
Citation: Clarke, R.; McGuire, L.;

Baza, M.; Alsabaan, M. Online Voting

Scheme Using IBM Cloud-Based

Hyperledger Fabric with

Privacy-Preservation. Appl. Sci. 2023,

13, 7905. https://doi.org/

10.3390/app13137905

Academic Editor: Gianluca Lax

Received: 17 May 2023

Revised: 27 June 2023

Accepted: 28 June 2023

Published: 5 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Online Voting Scheme Using IBM Cloud-Based Hyperledger
Fabric with Privacy-Preservation
Ross Clarke 1, Luke McGuire 1 , Mohamed Baza 1,* , Amar Rasheed 2 and Maazen Alsabaan 3

1 Department of Computer Science, College of Charleston, Charleston, SC 29424, USA;
clarkerp@g.cofc.edu (R.C.); mcguirel@g.cofc.edu (L.M.)

2 Department of Computer Science, Sam Houston State University, Huntsville, TX 77341, USA;
axr249@shsu.edu

3 Department of Computer Engineering, College of Computer and Information Sciences, King Saud University,
P.O. Box 51178, Riyadh 11543, Saudi Arabia; malsabaan@ksu.edu.sa

* Correspondence: bazam@cofc.edu

Abstract: The current traditional paper ballot voting schemes suffer from several limitations such
as processing delays due to counting paper ballots, lack of transparency, and manipulation of the
ballots. To solve these limitations, an electronic voting (e-voting) scheme has received massive interest
from both governments and academia. In e-voting, individuals can cast their vote online using their
smartphones without the need to wait in long lines. Additionally, handicapped voters who face
limited wheelchair access in many polling centers could now participate in elections hassle-free.
The existing e-voting schemes suffer from several limitations as they are either centralized, based
on public blockchains, or utilize local private blockchains. This results in privacy issues (using
public blockchains) or large financial costs (using local/private blockchains) due to the amount
of computing power and technical knowledge needed to host blockchains locally. To address the
aforementioned limitations, in this paper, we propose an online voting scheme using IBM cloud-based
Hyperledger Fabric. Our scheme allows voters to cast their encrypted votes in a secure manner.
Then any participant can obtain the ballot results in a decentralized and transparent manner, without
sacrificing the privacy of individual voters. We implement the proposed scheme using IBM cloud-
based Hyperledger Fabric. The experimental results identify the performance characteristics of our
scheme and demonstrate that it is feasible to run an election consisting of thousands of participants
using cloud-based Fabric.

Keywords: electronic voting; blockchain; smart contract; hyperledger fabric; privacy; hyperledger
caliper

1. Introduction

The democratic election process is a critical component of governance for systems
ranging from small local governments and corporations to major national and international
organizations. Democracies rely on the election process to give an equal voice to each
of their members or citizens; however, traditional election schemes consisting of paper
ballots are flawed in several ways. Firstly, traditional paper ballot elections require voters
to visit physical polling centers. Many of these polling locations are not designed to
ensure fair and equal access to all. For example, long lines and limited wheelchair access
discourage voters from participating [1]. Secondly, traditional paper ballot elections do not
scale well for large voter populations so it can take days or weeks for election results to
be processed. Thirdly, traditional ballot elections are difficult to audit for manipulation.
Traditional elections typically rely on third parties to perform poll-watching or conduct
surveys (i.e., exit polling) to identify inconsistencies and increase public trust of the election
results. However, these methods fail to produce perfect traceability of elections and can

Appl. Sci. 2023, 13, 7905. https://doi.org/10.3390/app13137905 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137905
https://doi.org/10.3390/app13137905
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0008-4343-5676
https://orcid.org/0000-0001-5153-8693
https://orcid.org/0000-0001-8601-3184
https://doi.org/10.3390/app13137905
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137905?type=check_update&version=2

Appl. Sci. 2023, 13, 7905 2 of 19

themselves be corrupted [2]. The difficulty of maintaining trust and accountability in
elections increases for large elections where thousands of individuals are relied upon and
can act maliciously or make consequential mistakes. As a result the chances of lost or
falsified ballots increases [3].

To solve these issues, governments, academic researchers, and private companies
have proposed moving to an electronic voting (e-voting) scheme [4]. E-voting is a voting
process in which voters can submit their votes using computers or even smart phones
without the need of traditional paper ballots [4]. E-voting aims to solve the aforementioned
issues by allowing anyone including people who struggle with mobility due to age or
disability to vote safely and conveniently from their homes. In addition, e-voting schemes
can save time tallying votes [5]. Moreover, an e-voting scheme can provide more secure
and accountable elections by introducing logging schemes as a countermeasure to prevent
fraudulent behavior and vote manipulations. Unlike paper ballots, e-voting can allow
for the automated generation of immutable audit trails that can be leveraged to validate
election integrity.

While e-voting schemes have the potential to solve issues associated with traditional pa-
per ballot elections, the majority of the current e-voting schemes rely on a central third party to
run the election [6–8]. This makes them vulnerable to single-point-of-failure attacks as well as
privacy concerns of submitted votes by both internal and external attackers [9–11]. They are
vulnerable to distributed denial of service (DDoS) and Sybil attacks launched by malicious
users and external attackers. To address the limitations of centralized e-voting schemes,
many researchers have proposed using the blockchain to host an e-voting scheme [12–18].
The blockchain technology, at its core, contains a ledger, or transaction history, that fol-
lows an append-only scheme. Due to the immutable structure of the ledger, the use of
a blockchain would naturally deter vote tampering and manipulation. This is because
previous votes written to the ledger cannot be overwritten or changed. A set-in-stone
timeline is created as the election takes place, recording every encrypted vote and action
taken on the blockchain.

However, the majority of existing implemented blockchain-based voting schemes
are based on public blockchains, which could result in privacy issues as the votes are
easily available to the public if additional measures such as vote encryption are not im-
plemented [16]. In [5,17], the Ethereum blockchain is used, which posts votes publicly,
providing no election privacy. While [17] utilizes encryption of votes to protect voter
privacy, [5] provides no such safeguard. This transparency sacrifices privacy to allow for
an easily auditable scheme. In [19], homomorphic encryption is used to protect the ballots.
The organizer can verify the ballot when tallying the votes without obtaining any details
about the content of the ballot. However, the scheme suffers from high computation and
communication overheads due to the time and computational power required to aggregate
homomorphic encrypted ballots and to decrypt the large ciphertexts that were produced
by the scheme.

In this paper, we propose an electronic voting scheme using IBM Cloud-based Hy-
perledger Fabric. We opt to develop our e-voting scheme using the Hyperledger Fabric
blockchain for two main benefits. Firstly, Hyperledger Fabric is a private blockchain, mean-
ing only identified nodes can participate in the network, and these known participants can
access the data stored on each block. Secondly, using IBM cloud-based Hyperledger Fabric
removes the burden needed to set up and run a private local blockchain. Self-hosting a
private blockchain requires thousands of dollars worth of hardware and a great wealth of
technical knowledge to set up and maintain [20]. Our developed scheme is unique, as most
existing works depend on using public or locally-hosted blockchains to run an e-voting scheme.
Moreover, ours is not a costly solution, as elections only run on a scheduled basis, e.g., once
a year or once every four years [12,13,15,21–23]. Our proposed e-voting scheme allows
small businesses and governments alike to run an election in a decentralized, transparent,
and secure manner.

Appl. Sci. 2023, 13, 7905 3 of 19

We developed a custom smart contract with four custom attributes to drive all of the
functionality required to host an election. The smart contract handles the creation of the
election, registering of voters, casting of votes, and tallying of votes. In our voting scheme,
the blind signature cryptoscheme is leveraged so that voters can obtain anonymous voting
tokens so they can cast their votes to the blockchain while maintaining the privacy of their
real identity, which is not shared with the network. To evaluate our proposed scheme,
we have used Hyperledger Caliper to measure and evaluate the performance in terms of
throughput, latency, and error rate. The results indicate that the use of the IBM Cloud
to remotely host a blockchain-based e-voting scheme is feasible and scalable to elections
involving 10,000 voters.

