
Citation: Ni, W.; Du, Y.; Ma, X.; Lv, H.

Research on Hybrid

Recommendation Model for

Personalized Recommendation

Scenarios. Appl. Sci. 2023, 13, 7903.

https://doi.org/10.3390/app13137903

Academic Editors: Konstantinos

Pliakos and Alireza Gharahighehi

Received: 4 May 2023

Revised: 26 June 2023

Accepted: 4 July 2023

Published: 5 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Research on Hybrid Recommendation Model for Personalized
Recommendation Scenarios
Wenkai Ni, Yanhui Du *, Xingbang Ma and Haibin Lv

College of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China;
2021211449@stu.ppsuc.edu.cn (W.N.); 2021212361@stu.ppsuc.edu.cn (X.M.); 18259568358@163.com (H.L.)
* Correspondence: duyanhui@ppsuc.edu.cn

Abstract: One of the five types of Internet information service recommendation technologies is
the personalized recommendation algorithm, and knowledge graphs are frequently used in these
algorithms. RippleNet is a personalized recommendation model based on knowledge graphs, but it is
susceptible to localization issues in user portrait updating. In this study, we propose NRH (Node2vec-
side and RippleNet Hybrid Model), a hybrid recommendation model based on RippleNet that uses
Node2vec-side for item portrait modeling and explores potential association relationships of items;
the user portrait is split into two parts, namely, a static history portrait and a dynamic preference
portrait; the NRH model adopts a hybrid recommendation approach based on collaborative filtering
and a knowledge graph to obtain the user’s preferences on three publicly accessible datasets; and
comparison experiments with the mainstream model are lastly carried out. The AUC and ACC
increased, respectively, by 0.9% to 29.5% and 1.6% to 31.4% in the MovieLens-1M dataset, by 1.5% to
17.1% and 4.4% to 18.7% in the Book-Crossing dataset, and by 0.8% to 27.9% and 2.9% to 24.1% in the
Last.FM dataset. The RippleNet model was used for comparison experiments comparing suggestion
diversity. According to the experimental findings, the NRH model performs better in accuracy and
variety than the popular customized knowledge graph recommendation algorithms now in use.

Keywords: RippleNet; preference propagation; hybrid recommendation; user portrait

1. Introduction

The rapid development of the Internet has brought us a tremendous amount of in-
formation but also the problem of information overload [1]. Personal recommendation
systems have emerged to alleviate the contradiction between information overload and
users’ personalized needs. The personalized recommendation aims to recommend infor-
mation that matches users’ interests according to their customized needs and behaviors
and improves users’ satisfaction and experience. At present, personalized recommendation
algorithms can be divided into [2] association rule-based recommendation algorithms [3],
content-based recommendation algorithms [4], user (or item)-based collaborative filtering
recommendation algorithms [5], and hybrid recommendation algorithms, among which
the most commonly used is the collaborative filtering-based recommendation algorithm,
but it relies too much on the user’s historical behavior. The sparsity of user–item interaction
data will directly affect the accuracy of recommendation results. In recent years, the rapid
development of knowledge graphs [6] has played an enormous role in integrating massive
information and data mining. The recommendation algorithm based on a knowledge
graph [7] can not only effectively incorporate the information of different structural levels
but also explore the potential interest preferences of users to avoid a single recommenda-
tion result and promote the development of personalized recommendation algorithms. In
addition, the knowledge graph has better interpretability, which can effectively improve
the user’s experience and increase the user’s trust in the recommendation system.

Appl. Sci. 2023, 13, 7903. https://doi.org/10.3390/app13137903 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137903
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13137903
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137903?type=check_update&version=1

Appl. Sci. 2023, 13, 7903 2 of 20

In the conventional knowledge graph-based recommendation system, user portraits
are modeled based on views and purchases made by users in the past. Utilizing the knowl-
edge graph for preference propagation, the recommendation system generates suggestions
based on the past behaviors of users and the entity relationships in the knowledge graph.
Due to the potential limitations of knowledge representation in the knowledge graph, the
recommendation system may be unable to exploit the global connections and characteris-
tics among items. The interests and preferences of users are subject to change over time.
When user interests change, if the recommendation system fails to update the user portrait
promptly, localization of preference propagation will become a problem. The knowledge
graph-based recommendation system tends to classify User A into the interest group of
comedy movies based on their past behaviors and the association in the knowledge graph.
Furthermore, the system is more likely to associate them with comedy movies. However,
if User A’s interest gradually shifts to suspense films, since the knowledge graph fails to
discover the association between comedy movies and suspense movies promptly, resulting
in the recommendation system failing to update the user portrait, the recommendation
system continues to recommend comedy movies to User A despite User A’s current interest.
Therefore, the recommendation result is biased toward comedic films and needs more
diversity and customization.

This paper introduces a hybrid recommendation model NRH (Node2vec-side and
Ripplenet Hybrid Model) for personalized recommendation scenarios. The optimized
model can overcome the problem of localization of preference propagation in the process
of user image updating by the RippleNet [8] model and improve the “information cocoon”.
To build item portraits and fully utilize the association relationship between items, the
NRH model uses Node2vec-side knowledge representation. This approach is suitable
for large-scale personalized recommendation scenarios. The NRH model also creates a
static historical image of users based on information about user–item history interaction
before optimizing the RippleNet model for preference propagation. We adopt a hybrid
prediction method based on collaborative filtering and a knowledge graph to make recom-
mendations. We first mine the association relationships between knowledge graph nodes
to find the items users may be interested in. Then, we combine the user portrait and item
portrait to determine the users’ preferences for strange things. Finally, we recommend
the items that users like. In this study, we make experimental comparisons on the real
datasets MovieLens-1M, Book-Crossing, and Last.FM. The findings demonstrate that the
NRH model outperforms existing benchmark models regarding accuracy, variety, and
recommendation power.

2. Background and Related Work
2.1. Node2vec-Side Fusion Knowledge Representation

Node2vec-side fusion knowledge representation is a knowledge representation pro-
posed based on Node2vec [9], the basic idea of which is to reconstruct and homogenize the
knowledge graph of the recommended domain kept in triples into a weighted directed graph
and then use multivariate random wandering strategies to obtain the node representations.
The relationships between the nodes are aggregated based on the generated wandering se-
quences. Finally, the knowledge representations of the target knowledge graph are obtained
by combining the outcomes of each wandering strategy’s representations.

Where assuming f (x) is the knowledge representation obtained by node x under a
particular preference strategy wandering, then for the set of relations R = {r1,r2,r3, . . . ,
rn} in the knowledge graph; assuming any link ri ∈ R, the vector representation form of
relation ri can be obtained by the following equation:

f (ri) =

∑
(h,ri ,t)∈G

(f (t)− f (h))

min(count(ri), Z)
, (1)

Appl. Sci. 2023, 13, 7903 3 of 20

where Z = dα · sum(G)e, and α ∈ (0,1), where G denotes the set of knowledge graph triples,
i.e., G = {(h, r, t)}; sum (G) represents the total number of triples in the knowledge graph;
S denotes the set of wandering sequences; i.e., S = {Sv | v ∈ V}, where V is the set of
nodes; Nri denotes the value of relation ri weights; f (t) and f (h) represent, respectively, the
knowledge representation of the head and tail nodes based on the Node2vec representation;
and count (ri) represents the number of occurrences of the relation ri in the knowledge
graph. Based on the above representation, the score function of the Node2vec-side is
determined as follows:

gr(h, t) = sim(h + r, t) = cos(h + r, t) =
(h + r) · t
‖h + r‖ × ‖t‖ , (2)

where sim denotes the similarity function, and this paper uses cosine similarity as the
similarity calculation function Finally, the knowledge representation fi(h, r, t) under a
specific preference random walk is formed: fi(h) , fi(t) , fi(r).

The knowledge representation can be divided into two parts to obtain a more compre-
hensive knowledge representation. After receiving the knowledge representation f 1(h, r, t),
f 2(h, r, t) by depth-first wandering (DFS) and breadth-first wandering (BFS) strategies, the
knowledge representation f (h, r, t) under this knowledge graph is then obtained by fusion,
and ∪ in Equation (6) denotes the splicing operation.

f (h, r, t) = f1(h, r, t)∪ f2(h, r, t), (3)

The Node2vec-side fusion knowledge representation score function G(h, r, t) is
as follows:

G(h, r, t) =h(g1r(h, r, t), g2r(h, r, t)), (4)

of which

gir(h, t) = sim(h + r, t) = cos(h + r, t) =
(h + r) · t
‖h + r‖ × ‖t‖ , (5)

h(x, y) denotes the fusion function, which in this paper is taken as the mean function
h(X1, X2) =

X1+X2
2 .

2.2. Knowledge Graph-Based Recommendation Algorithm

The current research direction of knowledge graph-based recommendation algorithms
is mainly to enhance the accuracy of recommendations by knowledge embedding [10–16],
path [17,18] or higher-order information aggregation [19–24], etc. Yang [10] et al. used the
Metapath2Vec [11] model in the knowledge graph to introduce entity nodes to improve the
recommendation result accuracy; in 2016, Zhang FZ et al. proposed the CKE [13] model
by fusing collaborative filtering and the knowledge graph feature learning (TransR [12]
model). Huang [14] used TransE [15] as a knowledge embedding model to describe user–
item preferences; in 2018, Wang [16] et al., based on KCNN-embedded text word, proposed
the deep knowledge-aware network (DKN). Similar recommendation algorithms based on
knowledge embedding require preprocessing operations on the knowledge graph, using
knowledge embedding to input relevant characteristics of items into the neural network.
The recommendation model eventually learns and understands the knowledge structure
inherent in the knowledge graph. Although the knowledge embedding-based approach
is flexible and facilitates the use of models for migration in multiple scenarios, the lack of
utilization of higher-order information leads to a limited representation of entities.

