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Abstract: In this paper, we present a study on a broadband transparent tapered slot antenna. In
general, the objective of achieving optical transparency is to enable antennas to seamlessly integrate
into windows, offering an aesthetically pleasing and inconspicuous appearance. The aim of our
research is to develop antennas that possess the ability to adjust horizontal plane beams across a wide
frequency range, from 24 to 28 GHz, for 5G applications. This structure combines three antennas into
a single unit, providing an advantage in terms of saving space. Furthermore, this structure offers
the possibility of choosing between using a single antenna to obtain a directional beam in the −90◦,
0◦, or +90◦ directions (depending on the activated antenna) corresponding to three states, or the
combination between two states to obtain another three additional states. The combination of the
three states also allows for the acquisition of another state. At this point, the total number of states is
23 − 1. Only three PIN diodes are employed to switch between all states. Additionally, by adjusting
the bias values of the PIN diodes, which function as variable resistors, the antenna beamwidth can
be adjusted in order to achieve a coverage of 300◦, offering more radiation pattern reconfigurability.
The proposed method offers several advantages, including simplicity and feasibility in controlling
the beamwidth and the beam direction electronically. This structure can be easily integrated into the
development of fifth-generation communication systems.

Keywords: optical transparency; Vivaldi antenna; active antenna; reconfigurability; wideband frequency

1. Introduction

It has been a significant challenge to improve the capacity of wireless communication
systems in current mobile networks to meet the demands of higher data rates, lower
power consumption, and increased connectivity [1–3]. To address this challenge, various
methods have been employed such as utilizing pattern reconfigurability through multiple
switching radiators, phase shifting, beamforming, and the Butler matrix. These techniques
have been implemented in both single-element and array configurations, as documented
in [4–12]. Additional radiators on a single element, combined with appropriate switching
mechanisms, are widely employed due to their ability to cover a wide range. This was
especially evident in [6], where four PIN diodes were used to achieve nine states, but the
coverage was limited to 30◦. Previous studies have reported on various antenna geometries
with beam steering capabilities. For example, patch antennas integrated with additional
radiating elements and RF switches [13,14] achieved beam tilt in two states using three
PIN diodes, resulting in peak gains of 8.2 dBi and 8.5 dBi, respectively. However, these
configurations had limited operating bandwidths. Another study [15] explored a coverage
of 360◦ using six radiating elements, but the operating bandwidth was constrained to 14.5%.
Similarly, the planar structure covered four states [16,17] and exhibited a wide bandwidth,
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but had a low gain of 2.8 dBi, only four working modes, and covered only 6.7% and 34% of
the bandwidth in [16,17], respectively. Planar antennas [18–22] such as the Vivaldi antenna
have gained popularity due to their low degrees of cross-polarization, high directivity, and
wideband characteristics. Similarly, ref. [23] used 16 PIN diodes to obtain a coverage of
only 22.5◦, while in [24], the authors employed 16 PIN diodes to obtain 8% on bandwidth
and a coverage of only 45◦.

Furthermore, there is interesting potential in the advancement of optically transparent
antennas to enhance their visual impact in urban environments by utilizing surfaces such
as glazed structures such as building or car windows. Transparent antennas could also
be utilized over larger surface areas to enhance their performance capabilities. These
antennas can be created by printing transparent and conductive layers on glass or quartz
as substrates. ITO is a widely used transparent and conducting oxide TCO material for this
purpose [25]. Hybrid solutions, such as ITO/Cu/ITO multilayers [26] or AgHT films [27],
have also been developed. Another alternative approach involves using a mesh metal
printed onto a transparent material as a glass substrate, as developed in [28–31].

The present study aims to address these limitations by proposing a simplified Vivaldi
structure that operates in the frequency range from 20 to 30 GHz. The proposed structure
possesses a good degree of matching, has a soft visual impact, and covers the lower 5G
bands. Note that we have utilized the structure presented in [32] as a starting point, albeit
with modifications to the antenna size and implementation on a transparent substrate.
Additionally, we have expanded the study by incorporating more states and investigating
changes in the beam width and direction.