The rest of this paper is organized as follows. In Section 2, we perform a literature
review and discuss related works. Next, in Section 3, we present the considered scheme
model followed by the design goals of our proposed scheme. Section 4 gives an overview of
the preliminaries used in our paper. Section 5 discusses the considered blockchain design
and our developed smart contract. In Section 6, we present the performance evaluations of
our proposed scheme. An analysis of the proposed scheme is given in Section 7. Finally,
we give concluding remarks in Section 8.

2. Related Work

In this section, the literature review is provided for e-voting schemes. Table 1 provides
a comparison between our scheme and existing e-voting schemes.

Table 1. A summary comparison between our scheme and existing e-voting schemes. Note:
√

shows
a functionality a realized feature;© shows a (partially) realized function by relying on a central trust
× is an unrealized feature. (Author’s own processing).

Architecture Election
Privacy

Identity
Privacy

Easy for
Voters to

Audit Results

Implemented
Performance
Evaluation

Affordable

Current Paper Ballot scheme 1 Centralized × © ×
√

×
Hanifatunnisa et. al. [5] Hybrid × © ×

√
×

Liu and Wang: [12] Blockchain ×
√ √

× ×
Hjálmarsson et al. [13] Blockchain (public) × ×

√
× ×

Seifelnasr et al. [17] Blockchain (public) ×
√ √ √

×
Our scheme Blockchain (private)

√ √ √ √ √

1 https://www.blablacar.com/.

E-Voting In Industry. In [24], Specter et al. analyze the first blockchain-based
e-voting scheme used by a state in its general elections, Voatz. The app used in this
scheme was found to contain severe security flaws such as requirements of weak pass-
words, easily bypassed anti-virus, and an API that can take full control of a user’s device.
In addition, voter’s choices could be deduced via a side-channel attack.

Score Voting. In [25], Yang et al. present a distributed scored voting scheme that uses
a novel dual zero-knowledge proof to preserve privacy. Each component of the crypto
scheme is performance tested locally using Charm, then the scheme is benchmarked locally
on the Ethereum blockchain to determine average costs. Unlike our scheme, all scheme
testing was conducted locally.

Self-Tallying. In [26], Lin et al. present a complete self-tallying e-voting protocol
based on [27]. Minimal performance testing was conducted. The authors present the
average time for proving and verifying a single vote, but no testing of scale is shown.
In [28], Li et al., propose a modification of [27,29] to deliver a scheme model of self-tallying
voting schemes based on blockchain in decentralized IoT. The scheme is performance
tested, but scalability is capped to only 12 voters. In [30], Li et al. propose and implement a
traceable self-tallying e-voting protocol using a homomorphic time-lock puzzle to provide
self-tallying. However, both on-chain and off-chain performance testing was limited to less
than 10 voters, showing minimal scale for the scheme.

https://www.blablacar.com/

Appl. Sci. 2023, 13, 7905 4 of 19

Blockchain Based E-Voting schemes. In [21], Onur et al. propose a blockchain-based,
ranked-choice election protocol on the public Ethereum blockchain. While performance
testing was only implemented locally using Hardhat, virtualized scalability was demon-
strated up to 10,000 voters. Result verification through Merkle Tree generation was demon-
strated up to 100,000 voters, but no election scheme functions were tested at this scale.
In [31], Han et al. propose and implement a blockchain-based self-tallying voting scheme
with software updates in decentralized IoT. The authors tested the voting scheme using a
Raspberry Pi device to simulate an IoT device, but did not test the update integration. In
addition, the testing only included up to 100 voters. In [32], Mukherjee et al. present a
framework to be used for blockchain-based elections, but no implementation beyond broad
software architecture concepts is discussed. Since no implementation is shown, there are
also no performance metrics for the proposal.

On-Chain Voting schemes. E-voting schemes that utilize the blockchain for the con-
duction of the voting process require more resources, but allow for a more open, transpar-
ent voting process. In [12,13,15,22,23], the election process logic exists entirely on-chain.
In [13,22], no encryption is used to protect voter identities. In addition, the Rinkeby
Network, a private but widely used blockchain, is used which poses privacy concerns.
While Koç et al. conducted performance testing on their scheme, they failed to show any
scalability beyond four voters. In [12,13,15,23], no performance testing or scalability is
shown. Without performance testing, it is impossible to conclude if the proposed system is
a feasible solution at any scale. In [15], some votes have the chance of going uncounted if
they are cast at the same time. Ref. [13] relies on multiple nodes representing each voting
district, which establishes a significantly high cost to scale. Ref. [12] allows the viewing of
vote totals before casting a ballot, which could lead to voter manipulation and sway.

Blockchain as Vote Storage. To combat the high resource cost of utilizing blockchain
as a voting solution, some proposed schemes simply leverage a blockchain as a database
to store votes, but these solutions rely on traditional ballot casting, which can lead to
vote manipulation as well as other forms of voter fraud. Refs. [5] utilize blockchain to
store votes or vote counts, but still rely on traditional polling centers for ballot casting.
Refs. [5] rely on traditional paper ballots at polling centers. In addition, no individual
votes are stored on the blockchain, only vote totals from each polling center, allowing for
fraud and vote manipulation on the local level at polling centers. Ref. [5] only verifies
polling locations, and not individual voters. This passes the reliance of voter verification to
unreliable traditional methods.

The main advantages to our approach compared to the previous proposals are
as follows:

• Our scheme hosts all aspects of the election on the blockchain, allowing for an entirely
remote election to take place. This aspect allows for remote voters to still have their voice
heard. Since our scheme aims to address the requirement for secure online voting beyond
national presidential elections, a fully remote voting system is necessary. This is particularly
relevant as numerous companies that wish to conduct internal elections or employee surveys
have implemented a ’work-from-home’ policy for their employees. Without the need for a
polling center, geographically distributed voters who would otherwise be unable to attend
an election can have their voices heard.

• Our scheme utilizes the IBM Cloud infrastructure to host the latest version of the Hy-
perledger Fabric blockchain. By hosting the private blockchain in the cloud, managing
and hosting elections requires less physical hardware and resources. In addition, the
IBM cloud provides a scalable “pay as you go” platform, allowing elections of any
size to be hosted by our scheme.

• Our scheme has been implemented and tested, allowing for the collection of perfor-
mance metrics. This implementation proves that the conceptual ideas proposed for
our blockchain e-voting scheme are able to be put into action. These performance
metrics showed us that our scheme, when hosted on the IBM Cloud with minimum

Appl. Sci. 2023, 13, 7905 5 of 19

required cost, is easily scalable up to 10,000 voters. In addition, these performance
metrics reflect expected results from [33].

3. Scheme Model

In this section we first describe the considered scheme model, followed by the threat
model, and finally the design goals that we established.

3.1. Scheme Model

As depicted in Figure 1, the considered network model has the following entities.

1- Obtaining Anonymous

OrganizerVoters

Hyperledger
Fabric blockchain

3-Casting votes

 anonymously
2- Submitting

the chain code

credentials

Figure 1. Illustration of our considered scheme model. (Author’s own processing).