The path-based knowledge graph recommendation algorithm started earlier. Yu et al.
proposed a heterogeneous information network method in 2014 [17], which uses matrix
decomposition to obtain implicit features of users and items of different meta-paths for
recommendation; based on this, Zhao et al. proposed a meta-graph-based recommendation
method in 2017 [18], and the main idea is to use meta-graphs to represent the higher-
order recommendation semantics and fully exploit its structural features by constructing

Appl. Sci. 2023, 13, 7903 4 of 20

meta-graph to make up for the shortage of the meta-path. Both approaches represent the
relationship between users and items by extracting meta-paths or meta-graphs. The path-
based recommendation approach aims to establish the path connection between user-items,
which enhances the interpretability of recommendation results. Still, the quality of the
mined path instances seriously affects the final recommendation results.

Knowledge graph recommendation algorithms based on higher-order information
aggregation (e.g., KGAT [19]) aim to combine semantic information with paths to enrich the
representation of users and items by surrounding neighborhood nodes. Similar recommen-
dation algorithms only characterize the knowledge graph. Still, the recommendation results
need to be more comprehensive regarding interpretability and logic. Hence, Wang et al.
first proposed the concept of “preference diffusion” and thus offered the RippleNet [8,20]
model. The core idea of the RippleNet model is to propagate user preferences on the knowl-
edge graph and then continuously portray user profiles through the semantic relationships
between entity nodes and nodes in the propagation process. It has good recommendation
performance and is widely used.

2.3. RippleNet

RippleNet [8,20] is an end-to-end recommendation model framework based on knowl-
edge graphs. Ripple contains two layers: (1) similar to the formation of ripples by water
waves in reality, in terms of user portrait construction, the user’s historical preferences are
used as the center to spread outward layer by layer to form the distribution of the user’s
potential preferences for items; (2) similar to the gradual weakening of ripple amplitude
in reality, the user’s preference degree for an entity decreases with the increase of the
propagation hops.

Therefore, RippleNet is analogous to how ripples propagate on the water surface,
propagating user preferences on the set of knowledge graph entities and discovering
potential user interests along the paths in the knowledge graph to achieve autonomous
iterative propagation. It is characterized by inputting user–item pairs, obtaining deep-level
possible connections between nodes by mining the correlations in the knowledge graph,
and superimposing multiple “ripples” obtained from the propagation of users’ historical
click nodes to form a preference distribution of the user’s preference for candidate item
nodes, and finally using this preference distribution to calculate the probability of user
interaction (e.g., clicking, browsing). In short, the user–item interaction matrix Y and the
knowledge graph G are used to obtain the predicted click scores of User u for item v to
be selected.

Knowing the interaction matrix Y and the knowledge graph G, the kth associated
entity of User u is defined as

εk
u =

{
t | (h, r, t) ∈ G, h ∈ εk−1

u

}
k = 1, 2, · · · , H, (6)

where ε0
u = {v | yuv = 1} indicates that the user has clicked on the item v. Based on (6), the

definition of the Ripple set is given:

Sk
u =

{
(h, r, t) | (h, r, t) ∈ G, h ∈ εk−1

u

}
k = 1, 2, · · · , H. (7)

However, the traditional RippleNet recommendation model has the following short-
comings: (1) The knowledge embedding is simple. In the embedding part of the knowledge
graph, a single embedding method is used. The nodes are updated each time, and the outer
nodes of potential preferences are prone to low semantic logic, etc. (2) There are problems
such as user cold start and information cocoon. The AKTUP [21] model follows the node
aggregation mechanism of the RippleNet model to mine user preferences. Still, the method
needs to include the path connection between users and target items and complexity and
can handle large-scale personalized recommendations. Huanqing Cui [22] et al. proposed
a knowledge water wave graph convolutional network (KRGCN) that uses an end-to-end

Appl. Sci. 2023, 13, 7903 5 of 20

approach to obtain higher-order semantic information of the knowledge graph, improves
the item feature learning part of the RippleNet model, and uses the convolutional graph
network to aggregate higher-order domain information of items. Still, the recommenda-
tion results are less interpretable and have the user cold start problem. Moreover, the
above improvements for the RippleNet model mainly consider the accuracy aspects of
recommendations. Still, with the increase in user demand, users also pay more and more
attention to recommendation diversity and put forward higher requirements for mining
the relationship between items in personalized recommendations.

3. NRH Recommendation Model

The overall framework of the NRH recommendation model (Node2vec-side and
RippleNet Hybrid Model) is shown in Figure 1, which makes the following innovations
compared with the traditional RippleNet model: (1) Improving user portrait construction.
Node2vec-side knowledge representation is introduced by embedding the Ripple set, which
combines the static history portrait and the dynamic preference portrait to form a new user
portrait. (2) Adopting a hybrid prediction approach. The probability values are calculated
separately for the two parts of the user profile, and, finally, the two parts are combined to
predict the user’s preference for an item.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 21

However, the traditional RippleNet recommendation model has the following short-
comings: (1) The knowledge embedding is simple. In the embedding part of the
knowledge graph, a single embedding method is used. The nodes are updated each time,
and the outer nodes of potential preferences are prone to low semantic logic, etc. (2) There
are problems such as user cold start and information cocoon. The AKTUP [21] model fol-
lows the node aggregation mechanism of the RippleNet model to mine user preferences.
Still, the method needs to include the path connection between users and target items and
complexity and can handle large-scale personalized recommendations. Huanqing Cui [22]
et al. proposed a knowledge water wave graph convolutional network (KRGCN) that uses
an end-to-end approach to obtain higher-order semantic information of the knowledge
graph, improves the item feature learning part of the RippleNet model, and uses the con-
volutional graph network to aggregate higher-order domain information of items. Still,
the recommendation results are less interpretable and have the user cold start problem.
Moreover, the above improvements for the RippleNet model mainly consider the accu-
racy aspects of recommendations. Still, with the increase in user demand, users also pay
more and more attention to recommendation diversity and put forward higher require-
ments for mining the relationship between items in personalized recommendations.

3. NRH Recommendation Model
The overall framework of the NRH recommendation model (Node2vec-side and Rip-

pleNet Hybrid Model) is shown in Figure 1, which makes the following innovations com-
pared with the traditional RippleNet model: (1) Improving user portrait construction.
Node2vec-side knowledge representation is introduced by embedding the Ripple set,
which combines the static history portrait and the dynamic preference portrait to form a
new user portrait. (2) Adopting a hybrid prediction approach. The probability values are
calculated separately for the two parts of the user profile, and, finally, the two parts are
combined to predict the user’s preference for an item.

Knowledge
Graph

User
User Click
History Vu

Seed set Hop 1 Hop 2 Hop H

Ripple set S
1
u Ripple set S

2
u Ripple set S H

u

(h,r)→t (h,r)→t (h,r)→t… …

Item
embedding

No
de2

ve-
si

de
em

bed
din

g

cosine_
similarity

SoftmaxRh t
SoftmaxRh t

cosine_
similarity

em
bed

din
g

u1
em

bed
din

g
u2

Dynamic Preference
Portraits

y

Static Historical Portraits
Hybrid Forecastcosine_similarity

Figure 1. NRH recommendation model framework.

The following essential elements make up the basic framework of NRH:
Input: The knowledge network of suggested items and past user behavior data is

input to the NRH model. The user’s previous interactions, including purchases, browsing,
ratings, etc., can be included in the historical behavior data. The items’ properties, tags,
and other features are included in the recommended item knowledge graph.

Figure 1. NRH recommendation model framework.

The following essential elements make up the basic framework of NRH:
Input: The knowledge network of suggested items and past user behavior data is

input to the NRH model. The user’s previous interactions, including purchases, browsing,
ratings, etc., can be included in the historical behavior data. The items’ properties, tags,
and other features are included in the recommended item knowledge graph.

Node and relationship embedding generation: The NRH model uses the Node2vec-
side technique to learn the embedding representation of the knowledge graph’s nodes and
relationships. In the Node2vec algorithm, random wandering on the knowledge graph
produces wandering sequences. There are correlations and similarities between the objects
in these node sequences. The embedded representations of nodes and edges are then
learned after the nodes and edges are processed using relational aggregation, a variety of
wandering algorithms, etc.

User interest representation: The NRH model builds the user interest representation
using the RippleNet algorithm. For feature and representation learning of entities and
association information in the knowledge graph, RippleNet employs attention methods.
The association relationship between users and items is captured by creating a compre-
hensive view of user–item interactions. The static history portrait and dynamic preference

Appl. Sci. 2023, 13, 7903 6 of 20

portrait of users and the association between things are combined. In contrast, the interest
representation of users is fused with the node-embedding representation.

Preference prediction part: The user’s preference for a particular item is forecast by
combining the user’s static history portrait and item portrait. The prediction probability is
calculated, and the score is adjusted to do this. By combining this data, the NRH model
may produce recommendation results that are more precise and individualized.

