8580

Ours 2023 0.8699 0.8826 0.8701

As demonstrated by Tables 1 and 2, CADyUNet segments the hippocampus more
accurately in the hippocampus segmentation task compared to other models. Compared to
the baseline, the dice on the HarP dataset rose by 3.52%, the mIoU rose by 2.65%, and the F1
rose by 3.38%. On the MICCAI dataset, the dice, mIoU, and F1 score rose by 1.13%, 0.85%,
and 1.08%, respectively. The results illustrate the efficacy of CADyUNet in hippocampus
segmentation tasks.

To show the hippocampus segmentation results of these algorithms more conveniently,
the sagittal section, coronal section, and axial section segmentation results are provided in
Figures 9, 10, and 11, respectively.

Figure 9. The sagittal section of the label on the HarP dataset and the sagittal section of the output
from 3D U-Net, Attention U-Net, UNETR, Swin UNETR, and CADyUNet models.
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Figure 10. The conoral section of the label on the HarP dataset and the conoral section of the output
from 3D U-Net, Attention U-Net, UNETR, Swin UNETR, and CADyUNet models.

Figure 11. The axial section of the label on the HarP dataset and the axial section of the output from
3D U-Net, Attention U-Net, UNETR, Swin UNETR, and CADyUNet models.

The first column shows sections of the three dimensions of the input MRI image (axial,
sagittal, and coronal), along with the corresponding hippocampus segmentation labels.
The 3D U-Net segmentation results are displayed in the second column. The segmentation
results obtained by the Attention U-Net, UNETR, Swin UNETR, and CADyUNet models
are shown in the third, fourth, fifth, and last columns, respectively. As illustrated in these
figures, in contrast to the outputs of other algorithms, the outputs of the CADyUNet model
are closer to the standard segmentation labels (particularly for marginal hippocampus
segmentation), which proves the efficacy of CADyUNet in hippocampus segmentation
tasks.

To show the model’s efficacy more comprehensively, the Params, GFLOPs (giga
floating-point operations), and FPS (frames per second) are also used to evaluate the
model’s performance. The experimental results are presented in Table 3. As shown in
Table 3, the proposed CADyUNet significantly reduces the model’s memory usage and
computation usage while greatly increasing its inference speed compared with other
models. The results presented in Tables 1–3 show that CADyUNet has better segmentation
accuracy and uses the fewest computing resources on hippocampus segmentation tasks,
which proves the superiority of our model.

Table 3. Performance comparison results on the HarP dataset.

Model Params (M) GFLOPs (G) FPS (img/s)

3D U-Net 20.96 507.85 0.08
Attention U-Net 103.89 516.94 0.07

UNETR 92.29 32.25 0.84
Swin UNETR 15.51 37.48 0.18

Ours 1.05 24.18 0.78

To identify the efficacy of the designed dy-block, the improved CA, and the introduc-
tion of the soft pool method in hippocampus segmentation tasks, five models are chosen
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to conduct ablation experiments on the HarP dataset and the MICCAI dataset: 3D U-Net,
3D U-Net + CA, 3D U-Net + improved CA, 3D U-Net + dy-lock, 3D U-Net + softpool, and
CADyUNet. To preserve computing resources, the number of channels is reduced by four
times based on the number of channels in the 3D U-Net model. Furthermore, the results of
the ablation experiment are presented in Tables 4 and 5. Several useful conclusions can be
drawn from the results.

1. All of the indicators increase as a result of the improved CA mechanism being used
in 3D U-Net’s skip connection. Furthermore, introducing the improved CA mecha-
nism in 3D U-Net results in better performance than introducing the CA mechanism,
demonstrating that the improved CA mechanism extracts more texture and back-
ground information through larger convolution kernels, as well as the mix of max-pool
and average pool methods compared to the CA mechanism.

2. The introduction of the CA mechanism into the skip connection of 3D U-Net resulted
in almost no increase in any of the indicators, indicating that the CA mechanism
extracts many useless and redundant features to combine with the deep information
result from the decoder, with a negative influence on the hippocampus segmentation
accuracy in this work.

3. The introduction of the proposed dy-block in 3D U-Net leads to all the indicators
significantly increasing because the use of dynamic convolution operations in the
dy-block strengthens its representational ability compared to standard convolutional
operations in the conv-block. In addition, the introduction of the softpool method
greatly improves the model’s segmentation performance because the softpool causes
less information loss in the downsampling steps compared to other commonly used
pooling methods.

Table 4. Results of the ablation study on the HarP dataset.

Model Dice mIoU F1

3D U-Net 0.8643 0.8779 0.8635
3D U-Net + CA 0.8632 0.8776 0.8630

3D U-Net + improved CA 0.8680 0.8807 0.8669
3D U-Net + softpool 0.8684 0.8815 0.8679
3D U-Net + dy-block 0.8752 0.8867 0.8745

CADyUNet 0.8780 0.8893 0.8777

Table 5. Results of the ablation study on the MICCAI dataset.

Model Dice mIoU F1

3D U-Net 0.8568 0.8734 0.8584
3D U-Net + CA 0.8602 0.8756 0.8612

3D U-Net + improved CA 0.8624 0.8771 0.8632
3D U-Net + softpool 0.8586 0.8743 0.8596
3D U-Net + dy-block 0.8684 0.8816 0.8688

CADyUNet 0.8699 0.8826 0.8701

5. Conclusions

The hippocampus can reflect neurodegenerative conditions such as AD. However,
the volume of the hippocampus is too small to segment accurately using U-Net. To deal
with this problem, CADyUNet, a hippocampus segmentation model based on coordinate
attention and dynamic convolution, is recommended. An improved coordinate attention
mechanism is designed to reduce information loss and retain more critical texture details.
The improved coordinate attention mechanism is introduced into 3D U-Net so that the
network focuses on important features and suppresses redundant features. Additionally, a
dynamic convolution block called dy-block is introduced to replace the ordinary convolu-
tional block in 3D U-Net, which greatly increases the representational capability without
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expanding the network’s width and depth. Furthermore, the soft pooling method is used
instead of max pooling to reduce information loss during downsampling. The experimental
results obtained on the HarP and MICCAI datasets show that CADyUNet outperforms all
other models on all metrics in comparison to the baseline, demonstrating the superiority of
CADyUNet in hippocampus segmentation tasks.

6. Discussion

Compared with existing medical image segmentation algorithms, our model achieves
higher accuracy and faster inference speed and uses fewer computational resources in
hippocampus segmentation tasks, which indicates that it has potential clinical value in the
medical imaging field. For example, it can be used to assist clinicians in the diagnosis and
evaluation of hippocampus lesions, as well as the quantitative analysis of hippocampus
structure in neuroscience research. However, there are some shortcomings associated with
our research, one of which is the inadequacy of the datasets. Due to the limitations of MRI
image collection and hippocampus labeling, we can only use a limited number of MRI
images for training and evaluation, which may limit the model’s generalizability to broader
datasets. The second limitation is the fixed size of the training data. Fixed-size training
data may not fully cover hippocampus of different sizes and shapes. Thus, we propose
some possible methods for future work. First, more hippocampus images can be collected
labeled accurately to expand the dataset. Second, for hippocampus with different sizes, the
introduction of adaptive segmentation methods should be considered so that the model
can adapt to different sizes of images. In future work, we intend to solve these problems
then apply the method in practice.
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