• Blockchain Network. The private Hyperledger Fabric blockchain hosted on IBM’s
cloud infrastructure. The Hyperledger Fabric requires the use of a minimum of three
peers: an endorser peer, which utilizes the smart contract to write new transactions;
an orderer, which verifies the new transaction and writes it to a new block on the
blockchain; and the committer, which checks the validity of all transactions on the
blockchain and writes valid transactions to the ledger. Our blockchain network utilizes
a voter peer, which utilizes our developed smart contract to write our transactions
(any action taken within the election), and an orderer, which verifies and writes each
transaction. Each of these peers act also as the committers for our network. In a
production environment, additional peers can be added to act solely as committers,
funds permitting. In accordance with [34], our organization and orderer have separate
Certificate Authorities (CA). Hyperledger Fabric utilizes certificate authorities to
identify each peer and define each functionality. If additional peers are added solely
as committers, a third CA is required; however, all additional committer-only peers
can share the third CA.

• Voters. The voter is an entity that can cast votes to the ballot. Note that voters do not
maintain a whole copy of the ledger; but they can run the scheme using lightweight
nodes, which lets them communicate with the network, read from the blockchain
and submit transactions [35]. In our scheme, we implemented a preferential voting
scheme; so, when casting a vote, the voters rank three candidates to receive vote payouts.
The candidate selected first receives three votes, the second receives two votes, and the
third one vote.

• Organizer. This is the organization hosting the election, such as small businesses, states
and governments, etc. Specifically, the organizer is represented by a person in the
IT department who has the technical skills to set up a blockchain environment on
the IBM Cloud Platform. The organizer’s main duty is to initiate the election, e.g.,
defining the candidates’ names and configuring the blockchain on the IBM Cloud by

Appl. Sci. 2023, 13, 7905 6 of 19

defining the nodes necessary to be used to carry out the election, creating the channels
between the nodes, and uploading/initializing the packaged smart contract.

3.2. Threat Model

Since attacks may come from both internal and external attackers, this work is fol-
lowing the blockchain threat model given in [36], where the blockchain is trusted for
immutability and availability but not designed to maintain privacy. Therefore, we assume
that both the organizer and the blockchain are honest-but-curious, meaning they correctly
run the voting scheme but also aim to infer voters’ sensitive information. Therefore, the
blockchain shall not know any information about the voters’ votes other than the election
results, i.e., the total number of votes per candidate.

We consider threats that may come from some of the blockchain validators/miners
who could misbehave with the aggregated data. In other words, blockchain validators may
try to modify the votes of legitimate voters’ votes (i.e., double counting votes twice) before
aggregating the total votes by double counting votes to give a candidate more votes than their
actual vote count.

Finally, existing works depend on voters’ anonymity to protect voter’s privacy; how-
ever, internal attackers can link voters’ pseudonyms to their real identities by snooping
their messages generated from their IP addresses.

3.3. Design Goals

Based on the considered threat assumptions and to ensure security and privacy against
internal and external attackers, our design goals for our scheme are laid out as follows:

• The proposed e-voting scheme should neither rely on a central entity to run the election
nor require certain infrastructure to set up a private blockchain network. Central
entities are vulnerable to a single-point-of-failure or attack. Our goal is to develop and
implement the scheme using an open source blockchain platform and cloud-based
infrastructure to avoid hardware costs required to host a private blockchain.

• The proposed scheme should protect voters’ privacy by ensuring the following:
(i) Only authenticated voters should be able to cast their votes to the ballot while
protecting their real identities from being revealed or tracked. (ii) Since anonymity
alone is not sufficient to ensure voters’ privacy against internal attackers who can
link voters’ pseudonyms to their real identities by knowing their IP addresses, the
proposed scheme should withstand such eavesdropping attacks by making it difficult
to determine the exact selection of a specific voter.

• The scheme should also resist any fraud or manipulation attacks that would give
preference to specific candidates over others. For example, blockchain nodes or
internal attackers may try to replay legitimate voters’ votes or recorded transactions
on the blockchain to give a candidate more votes than their actual vote count. In other
words, authenticated voters can cast their encrypted votes, and the blockchain nodes
can only compute the number of votes per candidate correctly.

Finally, one primary goal of this work is to evaluate the efficacy of developing the blockchain-based
e-voting scheme on top of IBM cloud-based infrastructure in terms of throughput and scalability.

4. Preliminary Background
4.1. Blind Elliptic Curve DSA Signatures

In this cryptoscheme, a user checks if a signature on a message M is valid from
the signer while hiding M from the signer. In our voting scheme, the blind signature
cryptoscheme in [37] is leveraged so that voters can obtain anonymous voting tokens so
they can cast their votes to the blockchain while keeping their real identity private. The
aforementioned cryptoscheme is used because it is efficient in terms of computations with
shorter signatures and it contains the following steps:

Appl. Sci. 2023, 13, 7905 7 of 19

1. All parties are assumed to use an elliptic curve of order n with generator G. P = d·G
is the signers’ public key, where d ∈ Z∗n is the private key.

2. The signer first selects a random element k ∈ Z∗n and then he/she sends R = k·G to
the requester.

3. Then, the requester selects the following random elements γ, δ ∈ Z∗n to compute
A = R + γ·G + δ·P. Let x be the x-coordinate of point A, and t = x mod n. The re-
quester then computes c = H(M||t) mod n and sends c′ = (c− δ) mod n to the signer.
H(·) is a cryptographically secure hash function, and H : {}∗ −→ Z∗n.

4. The signer then computes s′ = (k− c′·d) mod n and sends the result back to the requester.
5. The requester then computes s = (s′ + γ) mod n and the signature of M is stored

as (s, c). Finally, to validate the signature, the verifier calculates A = c·P + s·G.
Then, t = x mod n is computed, where x is the x-coordinate of point A. The verifier

verifies if c ?
= H(M||t) mod n.

4.2. Verifiable Aggregator Oblivious Encryption

Aggregator oblivious encryption cryptoscheme enables the computation of aggregated
data M of n users’ individual data in a privacy-preserving way by an untrusted aggregator.
The main idea is that a user i encrypts a message mi and sends the ciphertext ci to the aggregator.
Then, the aggregator computes the sum M = ∑n

i=1 mi from {ci}i∈[1,n]. On the other hand,
verifiable aggregator oblivious encryption [38] ensures the correctness of the aggregated data.
In this cryptoscheme, the user i computes a tag σi in addition to ci, and the aggregator generates
a publicly verifiable proof σ from {σi}i∈[1,n] that proves the correctness of M. Note that ensuring
the correctness of the aggregated data is very critical in a voting scheme to ensure a fair ballot,
and the results of the ballot reflect the voters selections. In our scheme, we employ verifiable
aggregator oblivious encryption to make sure that blockchain nodes cannot manipulate the ballot
results by, for example, counting multiple votes for the same voter. The verifiable aggregator
oblivious encryption consists of the following algorithms:

• Setup(1λ) → param, skA: Given a security parameter λ as an input, this algorithm
generates public parameters PP and a secret key of aggregator skA, a set of user secret
keys {ski}n

i=1, and the aggregate verification key vk.
• Enc(param, t, xi)→ ci, σi: Given param, t, a value xi, and ski, this algorithm produces

a ciphertext ci and a tag σi.
• AggrDec(param, {(ci, σi)}n

i=1, skA)→ Xt = ∑n
i=1 xi,t mod M: This algorithm is consid-

ered the aggregation and decryption algorithm and it uses the param, t, the ciphertexts
and tags {(ci, σi)}n

i=1, σt and skA, to produce {(ci, σi)}n
i=1 , and the proof σt where M

is some fixed integer contained in param.
• VerifySum()→ : This verification algorithm is applied to the aggregation algorithm

and it takes param, t, vkt, and (Xt, σt) as input, and outputs 1 or 0.

5. Proposed Solution

This section details our proposed cloud hosted blockchain e-voting scheme, and
demonstrates how our scheme meets all our design goals. We will explain our proposed
anonymous credential scheme, our blockchain choice and setup, our developed smart
contract functionality, and how these work together to accomplish all of our design goals.