3.1. Object Portrait Construction

The personalized recommendation system’s term “item portrait” refers to the compre-
hensive description and feature extraction. It can help the recommendation system better
grasp the similarity and correlation among items and realize more thorough and varied
recommendations. On the other hand, it can help the recommendation system better hold
the users’ needs and improve the accuracy and effect of recommendations.

The association between items is typically sparse. Hence the item knowledge graph
in the personalized recommendation method has less network density and less node
aggregation than the classic knowledge graph. On the other hand, attributes function more
autonomously as nodes. The knowledge graph frequently has a graph structure with items
as the core and item attributes as the nodes to grow. Items are the basis of personalized
recommendations, and item attributes are crucial nodes used to explain the qualities and
properties of objects.

This part uses the Node2vec-side knowledge representation to generate item por-
traits, which increases their expressiveness while addressing the peculiarities of knowledge
graphs in the customized recommendation domain. Items and attributes can be used
as nodes in the item–attribute knowledge network employed in the personalized recom-
mendation method. Edges can be used to describe the relationship between items and
attributes. The precise procedure is as follows: First, the item–attribute knowledge graph is
reconfigured into a weighted directed graph following the attributes, and two wandering
strategies are used to separately capture the node information in the knowledge graph
thoroughly following the knowledge graph in the personalized recommendation domain.
It is possible to retrieve the item and attribute vector representation. The subgraphs with
the same relationship are obtained, while the subgraphs with different relationships are
segregated according to the random wandering sequence of nodes. These subgraphs’
head and tail nodes aggregate the associations to produce new feature vectors. These are
merged with the vector representations under the two wandering techniques to create a
high-dimensional vector representation form. The core of this model is based on using
the relational information in the knowledge graph, aggregating the relational subgraphs
through the sequences produced by the wandering process, and combining entity nodes
with relational information to create richer feature vectors. It also uses two different wan-
dering strategies that consider global and local information, respectively, to further capture
the node information in the knowledge graph.

3.2. User Profile Construction

The user profile is a user model formed by extracting user characteristics from different
dimensions based on actual historical user behavior data, which has features of uniqueness,
representativeness, and dynamism. In constructing user portraits based on knowledge
graphs for recommender systems, the problems of “information cocoon” and the novelty
of recommended items can be well solved by fusing the contextual information of entity
nodes and the network space structure and comprehensively improve the performance of
recommendation models. In this section, we propose a user profile representation method
based on historical preferences, which takes user history as the core and constructs two
dimensions from the user dynamic preference profile and user static history profile (as
shown in Figure 2), where the dynamic user preference profile is mainly based on the
RippleNet preference propagation process. The user static history profile is constructed

Appl. Sci. 2023, 13, 7903 7 of 20

by the item profile based on the user’s past behavior data. The final portrait of User u is
obtained by combining the two parts.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 21

3.2. User Profile Construction
The user profile is a user model formed by extracting user characteristics from differ-

ent dimensions based on actual historical user behavior data, which has features of
uniqueness, representativeness, and dynamism. In constructing user portraits based on
knowledge graphs for recommender systems, the problems of “information cocoon” and
the novelty of recommended items can be well solved by fusing the contextual infor-
mation of entity nodes and the network space structure and comprehensively improve
the performance of recommendation models. In this section, we propose a user profile
representation method based on historical preferences, which takes user history as the
core and constructs two dimensions from the user dynamic preference profile and user
static history profile (as shown in Figure 2), where the dynamic user preference profile is
mainly based on the RippleNet preference propagation process. The user static history
profile is constructed by the item profile based on the user’s past behavior data. The final
portrait of User u is obtained by combining the two parts.

User u

User history set

…

User dynamic
preference
portrait

RippleNet Preference Propagation

…

Node2vec-side based item portraits

BFS bias

DFS bias

vector
representation

User static
history portrait

User profiling

Figure 2. User profile modeling based on historical preferences.

3.2.1. User Static History Portrait
To fully exploit users’ historical behavioral data information, this part adopts the

method of portraying users from the feature dimension of items themselves to form static
historical portraits of users. We start the item preference set based on the historical pref-
erences of User u and take the item portraits in this preference set as the static historical
portraits of User u. These portraits are usually relatively stable. Specifically, we first obtain
the item vector v′ after item portrait modeling of the item–attribute knowledge graph in
the recommender system using Node2vec-side and then obtain the historical preference
items uv′ in the set { }0 1u uvv yε = =∣ of User u’s ever-interaction objects according to
Equation (6), and we use the vector sum of historical click items uv′ as the static history
portrait of User u:

uu v′= Σ . (8)

Another study [23] shows that new users are more likely to choose items that are
recommended as “popular”; therefore, for new users who do not have a history of clicks,
we can balance the weights between items with a high number of clicks (popular items)
and items with a low number of clicks (cold items) in the recommendation system (as
shown in Equation (9)). An initial static portrait of the new user is generated. The popular
and cold items in the system are used to make recommendations to predict new users’

Figure 2. User profile modeling based on historical preferences.

3.2.1. User Static History Portrait

To fully exploit users’ historical behavioral data information, this part adopts the method
of portraying users from the feature dimension of items themselves to form static historical
portraits of users. We start the item preference set based on the historical preferences of User u
and take the item portraits in this preference set as the static historical portraits of User u. These
portraits are usually relatively stable. Specifically, we first obtain the item vector v′ after item
portrait modeling of the item–attribute knowledge graph in the recommender system using
Node2vec-side and then obtain the historical preference items v′u in the set ε0

u = {v | yuv = 1}
of User u’s ever-interaction objects according to Equation (6), and we use the vector sum of
historical click items v′u as the static history portrait of User u:

u = Σv′u. (8)

Another study [23] shows that new users are more likely to choose items that are
recommended as “popular”; therefore, for new users who do not have a history of clicks,
we can balance the weights between items with a high number of clicks (popular items) and
items with a low number of clicks (cold items) in the recommendation system (as shown
in Equation (9)). An initial static portrait of the new user is generated. The popular and
cold items in the system are used to make recommendations to predict new users’ interest
preferences as accurately as possible. This method can effectively solve the cold start problem
of new users and improve the accuracy and user experience of the recommender system. Then,

unew =
n

∑
i=1

v′hoti −
n

∑
i=1

v′coldi /α, (9)

where v′hoti is the vector of items ranked i in descending order of click-through popularity,
v′coldi is the vector of items ranked i in descending order of click-through popularity, and α

represents the weight assignment value.

3.2.2. User Dynamic Preference Portraits

The dynamic user preference portrait part is mainly portrayed from the perspective
of neighborhood features of interactive items. The Ripple set (water wave set) Sk

u is
constructed based on the click history vu of a specific User u. Vu is used as the starting
point of preference propagation, propagated outward layer by layer on the item–attribute
knowledge graph to form Ripple set Sk

u(k = 1, 2, · · · , H) for each layer of Hop, where

Appl. Sci. 2023, 13, 7903 8 of 20

Ripple set Sk
u is the user click history set. The Ripple set is the set of triples after preference

propagation by vu. Based on the original RippleNet item vector v1, the item–image v′ based
on Node2vec-side knowledge representation is introduced in the item–image representation
part. The two are aggregated to obtain the item–vector representation v of the dynamic
preference propagation part. The User u and item v information are fused to form the
dynamic user preference image o. The specific process is as follows:

The historical clicked items of User u are recorded as vu in the item–attribute knowl-
edge graph, and the preference-related entity set of historical items vu is thus generated, i.e.,
the preference-related entity set is created for User u in RippleNet by a circular recursive
method, as shown in (10).

εk
u =

{
t | (h, r, t) ∈ G, h ∈ εk−1

u

}
, k = 1, 2, · · · , H, (10)

where ε0
u = Vu = {v | yuv = 1} indicates the set of user history click items.

These entities can be considered preference-related entities of User u in the knowledge
graph based on historical clicks on vu. After defining preference-related entities, all the
K-hop Ripple sets of User u are defined as follows:

Sk
u =

{
(h, r, t) | (h, r, t) ∈ G and h ∈ E k−1

u

}
, k = 1, 2, . . . , H, (11)

In each Hop, an aggregated Embedding is used for item portrait representation. The
original Ripple model computes the correlation probability p1i for each triplet (hi, ri, ti) for
item v1 with head hi and relationship matrix Ri in the original Ripple model, respectively.

p1i = so f tmax
(

vT
1 Ri Hi

)
=

exp
(
v1

TRihi
)

∑ (h, r, t) ∈ S1
uexp(v1

TRh)
, (12)

Additionally, in the item vector v2 modeled using Node2vec-side with the head hi and
relationship ri, the correlation probability p2i for each triplet (hi, ri, ti) is calculated.

p2i = so f tmax
(

cos
(

vT
2 , (hi + ri)

))
=

exp
(
cos
(
vT

2 , (hi + ri)
))

∑ (h, r, t) ∈ S1
uexp

(
cos
(
vT

2 , (hi + ri)
)) , (13)

After obtaining the correlation probabilities, all the tail entities ti in S1
u are multiplied

by the corresponding correlation probabilities p1i and p2i, respectively, returning vectors
o1

1u o1
2u, and where o1

ju (j = 1,2) can be regarded as the first response of User u to the historical
click record of item v, which is used to form the first propagated dynamic preference portrait
of User u.

o1
1u = ∑

(hi ,ri ,ti)∈S1
u

p1iti, (14)

o1
2u = ∑

(hi ,ri ,ti)∈S1
u

p2iti, (15)

o1
u = f

(
o1

1u, o1
2u

)
, (16)