5.1. Initialization

In this phase the organizer runs the Setup algorithm explained in Section 4.2 to com-
pute public parameter PP and a secret key of aggregator skA used by the blockchain
validators, a set of user secret keys {ski}n

i=1, and the aggregate verification key vk, as
follows. The organizer chooses (p, e, g1, g2,G1,G2,GT) where G1,G2 and GT are groups of
λ-bit prime order p = M, g1 ∈ G1 and g2 ∈ G2 are generators, and e : G1 ×G2 → GT is a
bilinear map.

Appl. Sci. 2023, 13, 7905 8 of 19

Let Hi : Z→ G1 (i = 1, 2, 3, 4, 5) be hash functions, then choose γ, s1, . . . , sn, t0
$
∈ Zp,

set s0 = −∑n
i=1 si, h = gγ

1 , and Z = e(h, g2). Finally, the Setup algorithm Outputs PP as
PP = ((p, e, g1, g2,G1,G2,GT), Z, H1, H2, H3, H4, H5), skA = (s0, t0), ski = (si, t0, h), and
vk = ∅.

5.2. Obtaining Anonymous Credentials

Privacy is critical in an e-voting scheme. The scheme shall allow only authenticated
voters to cast their votes while protecting their real identities from being tracked by the
blockchain nodes, organizers, and other potential eavesdroppers. To address this issue,
voters need to obtain untraceable tokens from the organizers. The process of acquiring the
tokens is as follows.

The voter chooses random element {s} ∈ Z∗n and then computes the token public keys
{TP}, where TP = s·G. Then, the voter and the organizer execute the blind signature
protocol, discussed in Section 4, so that the voter can acquire a valid signature sigO(TP) for
the token coin TP without revealing TP to the organizer. The process is as follows:

Step 1: A voter vi initializes the communication by sending a message msg1, as follows:
msg1 = IDvi‖Sigvi (IDvi)

where IDvi is the voter’s real identity, such as his/her registered email address
account, and Sigv(IDvi) is the signature on the whole message using the voter’s
private key.

Step 2: The organizer chooses a secret element k ∈ Z∗n and computes R = k·G and he/she
sends msg2 back to the voter

msg2 = R‖SigO(R)

where SigO(R) is the organizer’s signature on the message.
Step 3: The voter computes A = R + γ·G + δ·P, where γ, δ ∈ Z∗n are random elements and

computes t = x mod n, where x is the x-coordinate of point A. The voter computes
c′ = (c− δ) mod n, where c = H(TP||t) mod n. The voter sends msg3 that includes
c′ as well as the voter’s signature Sigvi (c

′) to the organizer:
msg3 = c′‖Sigvi (c

′)

Step 4: The organizer computes s′ = (k− c′ · d) mod n where d is the organizers’ secret key
and they reply back with msg4, where,

msg4 = s′‖SigO(s′)

Finally, the voter uses msg4 to compute s = (s′ + γ) mod n and stores the signature on
TPvi (SigO(TPvi)) as (s, c). The organizer is oblivious to the voters’ tokens, i.e., public keys. Note
that, although this phase require the voters to use his/her real identity to obtain anonymous
voting tokens, and due to the use of the blind signatures, the organizer would not be able to link a
specific voting token (sigO(TPvi)) to the voter vi when the token is used in the voting process.

5.3. Submitting Anonymous and Encrypted Votes

Each voter encrypts his/her vote using the Enc algorithm, discussed in Section 4.2,
using PP, t, xi, ski, PP as an input, as follows. The voting ballot is shown in Figure 2.
Each ballot Bvi is divided into elements, where each element corresponds to one candidate
and each voter selects the candidates by putting 1 in the element corresponding to this
candidate. For instance, if the message size is 1000 bits and the number of candidates is
five, the message is then divided into five elements, each of them a size of 200 bits. A voter

vi chooses dvi
$←− Zp and then computes vkvi := g

dvi
1 , and computes

CBvi
= g

Bvi
1 H1(τ)

si H2(τ)
ti

and
σi = hBvi H3(τ)

si H4(τ)
ti H5(τ)

vi

Appl. Sci. 2023, 13, 7905 9 of 19

The smart contract handles all of the necessary election logic and the smart contract
voting scheme is summarized in Algorithm 1. To then cast a vote, the voters need to use the
anonymous tokens described in Section 5.2 to be able to vote for their specific candidates,
as follows. The voter uses the private key that corresponds to the token TPvi to sign and
broadcast the following message to the blockchain:

msg5 =
(

CBvi
, σi, vki, sigO(TPvi), σ(vi)

)
,

where σ(vi) is the signature on the whole message. Then, the blockchain should first verify
if the voter is authenticated by checking the organizer’s signature on the
TPvi (sigO(TP)), as follows. The blockchain first computes A = c·P + s·G. Then, it
computes t = x mod n, where x is the x-coordinate of point A. The verifier checks if

c ?
= H(msg5||t) mod n. If the verification succeeds, then the blockchain continues to exe-

cute the smart contract Algorithm 1. In the example, the vote will only be written as a valid
transaction if the voter has not cast a ballot already, the current time lies within the election
start and end times, and the voter has their anonymous tokens described in Section 5.2.
This logic solely utilizes the smart contract and data stored on the ledger, eliminating the
need for external centralized databases during the election process.

Algorithm 1 Pseudocode for voterContract (Author’s own processing)
1 contract voterContract

2 function InitLedger(ctx)
3 WS ← voters // Adds voters to World State
4 WS ← votableItems // Adds votableItems to World State
5 WS ← election // Adds Election to World State

6 function CastVote(ctx, voterID, electionID, votableItems)
7 newBallot(voterID, electionID, votableItems) // generate ballot with choices

of voter
8 logBallot() // Link the ballot to the voter

// increment count of picked items

9 function GetResults(ctx, electionID)
// set results for all candidates to 0

10 for s← 0 to Candidates.lengh do
11 Candidate[s].count = 0
12 end

// loop through all voters
// for every votableItem on voter’s ballot, increase candidate’s count

13 for s← 0 to voters.lengh do
14 curBallot = voters[s].ballot for v← 0 to curBallot.votableItems.length

do
15 curBallot.votableItems[v] += len(election.VotableItems) - i
16 end
17 end

Appl. Sci. 2023, 13, 7905 10 of 19

Candidates

0 0 0 0 0

0 0 0 0 0

2 0 3 0 1 1

0 0 0 0 0

0 0 0 0 0

0
0 00

0 0 0

0 0 00

0 0

0

In
di

vi
du

al
 v

ot
es

A

gg
re

ga
te

d
ba

llo
t

0

1

0

1

1

1

1

0

Figure 2. The individual ballot format and the aggregated ballot. The sum of the i-th element in the
ballot gives the number of votes for the candidate Ci. (Author’s own processing).

5.4. Obtaining Election Results

This phase starts once the blockchain receives n total votes. The blockchain should
run the following algorithm AggrDec, discussed before in Section 3, as follows.

The AggrDec uses (param, t, {(ci,t, σi,t, vki,t)}n
i=1, skA

)
: Parse skA = (s0, t0). Compute

Vt = H1(t)s0 H2(t)t0
n

∏
i=1

ci,t = gXt
1

where Xt = ∑n
i=1 xi,t, and the discrete logarithm Vt with respect to basis g1 is solved. Then,

the algorithm computes

σt = H3(t)s0 H4(t)t0
n

∏
i=1

σi,t and vkt =
n

∏
i=1

vki,t

Output (Xt, σt , vk t).
Finally, the blockchain broadcasts the results of the ballot as well as the tags for

verification. The organizer and the voters can check the correctness results by running the
VerifySum, as follows.