Here the fusion function f (x) is chosen as the linear regression function y = wx + b.
The user dynamic preference portrait vector U can be obtained according to Equation (16)

as follows:
U = o1

u + o2
u + · · · oH

u , (17)

The final image v of the item is obtained by fusing the two item representations v1 and
v2, i.e.,

v = g(v1, v2), (18)

Here, the fusion function g(x) is chosen as the linear regression function g = wx + b,
where the loss function minL of this modular model is

Appl. Sci. 2023, 13, 7903 9 of 20

minL = LRS + LKG + LREG = ∑
(u,v)∈Y

F(ŷuv, yuv) +
λ2
2 ∑

r∈R1

∥∥Ir − E1
TR1E1

∥∥2
2+

λ′2
2 ∑
(hi ,ri ,ti)∈Sk

u

(1− cos(ti, (ri + hi)) +
λ1
2 (‖V1‖2

2 + ‖E1‖2
2+ ∑

r∈R1

‖R1‖2
2 + ‖V2‖2

2 + ‖E2‖2
2 + ∑

r∈R2

‖ri‖2
2)

(19)

where F(ŷuv, yuv) denotes the cross-entropy function; and V1,2, E1,2, and R1,2 denote the
item and knowledge graph entities and relationships under the two item representations,
respectively. The loss function consists of three parts, where LRS denotes the value of
the cross-entropy loss function between the predicted probability and the true value, LKG
denotes the item error in the knowledge graph, and LREG is the L2 regularization to prevent
overfitting of the model.

3.3. Hybrid Forecast

In this section, as shown in Figure 3, the probability values are calculated separately
for the constructed user profiles, and the final recommendation prediction is made by
combining the two probability values. In the Embedding layer, the input data include item
portraits and user portraits; in the preference prediction part, a hybrid recommendation
approach is adopted, i.e., on the one hand, the prediction score ŷuv is calculated based on
the static history portraits of users and item portraits, and on the other hand, the prediction
score ŷ′uv is calculated based on the dynamic preference portraits of users and item portraits;
the target score yuv is continuously optimized, and, finally, the preference score of a user
for a specific item is output in the output layer by combining the two prediction scores.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 21

Input layer

Embedding layer

Output layer

Preferred Forecast

User

……

User history
Item-attribute
knowledge graph

Generate Interaction

User static
history portrait

item portrait
User Dynamic

Preference Portraits
item portrait

Preferred Propagation
Tier 1

Preferred Propagation
Tier 2

Preferred Propagation
Tier n

……
United

Feedback

ˆuvyPredicted scores ˆuvy Predicted scoresuvy Training
Target scores

ˆuvy

Figure 3. Framework diagram of NRH recommendation model.

The core part of the NRH recommendation model is preference prediction. First, the
Node2vec-side knowledge representation is used to construct the item–attribute
knowledge graph for the item portrait. Then the static history portrait of the user is built
based on the user’s historical click data, and the prediction probability ˆuvy ′ is obtained by
calculating the cosine similarity between the static history portrait vector of User u and
item vector v. Moreover, the parameter β is set to adjust the score. The prediction score

1scores is obtained as follows:

()1 ˆ ,uvscores y cos u v β′ ′= = − , (20)

where β represents the score adjustment parameter, which can be adjusted according
to different recommended data.

Secondly, the single knowledge representation model is changed in the dynamic
preference prediction part. The item portrait based on Node2vec-side knowledge repre-
sentation is added. The knowledge representation of each node and relationship is ob-
tained based on the knowledge graph, and the tail node is predicted in the Ripple set using
cosine similarity. After that, the dynamic preference portrait of User u is then obtained by
preference propagation iterations based on the Hop count and feedback to update the
portrait of item v. The predicted click probability ˆuvy and score 2scores are output by
combining User u and item v as follows:

()2 ˆscores T
uvy U vσ= = , (21)

where

1()
1 exp()

x
x

σ =
+ −

, (22)

The NRH recommendation model takes User u and item v as initial data input, re-
spectively, and finally obtains the click probability (preference score) of User u on item v.
Combining (20) and (21) yields the combined prediction score scores of User u for item v:

2 1 scores = (1-) scores + scoresα α , (23)

Figure 3. Framework diagram of NRH recommendation model.

The core part of the NRH recommendation model is preference prediction. First, the
Node2vec-side knowledge representation is used to construct the item–attribute knowledge
graph for the item portrait. Then the static history portrait of the user is built based on the user’s
historical click data, and the prediction probability ŷ′uv is obtained by calculating the cosine
similarity between the static history portrait vector of User u and item vector v. Moreover, the
parameter β is set to adjust the score. The prediction score scores1 is obtained as follows:

scores1 = ŷ′uv = cos
(
u, v′

)
− β, (20)

where β represents the score adjustment parameter, which can be adjusted according to
different recommended data.

Appl. Sci. 2023, 13, 7903 10 of 20

Secondly, the single knowledge representation model is changed in the dynamic prefer-
ence prediction part. The item portrait based on Node2vec-side knowledge representation is
added. The knowledge representation of each node and relationship is obtained based on the
knowledge graph, and the tail node is predicted in the Ripple set using cosine similarity. After
that, the dynamic preference portrait of User u is then obtained by preference propagation
iterations based on the Hop count and feedback to update the portrait of item v. The predicted
click probability ŷuv and score scores2 are output by combining User u and item v as follows:

scores2 = ŷuv = σ
(

UTv
)

, (21)

where
σ(x) =

1
1 + exp(−x)

, (22)

The NRH recommendation model takes User u and item v as initial data input, re-
spectively, and finally obtains the click probability (preference score) of User u on item v.
Combining (20) and (21) yields the combined prediction score scores of User u for item v:

scores = (1− α)scores2 + αscores1, (23)

where if scores ≥ 0.5, the model can recommend item v to User u. If scores < 0.5, the model
will not recommend item v to User u. Specifically, the algorithm for NRH is described as
Algorithm 1 follows:

Algorithm 1 NRH algorithm

Input: recommendation item knowledge graph triad set N, user history data click_history.
Output: recommendation_list
Initialization: set random walk parameters: p, q, implicit feedback parameters: α; set model
hyperparameters: embedding_dimension, walk_length, num_walks, window_size, epochs
1. Build item–attribute knowledge graph.

(a) Initialize the graph: graph = EmptyGraph()
(b) Initialize item attribute data: item_list = get_item_list(N); item_attributes =
get_item_attributes(item_list, N)
(c) add item nodes: for item in item_attributes: graph.add_node(item, ‘item’)
(d) add attribute node: for attribute in attributes: graph.add_node(attribute, ‘attribute’)
(e) associate item and attribute: for item, attribute in item_attributes:
graph.add_edge(item, attribute)

2. Item portrait construction:
(a) Construct item vector by Node2vec-side algorithm: v2 = Node2vec_side(graph, p, q,
walk_length, num_walks)

3. Construct a static history portrait of the user:
(a) initialize user static history vector: user_static_profile =
initialize_embeddings(embedding_dimension)
(b) for user in click_history.

for item in click_history [user].
item_embedding = v2 [item]
user_static_profile [user] + = item_embedding

user_static_profile [user] = user_embeddings[user] − cold_item_embedding
4. User preference propagation:

(a) Initialize the user dynamic preference profile: user_dynamic_profile = {}
(b) Update the profile according to user preference propagation: user_dynamic_profile,
v1 = RippleNet(user_static_profile, v2, click_history)

(c) User profile construction: user_embeddings = User_profile_construction(user_static_profile,
user_dynamic_profile)

(d) Item portrait update: item_embeddings = Item_portrait_fusion(v1,v2)

Appl. Sci. 2023, 13, 7903 11 of 20

Algorithm 1 Cont.

5. Predict preference scores.
(a) initialize recommendation score: recommendation_scores = {}
(b) for user in user_embeddings.

for item in item_list.
if item not in click_history[user].

user_embedding = user_embeddings[user]
item_embedding = item_embeddings[item]
score = compute_score(user_embedding, item_embedding)
recommendation_scores[(user, item)] = score

6. Generate recommendation results.
(a) Sort by recommendation score: recommendation_list =
sort_recommendations(recommendation_scores)

7. Return the recommendation results recommendation_list.

4. Experiments
4.1. Dataset

In the experiments of this paper, as shown in Table 1, the following three public
datasets, namely, MovieLens-1M, Book-Crossing, and Last.FM, were utilized, and the item
knowledge graph constructed in the datasets was used.

Table 1. Basic statistical information of the dataset.

Dataset #Users #Items #Interaction #Triples #Entities #Relationship

MovieLens-1M 6036 2445 753,772 1,241,995 182,011 12
Book-Crossing 17,860 14,967 139,746 151,500 77,903 25

Last.FM 1872 3846 42,346 15,518 9366 60

MovieLens-1M is a public dataset on movie recommendations, which includes
1,000,209 rating data from 6040 users and 3706 movies. The corresponding knowledge
graph contains 1,241,995 triples with 182,011 entities and 12 relationships.

Book-Crossing is a public dataset on book recommendations, including 1,149,780 ratings
data from 105,283 users and 340,555 books. The corresponding knowledge graph contains
151,500 triples with 77,903 entities and 25 relationships.

Last.FM is a public dataset on music recommendations, including 92,834 rating data
from 1892 users and 17,632 artists, and the corresponding knowledge graph contains
15,518 triples with 9366 entities with 60 relations.

4.2. Experimental Environment and Evaluation Index

The operating system used for the experiments was ubuntu, version Ubuntu 22.04.2 LTS,
and the experimental environment used included cuda10.2, python3.8.13, torch1.10.1 + cu102,
numpy1.23.5, etc. The values of the NRH model parameters are given in Table 2, where d
denotes the vector dimension, H represents the Hop count, lr indicates the learning rate, λ1
denotes the weight of the l2 regularization term, λ2 denotes the weight of the KGE term,
λ′2 denotes the weight of the Node2vec-side term, and α denotes the weight of the mixed
recommendation mode module. In this paper, each dataset was processed. Each dataset was
divided into three parts, namely, training set, validation set, and test set, and the optimal
results were selected after conducting five experiments.

Appl. Sci. 2023, 13, 7903 12 of 20

Table 2. Hyperparameters of the NRH recommended model.

Dataset d H λ1 λ2 λ’
2 α lr

MovieLens-1M 32 2 1 × 10−7 1 × 10−2 1 × 10−5 0.4 0.02
Book-Crossing 16 3 1 × 10−7 1 × 10−2 1 × 10−5 0.6 0.025

Last.FM 32 2 1 × 10−7 1 × 10−2 1 × 10−4 0.3 0.01

The recommendation accuracy comparison experiment used ACC (accuracy) and AUC
(area under curve) as evaluation metrics. Among them, ACC denotes the accuracy rate of
recommendation, and AUC indicates the area under the ROC curve with the coordinate
axes, taking values between 0.5 and 1. The ROC graph is generally used to judge the merits
of binary classifiers, and a graph with FPR (false positive rate) as the horizontal coordinate
and TPR (actual positive rate) as the vertical coordinate is obtained, and the larger the
AUC value, the better the overall recommendation ability of the algorithm, where the ACC
values are calculated as follows:

ACC =
TP + TN

N
, (24)

where TP (true positive) indicates that the positive cases are correctly classified as positive
cases, TN (true negative) indicates that the negative cases are correctly classified as negative
cases, TP + TN indicates the total number of correctly predicted cases in the test sample,
and N represents the number of samples tested.

Recommendation diversity is used to measure the variation of items in the user
recommendation list. In this paper, the type (genre) of items was used as the basis for
classification, and the diversity value was used as the evaluation index for the experiment.
Among them, the formula of diversity is shown as follows:

diversity =
series_count(N)

N
, (25)

Information on the dataset used for the recommendation diversity experiment is given
in Table 3. N denotes the first N items in the user recommendation list, and series_count
(N) represents the number of item types (genres) in N items. In the movie, book, and music
recommendation datasets, different numbers of objects were selected according to the item
types (genres) and targeted to the user groups in the system. Suppose N = 10 and User u has
10 items in their recommendation list, which covers 6 different item types (genres); then the
following calculation is conducted according to the above formula: diversity = 6/10 = 0.6. This
means that the recommendation system has a recommendation diversity value of 0.6 for this
user, which indicates that the percentage of item types in the recommendation results is 60%
with some diversity. Using this item type-based classification basis, the diversity of item types
in the recommendation results can be measured. By calculating the diversity value, it is possible
to evaluate whether the system can provide diverse item types during the recommendation
process and thus judge the performance of the model in terms of recommendation diversity.

Table 3. Basic statistical information about the dataset.

Dataset #Series #Items #Top_N

MovieLens-1M 30 47,137 10
Book-Crossing 56 2568 10

Last.FM 34 66 20

4.3. Experimental Results and Analysis
4.3.1. Recommended Accuracy

In this section, we constructed recommendation experiments using NRH recommen-
dation models based on the knowledge graphs provided by movie, book, and music

Appl. Sci. 2023, 13, 7903 13 of 20

recommendation datasets using current mainstream recommendation algorithms as com-
parisons, including the knowledge-embedding independent learning-based recommen-
dation algorithms CKE and DKN; meta-path-based recommendation algorithms such as
PER [17]; classical recommendation algorithms such as LibFM [24] and Wide&Deep [25];
and the knowledge graph-based recommendation algorithms RippleNet model, MKR [26],
KGAT [19], KGNN-LS [27], KGCN [28], and CKAN [29]. Knowledge ripple graph con-
volutional network (KRGCN) was used as a control group. KRGCN introduced graph
convolutional aggregation based on the RippleNet model based on the introduction of
graph convolutional aggregation information; a partial explanation of the comparison
model is shown below, and the experimental results are shown in Table 4:

1. LibFM: a feature-based factorization model for CTR scenarios that take as inputs to the
model the user ID and item ID and the corresponding entity embedding connections
learned through the TransR algorithm.

2. DKN: a framework for news recommendations using knowledge graphs. It treats
entity embeddings and word embeddings as multiple channels and combines them in
a convolutional neural network for click-through rate prediction.

3. KGNN-LS (knowledge-aware graph neural networks with label smoothness regu-
larization for recommender systems): a graph neural network model that uses label
smoothness loss as a regularization term to prevent the model from overfitting. The
model’s parameters are as follows: epoch is 15, the number of adjacent samples
considered is 16, dim is 32, the regularization term coefficient is 0.0001, and lr is 0.024.

4. KGCN: a model for mining the importance of items in the knowledge graph using
graph neural networks. The parameters of the model in the experiment are as fol-
lows: epoch is 10, the number of adjacent samples considered is 4, dim is 32, the
regularization term coefficient is 0.0001, and lr is 0.02.

5. MKR: a deep end-to-end framework that uses alternate learning to assist recom-
mendation tasks using knowledge graph embedding tasks. The experiment model
parameters are as follows: epoch is 20, dim is 8, regularization term coefficient is
0.00001, recommendation task lr is 0.02, and knowledge graph learning task lr is 0.01.

6. CKAN (collaborative knowledge-aware attentive network for recommender systems):
a collaborative knowledge-aware attentive network model that uses a heterogeneous
propagation strategy to encode knowledge attribute associations and user–item syner-
gistic signals.

Table 4. Comparison of AUC and ACC of different models under each dataset.

Model
MovieLens-1M Book-Crossing Last.FM

AUC ACC AUC ACC AUC ACC

CKE 0.796 (−14.1%) 0.739 (−13.9%) 0.674 (−10.1%) 0.635 (−10.9%) 0.744 (−10.9%) 0.673 (−12.0%)
DKN 0.655 (−29.5%) 0.589 (−31.4%) 0.621 (−17.1%) 0.580 (−18.7%) 0.602 (−27.9%) 0.581 (−24.1%)
PER 0.712 (−23.4%) 0.667 (−22.3%) 0.623 (−16.8%) 0.588 (−17.5%) 0.633 (−24.2%) 0.596 (−22.1%)

LibFM 0.892 (−4.0%) 0.812 (−5.4%) 0.685 (−8.5%) 0.639 (−10.4%) 0.777 (−6.9%) 0.709 (−7.3%)
Wide&Deep 0.903 (−2.8%) 0.822 (−4.2%) 0.711 (−5.1%) 0.623 (−12.6%) 0.756 (−9.5%) 0.688 (−10.1%)

MKR 0.917 (−1.3%) 0.843 (−1.8%) 0.734 (−2.0%) 0.682 (−4.4%) 0.795 (−4.8%) 0.730 (−4.6%)
RippleNet 0.921 (−0.9%) 0.844 (−1.6%) 0.729 (−2.7%) 0.662 (−7.2%) 0.768 (−8.0%) 0.691 (−9.7%)

KGAT 0.872 (−6.2%) 0.802 (−6.5%) 0.651 (−13.1%) 0.624 (−12.5%) 0.716 (−14.3%) 0.647 (−15.4%)
KGNN-LS 0.913 (−1.8%) 0.840 (−2.1%) 0.689 (−8.1%) 0.635 (−10.9%) 0.795 (−4.8%) 0.726 (−5.1%)

KGCN 0.907 (−2.4%) 0.831 (−3.2%) 0.694 (−7.3%) 0.635 (−10.9%) 0.794 (−4.9%) 0.723 (−5.5%)
CKAN 0.915 (−1.5%) 0.840 (−2.1%) 0.738 (−1.5%) 0.655 (−8.1%) 0.831 (−0.8%) 0.744 (−2.9%)

KRGCN 0.903 (−2.8%) 0.841 (−2.0%) 0.730 (−2.5%) 0.666 (−6.6%) 0.805 (−3.6%) 0.738 (−3.5%)
NRH 0.929 0.858 0.743 0.713 0.837 0.765

In this paper, we tested the performance of different recommendation algorithms un-
der three datasets, as shown in Table 4. Compared with other mainstream recommendation
algorithms, the AUC and ACC of the NRH recommendation model were better under the

Appl. Sci. 2023, 13, 7903 14 of 20

three datasets. The main reason is that the model adopts the Node2vec-side algorithm for
item portrait modeling, profoundly explores the association relationship between items,
divides the user portrait into two parts (static history portrait and dynamic preference
portrait), and uses hybrid recommendations to enhance the accuracy of recommendations.