First, the verifier, i.e., the organizer/voters uses the param, t, Xt, σt, vkt) to check if

e(σt, g2)

e(H5(t), vkt)
= ZXt

holds. If so, this means the ballot was computed correctly by the blockchain.

5.5. Blockchain Design and Methodology

As explained earlier, the voter needs to obtain anonymous tokens from the organizer
using blind signatures, then the voters can cast anonymous and encrypted votes to the
smart contract. Finally, blockchain nodes aggregate all the votes that have been cast to
obtain the result of the election in a privacy-preserving manner.

In our proposed scheme, voters, as seen in Figure 3, interact with the endorser peer
through a web application. Their input prompts the endorser peer to utilize the smart
contract to write and execute a new transaction. This transaction is simulated by the
endorser peer and forwarded to the orderer to verify the transaction. When the orderer
verifies the transaction, it writes a new block to be distributed to each peer in the network.
Once the transaction has been written as a new block, the network committers, which
consist of every peer on the network (including the endorser), verify the integrity of the
transaction. If verified, the new block is added to the channel’s ledger.

Appl. Sci. 2023, 13, 7905 11 of 19

Voter

 Endorser Orderer

Ledger

 Peer1
 (committer only)

 Peer2
 (committer only)

Channel

Ledger

(copy)

Ledger

(copy)

Ledger

(copy)
1

2

3

Figure 3. Our considered blockchain network design. In (1), Endorser simulates the transaction from
the proposal. In (2), Orderer writes block from the transaction. In (3), Committers validate blocks and
append them to the ledger. (Author’s own processing).

Throughout this whole process, Certificate Authority (CA) nodes are used to iden-
tify each peer and orderer. In addition, each CA creates and validates each transaction.
For example, in our scheme, the Voter CA is used by the Voter Peer to sign, or endorse,
the transaction during its creation. Again, after the transaction has been committed to the
ledger, the Voter CA is used to verify all endorsements on the transaction to validate it
before writing the transaction to the Voter Peer’s copy of the blockchain ledger. In the
proposed model, we only include a single voter peer. However, this can be expanded
upon to further distribute the endorsement process with additional peers, thus requiring
additional signatures, or endorsements, before committing the transaction.

6. Performance Analysis

The performance of our proposed scheme is evaluated in this section. The experiment
setup is explained, followed by key metrics used to evaluate the scheme and, finally, the
results of these experiments are given.

6.1. Experiment Setup and Methodology

Hyperledger Fabric Platform. To implement our proposed scheme, we leveraged the
IBM Cloud infrastructure to host the required hardware. According to the Hyperledger
Documentation, this private blockchain is “an open source enterprise-grade permissioned
distributed ledger technology (DLT) platform” [20]. This means that a level of trust is
required within the network, removing anonymity between nodes, but ensuring only
authorized nodes are added to the blockchain. The permissioned nature of the Hyperledger
Fabric sets it up as a great tool for companies to utilize internally, without the fear of
outside manipulation. In addition, Hyperledger Fabric is a cryptocurrency free blockchain,
eliminating some major risk and attack incentives. In order to host our private blockchain
network, we first deployed a free Kubernetes cluster consisting of 2 vCPUs with a total of
4 GB of RAM using the IBM Kubernetes Service [39]. On this cluster, we linked an instance
of the IBM Blockchain Platform service. This established the environment in which we
set up our private Hyperledger Fabric blockchain. Utilizing Fabric version 2, we have
established an Endorser peer, a single orderer, and two committer peers. These nodes
all share a common channel, on which we instantiated our developed smart contract.
Hyperledger is built to be highly configurable through its modular design and use of
smart contracts. Hyperledger’s smart contracts, or chaincode as they refer to it, drive the
functionality of the blockchain. The chaincode acts as the logic for the blockchain, meaning
this is the fundamental aspect of our proposed solution. While many blockchains require
their smart contracts to be written in domain-specific languages, Hyperledger allows smart
contracts to be written in general-purpose programming languages like Java, Go, and

Appl. Sci. 2023, 13, 7905 12 of 19

Node.js. Our developed smart contract is written in Go. In addition, Hyperledger Fabric
introduces a new architecture for transactions in which transactions are executed before they
are ordered, dramatically reducing the time necessary per transaction. The new execute-
order-validate approach first executes a transaction, checking its correctness. Then, an
orderer submits the transaction to the rest of the blockchain via a consensus protocol.
Finally, a validator validates the transaction. This three-step process allows for multiple
peers to execute their transactions before they are committed to the ledger, allowing for
theoretically more transactions per second with less cpu usage than other blockchains [40].
Our smart contract defines four objects: an election, a ballot, a voter, and a votable Item.
These four objects not only store the data necessary to host an election, but also interact
with each other to form the base of our election functionality. Our contract class extends the
Hyperledger Fabric base Contract class, allowing for easy import and initialization onto
the endorser peer. Our contract class utilizes our four custom attributes to allow users to
register to vote, cast votes, and query the election results. To instantiate the smart contract,
we utilized the IBM Blockchain web console to propose our chaincode. Then, once each
node in the channel signed the proposal, our developed smart contract took effect.

Hyperledger Caliper Setup. We leveraged Hyperledger Caliper version 2.0 to stress
test and collect performance metrics on our scheme. Caliper is a blockchain benchmark
framework that implements custom-defined use cases to produce performance reports.
As seen in Figure 4, Caliper utilizes workers to generate and serve transactions to a
blockchain network. These workers can be configured to serve transactions represent-
ing the different functions defined by our developed smart contract; getBallot, castVote,
and getResults. In addition, the workers can serve these transactions at varying rates. the
number of transactions to be served must also be set. To run these tests, we used an Ubuntu
20.04 DigitalOcean droplet with 1 GB memory and 1 shared vCPU as the test harness to
remotely connect to our IBM Cloud-based Hyperledger Fabric instance.

Caliper

Workers

Hyperledger Fabric Blockchain
Transactions

Figure 4. Deployment model of Hyperledger Caliper. Caliper generates and sends a set number
of transactions at a defined send rate to the blockchain. In each run of Caliper, these transactions
all represent the same type of transaction, as defined by our developed smart contract (read or
write). When Caliper finishes one job, another can be started to simulate another type of transaction.
(Author’s own processing).

6.2. Performance Metrics and Benchmarks

Performance Metrics. We ran each test experiment independently, utilizing Caliper’s
workload modules to construct and send transactions. Three performance metrics of
our implemented scheme were then recorded and analyzed to determine its applicability
and scalability:

Appl. Sci. 2023, 13, 7905 13 of 19

• Transaction Throughput. This metric is used to show the rate at which valid transactions
are committed by our blockchain network, measured in transactions per second (tps).
As emphasized by the Performance and Scalability Working Group (PSWG) in [41],
this metric determines the rate at which transactions are committed across the entire
blockchain network, not just at a single node. This helps to provide more accurate
details of the experiment as, for a transaction to be functional across the network,
it must be reflected by every node. A high tps value indicates that the widespread
implementation of our proposed scheme is viable, enabling a large-scale participation
of voters in the election. Conversely, a low tps would increase the time required for a
significant number of voters to participate in the election.

• Transaction Latency. This metric, computed as transaction confirmation time at network
threshold less the submit time of the transaction, demonstrates the time taken for a
transaction to be usable across the network. Measuring transaction latency across all
nodes of the network ensures a more realistic timing evaluation that reflects the true
latency experienced by all users, rather than just the voter.

• Error Rate. This is the rate at which submitted transactions are rejected or dropped.
The error rate is computed as the number of failed transactions divided by the number
of sent transactions. This metric gives an accurate way to determine the maximum
operational stress our scheme can handle without fault. Note that while error rate
approaches zero in ideal conditions, we assume that ideal conditions are impracticable
at large scales due to the distributed architecture of Hyperledger Fabric.

Use Cases and benchmarks. Based on the aforementioned metrics, three different ex-
periments are used to evaluate and analyze the efficacy of the proposed scheme. These use
cases are shown in Table 2 and they are described in detail as follows:

• Experiment I shows varying transaction rates’ impact on our scheme’s throughput and
latency to show the scheme’s ability to process transactions when receiving varying
amounts of transactions. This simulates the impact of multiple voters using the
scheme concurrently.

• Experiment II analyzes the varying of total transactions’ impact on the throughput and
latency at differing transaction send rates to show the scheme’s scalability. This demon-
strates the scheme’s ability to handle elections involving differing scales of total voters.

• Experiment III shows the error rate due to varying total transactions and transaction
send rates.

For each of the use cases, we tested the main functions of our scheme’s functions,
namely GetBallot and CastVote. The GetBallot function reads the ledger and returns the
ballot associated with a specific voter. The CastVote function generates a new ballot for the
voter to use in the election and writes the ballot to our blockchain with the voter’s choices.

Table 2. Parameters for Performance Evaluation (Author’s own processing).

Send Rate for GetBallot (tps) Send Rate for CastVote (tps) Number of Transactions

Experiment I: Transaction send rates and its impact
on scheme throughput and latency 50, 100, 150, 200, 250, 300 5, 25, 50, 75, 100 1000

Experiment II: Varying numbers of transactions
impact
on scheme throughput and latency 50, 100, 150, 200, 250, 300 5, 25, 50, 75, 100 1000, 2000, 10,000, 20,000

Experiment III: Transaction send rates impact
on error rate 50, 100, 150, 200, 250, 300 5, 25, 50, 75, 100 1000, 2000, 10,000, 20,000

6.3. Results and Discussion

In this section, the results of our performance testing are given and analyzed.

Appl. Sci. 2023, 13, 7905 14 of 19

6.3.1. Experiment I

Figure 5 shows the average throughput and latency for GetBallot and CastVote
functions at varying transaction send rates. The results indicate that as transactions are sent
at higher rates, the scheme reaches a peak throughput, at which point latency begins to rise
and the throughput is unable to match further increases to the send rate. This maximum
throughput also is dependant on the transaction type: around 200 tps for GetBallot, a
read function, and around 75 tps for CastVote, a write function. As seen in Figure 5 the
average latency does not rise until the send rate eclipses the scheme’s peak throughput.
These results are generalized as follows:

• A large number of voters, 200 per second, can concurrently fetch ballots without
significant delay.

• Fewer voters, 75 per second, can concurrently cast votes without significant delay.
• The type of transaction will affect scheme performance.

0

2

4

6

8

10
A

ve
ra

ge
 L

at
en

cy
 (

se
co

nd
s)

50 100 150 200 250 300
Transaction Send Rate (tps)

0

50

100

150

200

250

300

T
hr

ou
gh

pu
t (

tp
s)

(a)

0

2

4

6

8

10

A
ve

ra
ge

 L
at

en
cy

 (
se

co
nd

s)

25 50 75 100 125
Transaction Send Rate (tps)

0

20

40

60

80

100

120

T
hr

ou
gh

pu
t (

tp
s)

(b)

Figure 5. Impact of Transaction Send Rate on Throughput and Latency: 1000 Transactions. (a) GetBal-
lot; (b) CastVote. (Author’s own processing).

6.3.2. Experiment II

Figures shown in Figure 6 illustrate the average throughput and latency for GetBallot
and CastVote functions for varying total numbers of transactions. The results indicate
that there is no significant impact on total number of transactions, as long as the send rate
remains below the scheme’s peak throughput. As send rates increase beyond the peak
throughput, the impact of the number of transactions increases. As seen in Figure 6a,b, an
increase to the transaction send rate before reaching the peak throughput of approximately
200 tps for GetBallot does not result in different throughput or latency between different
volumes of total transactions. After the peak throughput is surpassed differences in
performance emerge depending on the total transaction volume. There is not a clear
relationship between transaction count and how throughput degrades after the send rate
surpasses optimal throughput. For GetBallot, we observed that the throughput at high
send rates was generally better for a total of 1000 tx than 20,000 tx, but this was not the case
for CastVote. This could result from inconsistencies that arise in performance when max
throughput is exceeded. For average latency, the impact of transaction count is more clear.
As seen in Figure 6c,d, there is an increase in latency as the transaction count increased
for CastVote. This is also seen in Figure 6a,b for GetBallot, with the exception of the
observed latency at 20,000 total transactions, which is lower than the latency at 10,000 tx.
These results are generalized as follows:

• When the transaction send rate is lower than the peak throughput, increasing the
number of transactions has no impact on throughput or latency.

Appl. Sci. 2023, 13, 7905 15 of 19

• After the peak throughput is surpassed, increasing the number of transactions de-
creases the throughput and increases the average latency.

50 100 150 200 250 300
Transaction Send Rate (tps)

0

50

100

150

200

250

300

T
hr

ou
gh

pu
t (

tp
s)

1000
2000
10000
20000

Transactions

(a)

50 100 150 200 250 300
Transaction Send Rate (tps)

0

5

10

15

20

25

30

A
ve

ra
ge

 L
at

en
cy

 (
se

co
nd

s)

1000
2000
10000
20000

Transactions

(b)

25 50 75 100 125
Transaction Send Rate (tps)

0

25

50

75

100

125

T
hr

ou
gh

pu
t (

tp
s)

1000
2000
10000
20000

Transactions

(c)

25 50 75 100 125
Transaction Send Rate (tps)

0

20

40

60

80

100

120

A
ve

ra
ge

 L
at

en
cy

 (
se

co
nd

s)

1000
2000
10000
20000

Transactions

(d)
Figure 6. Varying the number of total transactions’ impact on throughput and latency: GetBallot
and CastBallot. (a) GetBallot (Throughput); (b) GetBallot (Latency); (c) CastVote (Throughput);
(d) CastVote (Latency). (Author’s own processing).

6.3.3. Experiment III

Figure 7 shows the measured error rate for the GetBallot and CastVote functions at
varying transaction send rates and transaction totals. The results indicate that the number
of transactions and transaction send rate impact the error rate in conjunction. For a total
number of transactions below 10,000, neither tested function ever dropped or rejected a
transaction for every send rate tested. At 10,000 transactions submitted, the error rate
for the GetBallot function rose minimally when the send rate passed the scheme’s peak
throughput measured in Experiment I. For 10,000 total transactions, the error rate for the
CastVote function rose quickly once the send rate passed the scheme’s peak throughput
measured in Experiment I. The results are generalized as follows:

• Errors are unlikely to occur when transactions are submitted to the scheme at/or
below its peak throughput.

• Error rate follows the same trend as latency, rising only when the transaction send
rates eclipse the scheme’s peak throughput.

• Error rate increases when large numbers of transactions are being processed (i.e., 10,000).

Appl. Sci. 2023, 13, 7905 16 of 19

50 100 150 200 250 300
Transaction Send Rate (tps)

0

0.2

0.4

0.6

0.8

1

E
rr

or
 R

at
e

(f
ai

lu
re

s/
tx

)

1000
2000
10000
20000

Transactions

(a)

25 50 75 100 125
Transaction Send Rate (tps)

0

0.2

0.4

0.6

0.8

1

E
rr

or
 R

at
e

(f
ai

lu
re

s/
tx

)

1000
2000
10000
20000

Transactions

(b)

Figure 7. Varying transaction send rates’ impact on Transaction Error Rate. (a) GetBallot; (b) CastVote.
(Author’s own processing).