By comparing the experimental results, it was found that compared to the traditional
recommendation algorithms CKE and DKN that adopt the translation model (Trans series)
as the representative knowledge-based embedding, MovieLens-1M and NRH improved the
AUC and ACC metrics by 13 percentage points and 12 percentage points, respectively, com-
pared with CKE, and they improved the AUC and ACC metrics by 27 percentage points,
respectively, compared with DKN. This may be because CKE adopts a translation-based
model as its knowledge representation, which uses independent learning to represent
knowledge graph entities and relationships, thus ignoring the network structure character-
istics of the knowledge graph itself and making it challenging to discover the correlation
relationships among entities. At the same time, DKN was initially applied in the field
of long-text news recommendation and tends to analyze text content only when the text
content contained in the entities is long enough to ensure its recommendation accuracy. In
the experimental dataset involving entities, relationships, and attributes with short ranges,
DKN cannot obtain valuable information, which also causes its results to be biased.

Compared with the MKR model, the model in this paper effectively exploits the neigh-
borhood relationships among entities in the knowledge graph and can extract user features
effectively compared with the KGCN model. In addition, although KGAT overlays multiple
attentional embedding propagation layers to convey embedding information, KGAT cannot
capture the complex semantics of user–item connections, so its performance is inferior to
that of KGCN, RippleNet, KRGCN, and NRH. The NRH recommendation model is more
effective than the original model regarding recommendation results, as it improves the
item feature learning part of the RippleNet model by using a graph convolutional network
to aggregate higher-order items. The NRH uses Node2vec-side knowledge representation
to construct user portraits and fully explores the association relationship between entities
through little random wandering, taking into account the homogeneity and isomorphism of
nodes in the knowledge graph, reducing the impact of localization of user portrait update
in the original model, and making the recommendation results more accurate. CKAN
generates recommendations using collaborative filtering techniques. However, standard
collaborative filtering techniques may not effectively capture the user’s preferences and
interests when the user–item interaction data are sparse. As a result, in sparse data, the
recommendation effectiveness of CKAN may be constrained. In this study, NRH employed
a hybrid recommendation model that could effectively capture users’ preferences and
interests and produce more individualized recommendations to perform better in the face
of scant user activity data.

4.3.2. Recommended Diversity

The current research on personalized recommendation algorithms mainly focused on
improving recommendation accuracy, the lack of which leads to the frequent appearance of
similar types of items and quickly causes the “information cocoon” problem. In this section,
according to the experimental environment and metrics in Section 4.2, an experimental
study on the diversity of recommended items was conducted. The comparison model was
the original RippleNet model, and the experimental results under three datasets are shown
in Figure 4.

The experimental results demonstrated that the NRH recommendation model pro-
vides more diverse recommendations than the conventional RippleNet. Typically, users
are distributed across both recommendation models. Nevertheless, the overall standard
distribution curve of users under the NRH recommendation model was displaced to the
right relative to RippleNet, indicating that when making recommendations to users, the
NRH recommendation model tends to be more item-centric. Diversity, precisely the static
history portrait, can more accurately characterize users’ long-term interests and prefer-

Appl. Sci. 2023, 13, 7903 15 of 20

ences. In contrast, the dynamic preference portrait can more accurately reflect the users’
short-term preferences and changing trends, and the combination of the two can more
accurately describe the users’ interests and requirements. In addition, the separation pro-
cessing of user portraits enables the NRH model to manage users’ historical and current
behaviors better, avoiding some unnecessary interference and increasing the diversity of
recommendation outputs.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21

features effectively compared with the KGCN model. In addition, although KGAT over-
lays multiple attentional embedding propagation layers to convey embedding infor-
mation, KGAT cannot capture the complex semantics of user–item connections, so its per-
formance is inferior to that of KGCN, RippleNet, KRGCN, and NRH. The NRH recom-
mendation model is more effective than the original model regarding recommendation
results, as it improves the item feature learning part of the RippleNet model by using a
graph convolutional network to aggregate higher-order items. The NRH uses Node2vec-
side knowledge representation to construct user portraits and fully explores the associa-
tion relationship between entities through little random wandering, taking into account
the homogeneity and isomorphism of nodes in the knowledge graph, reducing the impact
of localization of user portrait update in the original model, and making the recommen-
dation results more accurate. CKAN generates recommendations using collaborative fil-
tering techniques. However, standard collaborative filtering techniques may not effec-
tively capture the user’s preferences and interests when the user–item interaction data are
sparse. As a result, in sparse data, the recommendation effectiveness of CKAN may be
constrained. In this study, NRH employed a hybrid recommendation model that could
effectively capture users’ preferences and interests and produce more individualized rec-
ommendations to perform better in the face of scant user activity data.

4.3.2. Recommended Diversity
The current research on personalized recommendation algorithms mainly focused

on improving recommendation accuracy, the lack of which leads to the frequent appear-
ance of similar types of items and quickly causes the “information cocoon” problem. In
this section, according to the experimental environment and metrics in Section 4.2, an ex-
perimental study on the diversity of recommended items was conducted. The comparison
model was the original RippleNet model, and the experimental results under three da-
tasets are shown in Figure 4.

(a) (b)

(c)

Figure 4. Experimental results of diversity under each dataset: (a) experimental results of MovieLens-
1M; (b) experimental results of Book-Crossing; (c) experimental results of Last.FM.

According to the box plots in Figure 5, NRH outperformed RippleNet in terms of
diversity of recommendation results, as shown by the fact that the median line and box
height of NRH boxes were much more significant than RippleNet in the three datasets.
The Book-Crossing dataset showed that NRH had a wider variety of box top and bottom
edges, indicating a more substantial diversity difference. The recommendation results also
spanned a more comprehensive range of genres. The box plot shows that the NRH box
length in the MovieLens-1M dataset was comparable to RippleNet. However, the NRH
box’s upper and lower edges are more significant than RippleNet’s, suggesting that NRH’s
recommendation results contained more high-scoring data points than RippleNet’s. This
indicates that NRH has an advantage over RippleNet regarding suggestion variety. In
comparison, RippleNet’s lower upper and lower box margins may suggest that some of
the recommendation results contained data points with lower scores or some outliers, lead-
ing to a significantly lower level of suggestion quality. NRH includes a disproportionate
number of outlier points in the Last.FM dataset, which suggests that the recommendation
results have more rare or uncommon types. The Last.FM dataset, which deals with music
recommendations, includes people with vastly different musical tastes, which could be
a contributing factor. Due to this variation, it may be challenging for the NRH model to
faithfully represent all users’ tastes, resulting in some uncommon or odd suggestions. To

Appl. Sci. 2023, 13, 7903 16 of 20

improve the diversity of recommendation results, NRH uses Node2vec-side for item por-
trait representation and network structure information to learn node embeddings, keeping
the distance between neighboring nodes in the embedding space as close as possible.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21

Figure 4. Experimental results of diversity under each dataset: (a) experimental results of Mov-
ieLens-1M; (b) experimental results of Book-Crossing; (c) experimental results of Last.FM.

The experimental results demonstrated that the NRH recommendation model pro-
vides more diverse recommendations than the conventional RippleNet. Typically, users
are distributed across both recommendation models. Nevertheless, the overall standard
distribution curve of users under the NRH recommendation model was displaced to the
right relative to RippleNet, indicating that when making recommendations to users, the
NRH recommendation model tends to be more item-centric. Diversity, precisely the static
history portrait, can more accurately characterize users’ long-term interests and prefer-
ences. In contrast, the dynamic preference portrait can more accurately reflect the users’
short-term preferences and changing trends, and the combination of the two can more
accurately describe the users’ interests and requirements. In addition, the separation pro-
cessing of user portraits enables the NRH model to manage users’ historical and current
behaviors better, avoiding some unnecessary interference and increasing the diversity of
recommendation outputs.

According to the box plots in Figure 5, NRH outperformed RippleNet in terms of
diversity of recommendation results, as shown by the fact that the median line and box
height of NRH boxes were much more significant than RippleNet in the three datasets.
The Book-Crossing dataset showed that NRH had a wider variety of box top and bottom
edges, indicating a more substantial diversity difference. The recommendation results
also spanned a more comprehensive range of genres. The box plot shows that the NRH
box length in the MovieLens-1M dataset was comparable to RippleNet. However, the
NRH box’s upper and lower edges are more significant than RippleNet’s, suggesting that
NRH’s recommendation results contained more high-scoring data points than Rip-
pleNet’s. This indicates that NRH has an advantage over RippleNet regarding suggestion
variety. In comparison, RippleNet’s lower upper and lower box margins may suggest that
some of the recommendation results contained data points with lower scores or some out-
liers, leading to a significantly lower level of suggestion quality. NRH includes a dispro-
portionate number of outlier points in the Last.FM dataset, which suggests that the rec-
ommendation results have more rare or uncommon types. The Last.FM dataset, which
deals with music recommendations, includes people with vastly different musical tastes,
which could be a contributing factor. Due to this variation, it may be challenging for the
NRH model to faithfully represent all users’ tastes, resulting in some uncommon or odd
suggestions. To improve the diversity of recommendation results, NRH uses Node2vec-
side for item portrait representation and network structure information to learn node em-
beddings, keeping the distance between neighboring nodes in the embedding space as
close as possible.

Figure 5. Comparison of RippleNet and NRH recommended diversity. Figure 5. Comparison of RippleNet and NRH recommended diversity.

4.4. Ablation Experiments

Table 5 illustrates the impact of various components on the model’s recommendation
performance. The Node2vec-side knowledge representation, static history portrait of
users, and hybrid push mode affected the model’s recommendation performance. In the
case of RippleNet-based recommendations, the introduction of Node2vec-side knowledge
representation improved the average accuracy and AUC by 0.89 and 0.72 percentage points,
respectively, on the three datasets. This is likely because the model could better capture the
relationship and contextual information between nodes after introducing Node2vec-side
knowledge representation. The average precision and AUC of the model improved by 2.94
and 1.24 percentage points, respectively, after introducing both Node2vec-side knowledge
representation and a static history portrait of users. This is likely because the introduction
of a static history portrait of users could fully account for the historical behaviors and
preferences of users. After incorporating Node2vec-side knowledge representation and
the hybrid recommendation model, the average accuracy and AUC of the model increased
by 4.64 and 2.24 percentage points, respectively. The hybrid recommendation model may
provide more complete and accurate results. The diversity and scope of recommendations
can be expanded by combining multiple methods.

Table 5. Effect of different components on model recommendation results.

Modules MovieLens-1M Book-Crossing Last.FM

Node2vec-Side Static
Portrait

Hybrid
Forecast AUC ACC AUC ACC AUC ACC

√
0.923 0.845 0.734 0.670 0.778 0.701√ √
0.925 0.850 0.737 0.686 0.786 0.722√ √
0.927 0.851 0.735 0.696 0.809 0.746√ √ √
0.930 0.856 0.742 0.711 0.835 0.753

4.5. Hyperparametric Analysis

In this section, we focus on the effects of the parameters Hop and α on the model in
NRH. As can be seen in Figure 6, the higher the Hop value, the better. For the MovieLens-
1M dataset and the Last.FM dataset, the model performed best when Hop was at 2 (i.e.,
when the number of jumps was at two hops), while the Book-Crossing dataset was at a Hop
value of 3. The best results are recommended. It can be seen from Figure 7 that the model

Appl. Sci. 2023, 13, 7903 17 of 20

performed best under different datasets with different α, indicating that the weighting of
the two recommendation methods had additional adaptability and did not work best under
the average distribution. Additionally, according to the experiments, α had different effects
on the recommendation performance of other datasets. FM was more influenced by α.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 21

4.4. Ablation Experiments
Table 5 illustrates the impact of various components on the model’s recommendation

performance. The Node2vec-side knowledge representation, static history portrait of us-
ers, and hybrid push mode affected the model’s recommendation performance. In the case
of RippleNet-based recommendations, the introduction of Node2vec-side knowledge rep-
resentation improved the average accuracy and AUC by 0.89 and 0.72 percentage points,
respectively, on the three datasets. This is likely because the model could better capture
the relationship and contextual information between nodes after introducing Node2vec-
side knowledge representation. The average precision and AUC of the model improved
by 2.94 and 1.24 percentage points, respectively, after introducing both Node2vec-side
knowledge representation and a static history portrait of users. This is likely because the
introduction of a static history portrait of users could fully account for the historical be-
haviors and preferences of users. After incorporating Node2vec-side knowledge repre-
sentation and the hybrid recommendation model, the average accuracy and AUC of the
model increased by 4.64 and 2.24 percentage points, respectively. The hybrid recommen-
dation model may provide more complete and accurate results. The diversity and scope
of recommendations can be expanded by combining multiple methods.

Table 5. Effect of different components on model recommendation results.

Modules MovieLens-1M Book-Crossing Last.FM
Node2vec-Side Static Portrait Hybrid Forecast AUC ACC AUC ACC AUC ACC

√ 0.923 0.845 0.734 0.670 0.778 0.701
√ √ 0.925 0.850 0.737 0.686 0.786 0.722
√ √ 0.927 0.851 0.735 0.696 0.809 0.746
√ √ √ 0.930 0.856 0.742 0.711 0.835 0.753

4.5. Hyperparametric Analysis
In this section, we focus on the effects of the parameters Hop and α on the model in

NRH. As can be seen in Figure 6, the higher the Hop value, the better. For the MovieLens-
1M dataset and the Last.FM dataset, the model performed best when Hop was at 2 (i.e.,
when the number of jumps was at two hops), while the Book-Crossing dataset was at a
Hop value of 3. The best results are recommended. It can be seen from Figure 7 that the
model performed best under different datasets with different α, indicating that the
weighting of the two recommendation methods had additional adaptability and did not
work best under the average distribution. Additionally, according to the experiments, α
had different effects on the recommendation performance of other datasets. FM was more
influenced by α.

(a) (b)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 21

(c)

Figure 6. AUC and ACC for different Hop: (a) experimental results of MovieLens-1M; (b) experi-
mental results of Book-Crossing; (c) experimental results of Last.FM.

(a) (b)

Figure 7. AUC and ACC of different α: (a) AUC for different α under each dataset; (b) ACC for
different α under each dataset.

4.6. Time Complexity Analysis
The time cost of NRH is mainly composed of two parts, namely, preprocessing and

model training, where the preprocessing part primarily uses Node2vec-side for the con-
struction of item portraits, and node2vec-side fused knowledge representation adds rela-
tional representation and diversified wandering strategies based on Node2vec. The aver-
age time complexity of node2vec random sampling for each sampling point is

()
O

k l
l

k

 −

, the time complexity of the skip-gram part using hierarchical softmax opti-

mization is ()2log vO N , and the time complexity of the relational aggregation part is

()vO rlN . The time complexity of the Node2vec-side preprocessing stage is

22log2
)

2
(v

v
vO lN rlN

k l
N

k

+ + −
 under the case of using two wandering strategies: l de-

notes the length of random wandering, k means the number of domain nodes, vN repre-
sents the number of nodes, and r represents the random wandering number of times. The
model training part was mainly combined with RippleNet for update iterations, so the

Figure 6. AUC and ACC for different Hop: (a) experimental results of MovieLens-1M; (b) experimen-
tal results of Book-Crossing; (c) experimental results of Last.FM.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 21

(c)

Figure 6. AUC and ACC for different Hop: (a) experimental results of MovieLens-1M; (b) experi-
mental results of Book-Crossing; (c) experimental results of Last.FM.

(a) (b)

Figure 7. AUC and ACC of different α: (a) AUC for different α under each dataset; (b) ACC for
different α under each dataset.

4.6. Time Complexity Analysis
The time cost of NRH is mainly composed of two parts, namely, preprocessing and

model training, where the preprocessing part primarily uses Node2vec-side for the con-
struction of item portraits, and node2vec-side fused knowledge representation adds rela-
tional representation and diversified wandering strategies based on Node2vec. The aver-
age time complexity of node2vec random sampling for each sampling point is

()
O

k l
l

k

 −

, the time complexity of the skip-gram part using hierarchical softmax opti-

mization is ()2log vO N , and the time complexity of the relational aggregation part is

()vO rlN . The time complexity of the Node2vec-side preprocessing stage is

22log2
)

2
(v

v
vO lN rlN

k l
N

k

+ + −
 under the case of using two wandering strategies: l de-

notes the length of random wandering, k means the number of domain nodes, vN repre-
sents the number of nodes, and r represents the random wandering number of times. The
model training part was mainly combined with RippleNet for update iterations, so the

Figure 7. AUC and ACC of different α: (a) AUC for different α under each dataset; (b) ACC for
different α under each dataset.

Appl. Sci. 2023, 13, 7903 18 of 20

4.6. Time Complexity Analysis

The time cost of NRH is mainly composed of two parts, namely, preprocessing and
model training, where the preprocessing part primarily uses Node2vec-side for the construc-
tion of item portraits, and node2vec-side fused knowledge representation adds relational
representation and diversified wandering strategies based on Node2vec. The average time
complexity of node2vec random sampling for each sampling point is O

(
l

k(l−k)

)
, the time

complexity of the skip-gram part using hierarchical softmax optimization is O(log2 Nv),
and the time complexity of the relational aggregation part is O(rlNv). The time complexity
of the Node2vec-side preprocessing stage is O

(
2lNv

k(l−k) + 2 log2 Nv + 2rlNv

)
under the case

of using two wandering strategies: l denotes the length of random wandering, k means
the number of domain nodes, Nv represents the number of nodes, and r represents the
random wandering number of times. The model training part was mainly combined with
RippleNet for update iterations, so the time complexity was similar to RippleNet, and the
average running time comparison between NRH and RippleNet is given in Table 6.

Table 6. Comparison of time consumption of NRH and RippleNet models.

Dataset Model Preprocessing (s)
Training Time(s)

Total Time (s)Average Per
Epoch Epochs Training Cost

MovieLens-1M
RippleNet 5.81 11.27 60 676.2 682.01

NRH 496.83 11.85 20 237 733.83

Book-Crossing RippleNet 2.48 2.06 50 103 105.48
NRH 796.41 2.21 20 44.2 840.61

Last.FM
RippleNet 0.21 0.54 30 16.2 16.41

NRH 14.40 0.54 10 5.4 19.8

Compared to the RippleNet model, NRH has some drawbacks regarding temporal
complexity. The NRH model introduces a Node2vec-side item painting representation
stage, which increases the preprocessing part of the model time cost but in the model
training stage, which is the main reason why the preprocessing time of the NRH model is
substantially longer than that of the RippleNet model. However, adding Node2vec-side
item pictures does not increase the processing time NRH. However, it can lower the number
of training epochs, which can be considered in the future to enhance the NRH model’s
preprocessing procedure and decrease the preprocessing time overhead.