We have concluded that our scheme is scalable up to 10,000 voters as long as user
interaction is capped on a transaction per second basis. For usages such as fetching election
results, if user interaction is capped to 200 transactions per second, users will experience
little to no latency with our scheme, and no queries are likely to be dropped. For casting
votes, if user interaction is capped to 75 transactions per second, users will experience
minimal latency, and no votes are likely to be lost. These results also prove the feasibility
of using the IBM Cloud to host our Hyperledger Fabric blockchain. As discussed in [33],
Hyperledger Fabric itself is scalable, but now we can conclude that hosting Hyperledger
Fabric on the IBM Cloud is also scalable, even when constrained by operating cost. As noted
previously in this paper, we leveraged the free tier Kubernetes service on the IBM Cloud.
This gave us minimal operating capacity, and with a larger budget, more scalability could
be expected. To determine the exact scalability of a higher-tier service, however, further
performance testing would be required.

7. Security and Privacy Analysis

In this section, security and privacy concerns are discussed, and how the proposed
scheme is mitigating them.

Proposition 1. The proposed scheme protects the privacy of voters.

Proof. A voter can interact with the blockchain with a one-request-only blockchain address
obtained using blind signatures. The votes’ privacy is protected by encrypting them using
the Verifiable Aggregator Oblivious Encryption. Only the voter who submitted his/her
vote can know the exact vote and no one including the blockchain nodes can get access to
the private information of the voters.

Proposition 2. Our scheme ensures election fairness.

Proof. This is because the votes are encrypted and no one can access the votes that have
been cast. Only the election results can be obtained by using the AggrDec, as explained in
detail in Section 5.4. Because the votes are in an encrypted format, only the tally of the
election can be obtained to protect the individual votes of the voters.

Proposition 3. The proposed scheme is secure against single-point-of-failure attacks.

Appl. Sci. 2023, 13, 7905 17 of 19

Proof. This is due to the underlying blockchain that is used to run the scheme. Our pro-
posed e-voting scheme allows small businesses and governments alike to run an election in
a transparent, decentralized, and secure manner.

8. Conclusions

This paper proposed and implemented a decentralized e-voting scheme that offers
a robust and accessible alternative to traditional paper ballots. Our scheme provides a
scalable and flexible solution to secure online voting. By using the private Hyperledger
Fabric blockchain hosted on the IBM cloud, we presented a secure and private scheme
that can be implemented with little technical knowledge at a reasonable cost to users.
In our scheme, no one can link a vote to a specific voter because the voters interact using
random generated addresses with the blockchain. This blockchain address is a one-time
pseudonym generated by the voters, and it cannot reveal the voters’ real identity. Analysis
and performance evaluations were taken to prove the feasibility of our scheme. Our testing
identified the throughput and election size limitations of our hardware, the impact of
throughput and transaction count on latency and error rates, as well as the differing
performance characteristics of read and write operations on the network. The results show
that even when using minimal resources in the cloud, it is feasible to run an election with
thousands of participants with concurrent vote transactions.

In the future, we will consider a bigger scale of elections by simulating a bigger
number of transactions at higher transaction rates with increasing the number of blockchain
validators. Moreover, we will expand this work to consider score voting. Score-based score
voting is a special type of election that enable voters to assign a score to each candidate.
Each voter gives each candidate a score within a predetermined range, such as 0 to 5.
Then, the sum of the scores is added for each candidate. However, this will require extra
computation and communication overheads to perform the aggregation of all scores, thus
an efficient aggregation technique suitable for score voting will be further developed.

Author Contributions: Conceptualization, R.C., L.M. and M.B.; formal analysis, A.R. and M.B.;
funding acquisition, M.A. and M.B.; methodology, R.C., L.M. and M.B.; resources, M.B.; software,
L.M.; validation, M.B. and M.A.; writing—review and editing, R.C., L.M. and A.R.; Resources; M.A.,
A.R. and M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by Researchers Supporting Project number (RSPD2023R636), King
Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Runyan, N.; Tobias, J. Accessibility Review Report for California Top-to-Bottom Voting Systems Review; Secretary of State of California:

Los Angeles, CA, USA, 2007.
2. Bush, S.S.; Prather, L. Who’s There? Election Observer Identity and the Local Credibility of Elections. Int. Organ. 2018, 72, 659–692.
3. Koven, J.B. Block the Vote: Could Blockchain Technology Cybersecure Elections? Forbes, 10 June 2016.
4. Mursi, M.; Assassa, G.M.R.; Abdelhafez, A.; Samra, K. On the Development of Electronic Voting: A Survey. Int. J. Comput. Appl.

2013, 61, 16. [CrossRef]
5. Hanifatunnisa, R.; Rahardjo, B. Blockchain Based e-Voting Recording System Design. In Proceedings of the 2017 11th International

Conference on Telecommunication Systems Services and Applications (TSSA), Lombok, Indonesia, 26–27 October 2017; pp. 1–6.
6. Panja, S.; Roy, B. A secure end-to-end verifiable e-voting system using blockchain and cloud server. J. Inf. Secur. Appl. 2021,

59, 102815. [CrossRef]
7. Neculache, N.; Petcu, V.A.; Simion, E. An analysis of a scheme proposed for electronic voting systems. Cryptol. Eprint Arch. 2023,

preprint.

http://doi.org/10.5120/10009-4872
http://dx.doi.org/10.1016/j.jisa.2021.102815

Appl. Sci. 2023, 13, 7905 18 of 19

8. Shanthinii, S.; Usha, M.; Prittopaul, P. A Survey Based on Online Voting System Using Blockchain Technology. In Computer Vision
and Machine Intelligence Paradigms for SDGs: Select Proceedings of ICRTAC-CVMIP 2021; Springer: Berlin/Heidelberg, Germany,
2023; pp 209–216.

9. Jafar, U.; Ab Aziz, M.J.; Shukur, Z.; Hussain, H.A. A Systematic Literature Review and Meta-Analysis on Scalable Blockchain-
Based Electronic Voting Systems. Sensors 2022, 22, 7585. [PubMed]

10. Denis González, C.; Frias Mena, D.; Massó Muñoz, A.; Rojas, O.; Sosa-Gómez, G. Electronic voting system using an enterprise
blockchain. Appl. Sci. 2022, 12, 531. [CrossRef]

11. Sallal, M.; de Fréin, R.; Malik, A. PVPBC: Privacy and Verifiability Preserving E-Voting Based on Permissioned Blockchain. Future
Internet 2023, 15, 121. [CrossRef]

12. Liu, Y.; Wang, Q. An E-voting Protocol Based on Blockchain. IACR Cryptol. ePrint Arch. 2017, 2017, 10–43.
13. Tanwar, S.; Gupta, N.; Kumar, P.; Hu, Y.C. Implementation of blockchain-based e-voting system. Multimed. Tools Appl. 2023, 1–32.

[CrossRef]
14. Kshetri, N.; Voas, J. Blockchain-enabled e-voting. IEEE Software 2018, 35, 95–99. [CrossRef]
15. Ayed, A.B. A conceptual secure blockchain-based electronic voting system. Int. J. Netw. Secur. Appl. 2017, 9, 1–9.
16. Rao, V.; Singh, A.; Rudra, B. Ethereum Blockchain Enabled Secure and Transparent E-Voting. In Proceedings of the Future

Technologies Conference; Springer: Berlin/Heidelberg, Germany, 2020; pp. 683–702.
17. Seifelnasr, M.; Galal, H.S.; Youssef, A.M. Scalable Open-Vote Network on Ethereum. In Proceedings of the Financial Cryptography

and Data Security; Bernhard, M., Bracciali, A., Camp, L.J., Matsuo, S., Maurushat, A., Rønne, P.B., Sala, M., Eds.; Springer: Cham,
Switzerland, 2020; pp. 436–450.