5. Conclusions

In user portrait localization, the conventional RippleNet recommendation model
changes the user preference set by randomly selecting favored items. In contrast, the
suggested NRH recommendation model deeply examines the association relationship
between items and leverages Node2vec-side for item portrait modeling. In contrast, the
static history portrait and dynamic preference portrait based on user history information
are separated during the user portrait construction stage, which is beneficial in removing
the issue with the localization of user portrait updates. A hybrid recommendation method
based on collaborative item filtering and knowledge graph can solve the localization
problem of traditional user profile updates and improve the accuracy and variety of
personalized recommendations. The user profile construction stage is divided into two
parts based on user history information, static history profiles, and dynamic preference
profiles. The deep association relationships between nodes can be better explored using the
NRH model proposed in this research. This model is primarily applicable to personalized
recommendation situations that need to balance diversity and accuracy, such as fields for
music and movie recommendations.

Appl. Sci. 2023, 13, 7903 19 of 20

Nevertheless, this study also identifies some NRH flaws. Due to the complex structure
of the model and the increase in the number of parameters, NRH models have a higher
computational cost and complexity than traditional models. In addition, NRH models
have unique requirements for feature engineering and pre-processing steps, which may
significantly increase computational resources and time overhead when applying NRH
models to large datasets. The NRH model’s performance could suffer if the suggestion
data are erratic or not closely aligned with user preferences. To ensure the accuracy and
reliability of the recommendation data, thorough data cleaning and feature selection must
be made before NRH models are used. Additionally, NRH models are challenging to
interpret and must inform users how to evaluate recommendations. Further, many domain
and dataset features may impact NRH performance.

We can think about further mining the knowledge graph node information, mining
the association relationship between nodes by adding more node features, optimizing
and accelerating the training and recommendation process of the model to reduce the
computational cost and time overhead, allowing users to understand the reason for and
basis of recommendation results using visualization and user interface design, etc., as
well as performing cross-domain. Additionally, we take into account enhancing user
involvement and feedback methods as well as modifying models through active learning to
match users’ unique demands. Last, we concentrate on algorithm fairness, create suitable
assessment measures and fairness constraints, and minimize bias against particular users
or items.

Author Contributions: W.N. designed the proposed method and wrote the paper; W.N. and H.L.
wrote the code and performed the experiments; W.N. and X.M. analyzed the data; Y.D. modified
the paper and offered support. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Double-class Special Project on Cyberspace Security and
Law Enforcement Technology of the Chinese People’s Public Security University (2023SYL07).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the Major Project of Basic Research Business Fund of People’s
Public Security University of China in 2021 (2021JKF105) and the Project of Building a High-level
Non-Staff Institution of People’s Public Security University of China (2021FZB13) for covering the costs
to publish open access and the costs incurred when writing this study. In addition, the authors thank the
anonymous reviewers for their insightful comments that helped improve the quality of this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Warren, J.; Marz, N. Big Data: Principles and Best Practices of Scalable Realtime Data Systems; Simon and Schuster: New York, NY,

USA, 2015.
2. Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible

extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [CrossRef]
3. Huang, L.; Chen, H.; Wang, X.; Chen, G. A fast algorithm for mining association rules. J. Comput. Sci. Technol. 2000, 15, 619–624.

[CrossRef]
4. Tewari, A.S. Generating Items Recommendations by Fusing Content and User-Item based Collaborative Filtering. Procedia

Comput. Sci. 2020, 167, 1934–1940. [CrossRef]
5. Zeng, L.; Xie, X. Collaborative Filtering Recommendation Based On CS-Kmeans Optimization Clustering. In Proceedings of the

ICIIP 2019: 2019 4th International Conference on Intelligent Information Processing, Xi’an, China, 16–17 November 2019.
6. Amit, S. Introducing the Knowledge Graph; Official Blog of Google: California, USA, 2012.
7. Chicaiza, J.; Valdiviezo-Diaz, P. A comprehensive survey of knowledge graph-based recommender systems: Technologies,

development, and contributions. Information 2021, 12, 232. [CrossRef]
8. Wang, H.; Zhang, F.; Wang, J.; Zhao, M.; Li, W.; Xie, X.; Guo, M. Exploring High-Order User Preference on the Knowledge Graph

for Recommender Systems. ACM Trans. Inf. Syst. 2019, 37, 32. [CrossRef]

https://doi.org/10.1109/TKDE.2005.99
https://doi.org/10.1007/BF02948845
https://doi.org/10.1016/j.procs.2020.03.215
https://doi.org/10.3390/info12060232
https://doi.org/10.1145/3312738

Appl. Sci. 2023, 13, 7903 20 of 20

9. Grover, A.; Leskovec, J. node2vec: Scalable Feature Learning for Networks. In Proceedings of the Knowledge Discovery and Data
Mining, San Francisco, CA, USA, 13–17 August 2016.

10. Yang, D.; Guo, Z.; Wang, Z.; Jiang, J.; Xiao, Y.; Wang, W. A knowledge-enhanced deep recommendation framework incorporating
GAN-based models. In Proceedings of the IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November
2018; pp. 1368–1373.

11. Dong, Y.; Chawla, N.V.; Swami, A. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. In Proceedings
of the Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017.

12. Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning entity and relation embeddings for knowledge graph completion. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 19 February 2015.

13. Zhang, F.Z.; Nicholas, J.Y.; Lian, D.F.; Xie, X.; Ma, W.-Y. Collaborative Knowledge Base Embedding for Recommender
Systems. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, 13–17 August 2016; pp. 353–362.

14. Sun, Z.; Yang, J.; Zhang, J.; Bozzon, A.; Huang, L.-K.; Xu, C. Recurrent knowledge graph embedding for effective recommendation.
In Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2 October 2018; pp. 297–305.

15. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data.
In Proceedings of Neural Information Processing Systems 2013; MIT Press: Cambridge, MA, USA, 2013; pp. 2787–2795.

16. Wang, H.; Zhang, F.; Xie, X.; Guo, M. DKN: Deep Knowledge-Aware Network for News Recommendation. In Proceedings of the
WWW ‘18: Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018.

17. Yu, X.; Ren, X.; Sun, Y. Personalized entity recommendation: A heterogeneous information network approach. In Proceedings of
the 7th ACM International Conference on Web Search and Data Mining, New York, NY, USA, 24–28 February 2014; pp. 283–292.

18. Zhao, H.; Yao, Q.; Li, J.; Song, Y.; Lee, D.L. Meta-Graph Based Recommendation Fusion over Heterogeneous Information
Networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Halifax, NS, Canada, 13–17 August 2017; pp. 635–644.

19. Wang, X.; He, X.; Cao, Y.; Liu, M.; Chua, T.-S. KGAT: Knowledge graph attention network for recommendation. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August
2019; pp. 950–958.

20. Wang, H.; Zhang, F.; Wang, J.; Zhao, M.; Li, W.; Xie, X.; Guo, M. RippleNet: Propagating User Preferences on the Knowledge
Graph for Recommender Systems. In Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, Torino, Italy, 22–26 October 2018; pp. 417–426.

21. Tang, X.; Wang, T.; Yang, H.; Song, H. AKUPM: Attention-enhanced knowledge-aware user preference model for recommendation.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK,
USA, 4–8 August 2019; pp. 1891–1899.

22. Cui, H.; Song, W.; Yang, J. Knowledge Ripple Graph Convolutional Network for Recommendation. Comput. Sci. Explor. 2022, 1–10.
[CrossRef]

23. Zhang, C.-J.; Zeng, A. Behavior patterns of online users and the effect on information filtering. Phys. A Stat. Mech. Its Appl. 2012,
391, 1822–1830. [CrossRef]

24. Rendle, S. Factorization machines with libfm. ACM Trans. Intell. Syst. Technol. TIST 2012, 3, 57. [CrossRef]
25. Cheng, H.T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.; et al.

Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender
Systems, Boston, MA, USA, 15 September 2016; pp. 7–10.

26. Wang, H.; Zhang, F.; Zhao, M.; Li, W.; Xie, X.; Guo, M. Multi-Task Feature Learning for Knowledge Graph Enhanced Recommen-
dation. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019.

27. Wang, H.; Zhang, F.; Zhang, M.; Leskovec, J.; Zhao, M.; Li, W.; Wang, Z. Knowledge-aware Graph Neural Networks with Label
Smoothness Regularization for Recommender Systems. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019.

28. Wang, H.; Zhao, M.; Xie, X.; Li, W.; Guo, M. Knowledge Graph Convolutional Networks for Recommender Systems. In
Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019. [CrossRef]

29. Wang, Z.; Lin, G.; Tan, H.; Chen, Q.; Liu, X. CKAN: Collaborative Knowledge-aware Attentive Network for Recommender
Systems. In Proceedings of the SIGIR ‘20: The 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, Virtual Event, China, 25–30 July 2020. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3778/j.issn.1673-9418.2204012
https://doi.org/10.1016/j.physa.2011.09.038
https://doi.org/10.1145/2168752.2168771
https://doi.org/10.1145/3308558.3313417
https://doi.org/10.1145/3397271.3401141

	Introduction
	Background and Related Work
	Node2vec-Side Fusion Knowledge Representation
	Knowledge Graph-Based Recommendation Algorithm
	RippleNet

	NRH Recommendation Model
	Object Portrait Construction
	User Profile Construction
	User Static History Portrait
	User Dynamic Preference Portraits

	Hybrid Forecast

	Experiments
	Dataset
	Experimental Environment and Evaluation Index
	Experimental Results and Analysis
	Recommended Accuracy
	Recommended Diversity

	Ablation Experiments
	Hyperparametric Analysis
	Time Complexity Analysis

	Conclusions
	References