18. Khoury, D.; Kfoury, E.F.; Kassem, A.; Harb, H. Decentralized Voting Platform Based on Ethereum Blockchain. In Proceedings of the
2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT),
Bhilai, India, 19–21 February 2021; pp. 1–4. [CrossRef]

19. Meter, C. Design of distributed voting systems. arXiv 2017, arXiv:1702.02566.
20. Hyperledger Fabric Official Documentation. A Blockchain Platform for the Enterprise. 2020. Available online: https://

hyperledger-fabric.readthedocs.io (accessed on 1 May 2023).
21. Onur, C.; Yurdakul, A. ElectAnon: A Blockchain-Based, Anonymous, Robust and Scalable Ranked-Choice Voting Protocol. arXiv

2022, arXiv:2204.00057.
22. Yavuz, E.; Koç, A.K.; Çabuk, U.C.; Dalkılıç, G. Towards Secure e-Voting Using Ethereum Blockchain. In Proceedings of the 2018

6th International Symposium on Digital Forensic and Security (ISDFS), Antalya, Turkey, 22–25 March 2018; pp. 1–7.
23. Kirillov, D.; Korkhov, V.; Petrunin, V.; Makarov, M.; Khamitov, I.M.; Dostov, V. Implementation of an e-Voting Scheme Using

Hyperledger Fabric Permissioned Blockchain. In Proceedings of the Computational Science and Its Applications—ICCSA 2019,
19th International Conference, Saint Petersburg, Russia, 1–4 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; Part II,
pp. 509–521.

24. Specter, M.A.; Koppel, J.; Weitzner, D. The Ballot is Busted Before the Blockchain: A Security Analysis of Voatz, the First Internet
Voting Application Used in U.S. Federal Elections. In Proceedings of the 29th USENIX Security Symposium (USENIX Security
20), Berkeley, CA, USA, 12–14 August 2020; pp. 1535–1553.

25. Yang, Y.; Guan, Z.; Wan, Z.; Weng, J.; Pang, H.H.; Deng, R.H. PriScore: Blockchain-Based Self-Tallying Election System Supporting
Score Voting. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4705–4720. [CrossRef]

26. Lin, Y.; Zhang, P. Blockchain-Based Complete Self-Tallying E-Voting Protocol. In Proceedings of the 2019 Asia-Pacific Signal and
Information Processing Association Annual Summit and Conference (APSIPA ASC), Lanzhou, China, 18–21 November 2019;
pp. 47–52. [CrossRef]

27. McCorry, P.; Shahandashti, S.F.; Hao, F. A Smart Contract for Boardroom Voting with Maximum Voter Privacy. In Financial
Cryptography and Data Security; Springer: Berlin/Heidelberg, Germany, 2017; pp. 357–375.

28. Li, Y.; Susilo, W.; Yang, G.; Yu, Y.; Liu, D.; Du, X.; Guizani, M. A blockchain-based self-tallying voting protocol in decentralized
IoT. IEEE Trans. Dependable Secur. Comput. 2020, 19, 119–130. [CrossRef]

29. Khader, D.; Smyth, B.; Ryan, P.; Hao, F. A Fair and Robust Voting System by Broadcast. In Proceedings of the 5th International
Conference on Electronic Voting, Bregenz, Austria, 11–14 July 2012; pp. 285–299.

30. Li, H.; Li, Y.; Yu, Y.; Wang, B.; Chen, K. A Blockchain-Based Traceable Self-Tallying E-Voting Protocol in AI Era. IEEE Trans. Netw.
Sci. Eng. 2021, 8, 1019–1032. [CrossRef]

31. Han, G.; Li, Y.; Yu, Y.; Choo, K.K.R.; Guizani, N. Blockchain-Based Self-Tallying Voting System with Software Updates in
Decentralized IoT. IEEE Network 2020, 34, 166–172. [CrossRef]

32. Mukherjee, P.P.; Boshra, A.A.; Ashraf, M.M.; Biswas, M. A Hyper-Ledger Fabric Framework as a Service for Improved Quality
e-Voting System. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020;
pp. 394–397.

33. Kuzlu, M.; Pipattanasomporn, M.; Gurses, L.; Rahman, S. Performance Analysis of a Hyperledger Fabric Blockchain Framework:
Throughput, Latency and Scalability. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain),
Atlanta, GA, USA, 14–17 July 2019; pp. 536–540. [CrossRef]

34. IBM Blockchain Platform. 2022. Available online: https://cloud.ibm.com/docs/blockchain (accessed on 1 May 2023).

http://www.ncbi.nlm.nih.gov/pubmed/36236684
http://dx.doi.org/10.3390/app12020531
http://dx.doi.org/10.3390/fi15040121
http://dx.doi.org/10.1007/s11042-023-15401-1
http://dx.doi.org/10.1109/MS.2018.2801546
http://dx.doi.org/10.1109/ICAECT49130.2021.9392580
https://hyperledger-fabric.readthedocs.io
https://hyperledger-fabric.readthedocs.io
http://dx.doi.org/10.1109/TIFS.2021.3108494
http://dx.doi.org/10.1109/APSIPAASC47483.2019.9023220
http://dx.doi.org/10.1109/TDSC.2020.2979856
http://dx.doi.org/10.1109/TNSE.2020.3011928
http://dx.doi.org/10.1109/MNET.001.1900439
http://dx.doi.org/10.1109/Blockchain.2019.00003
https://cloud.ibm.com/docs/blockchain

Appl. Sci. 2023, 13, 7905 19 of 19

35. Lu, Y.; Tang, Q.; Wang, G. Zebralancer: Private and Anonymous Crowdsourcing System Atop Open Blockchain. In Proceed-
ings of the 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, 2–6 July 2018;
pp. 853–865.

36. Kosba, A.; Miller, A.; Shi, E.; Wen, Z.; Papamanthou, C. Hawk: The Blockchain Model of Cryptography and Privacy-Preserving
Smart Contracts. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016;
pp. 839–858.

37. ShenTu, Q.; Yu, J. A Blind-Mixing Scheme for Bitcoin based on an Elliptic Curve Cryptography Blind Digital Signature Algorithm.
arXiv 2015, arXiv:1510.05833.

38. Wang, Z. Identity-based verifiable aggregator oblivious encryption and its applications in smart grids. IEEE Trans. Sustain.
Comput. 2019, 6, 80–89. [CrossRef]

39. Kubernetes Service API Docs. 2020. Available online: https://cloud.ibm.com/docs/containers (accessed on 1 May 2023).
40. Dabbagh, M.; Kakavand, M.; Tahir, M.; Amphawan, A. Performance Analysis of Blockchain Platforms: Empirical Evaluation of

Hyperledger Fabric and Ethereum. In Proceedings of the 2020 IEEE 2nd International Conference on Artificial Intelligence in
Engineering and Technology (IICAIET), Kota Kinabalu, Malaysia, 26–27 September 2020; pp. 1–6.

41. Hyperledger Blockchain Performance Metrics. 2018. Available online: https://www.hyperledger.org/learn/publications/
blockchain-performance-metrics (accessed on 1 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSUSC.2019.2905040
https://cloud.ibm.com/docs/containers
https://www.hyperledger.org/learn/publications/blockchain-performance-metrics
https://www.hyperledger.org/learn/publications/blockchain-performance-metrics

	Introduction
	Related Work
	Scheme Model
	Scheme Model
	Threat Model
	Design Goals

	Preliminary Background
	Blind Elliptic Curve DSA Signatures
	Verifiable Aggregator Oblivious Encryption

	Proposed Solution
	Initialization
	Obtaining Anonymous Credentials
	Submitting Anonymous and Encrypted Votes
	Obtaining Election Results
	Blockchain Design and Methodology

	Performance Analysis
	Experiment Setup and Methodology
	Performance Metrics and Benchmarks
	Results and Discussion
	Experiment I
	Experiment II
	Experiment III

	Security and Privacy Analysis
	Conclusions
	References