The article continues with Section 2 which details the antenna design of the opaque
passive antenna. Section 3 outlines the simulation results for the opaque passive antenna,
while Section 4 focuses on the fabrication process of the transparent antenna. The results
and discussion of the passive transparent antenna are presented in Section 5. Section 6
presents the design of the active transparent antenna, and the results and discussion of the
active transparent antenna are presented in Section 7. Section 8 delves into the combination
of states, while Section 9 examines the impact of the equivalent resistor of PIN control on
the beamwidth. Finally, Section 10 concludes the article.

2. Opaque Passive Antenna Design

The reconfigurable wideband Vivaldi antenna proposed in this study was fabricated on
a fused quartz substrate measuring 12.7 mm × 12.7 mm × 0.2 mm. The substrate’s dielectric
properties were characterized by a relative permittivity εr of 3.75 and a loss tangent (tan δ)
of 4 × 10−4. The antenna structure consisted of two distinct parts, referred to as “petals”,
forming a radiating element measuring 7.25 mm × 8.94 mm. A specially designed ground
plane was printed onto the front side of the substrate (Figure 1a). To energize the radiating
element, a transition was implemented between a slot and a microstrip line. The microstrip
line had a length of 3.01 mm and terminated with a quarter circle with a radius of 0.6 mm,
which was printed onto the rear of the fused quartz substrate (as depicted in Figure 1b).

To achieve beam tilt in three specific orientations, namely, state 1, state 2, and state 3,
different configurations utilizing a metal strip were employed as depicted in Figure 1a.

State 1 is attained by establishing a connection between petal 1 and petal 2 with the
ground plane.

In state 2, petal 2 is connected to both the ground plane and petal 1.
State 3 involves connecting petal 1 to both the ground plane and petal 2.



Appl. Sci. 2023, 13, 7878 3 of 14
Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 15 
 

 

 

  
(a)  (b) 

   
State 1  State 2 State 3 

Figure 1. Configuration and geometries of the passive antenna: (a) front side with metallic strips as 
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2a,c,e. By controlling the current direction, the radiating beam can be adjusted accord-
ingly. In state 1, the beam is radiated at an angle of ϕ = 0° with a peak gain of 6.5 dBi, as 
depicted in Figure 2b. In state 2, the current deviation occurs on the left side of the tapered 
slot, resulting in a radiating beam at an angle of ϕ = +90° with a gain of 4.4 dBi, as shown 
in Figure 2d. Similarly, in state 3, the current deviation occurs on the right side of the 
tapered slot, resulting in a radiating beam at an angle of ϕ = −90° with a peak gain of 5.5 
dBi, as illustrated in Figure 2f. 
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Figure 1. Configuration and geometries of the passive antenna: (a) front side with metallic strips as
short circuit for different states; (b) back side with feeding microstrip line.

3. Simulations Results for Opaque Passive Antenna

The tapered slots exhibit maximum current flow at their edges, as observed in
Figure 2a,c,e. By controlling the current direction, the radiating beam can be adjusted
accordingly. In state 1, the beam is radiated at an angle of φ = 0◦ with a peak gain of
6.5 dBi, as depicted in Figure 2b. In state 2, the current deviation occurs on the left side of
the tapered slot, resulting in a radiating beam at an angle of φ = +90◦ with a gain of 4.4 dBi,
as shown in Figure 2d. Similarly, in state 3, the current deviation occurs on the right side of
the tapered slot, resulting in a radiating beam at an angle of φ = −90◦ with a peak gain of
5.5 dBi, as illustrated in Figure 2f.

The reflection coefficients of the passive antenna in states 1, 2, and 3 are depicted
in Figure 3, showcasing the simulation results. The antenna shows operation within a
frequency range from 17 to 42 GHz for state 1, 19 to 45 GHz for state 2, and 21 to 41.5 GHz
for state 3, with an S11 magnitude below −10 dB.

Figure 4 presents the simulation results of the gain. State 1 has a gain of 6.5 dBi at
26 GHz, state 2 has a gain of 4.4 dBi at the same frequency, and state 3 has a gain of 5.5 dBi
at 26 GHz. Figure 5 showcases the efficiency performance of the antenna in three distinct
states across a frequency range spanning from 21 GHz to 30 GHz.
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4. Transparent Vivaldi Antenna Fabrication

Three transparent mesh antennas have been created using the process described in [28],
which involves depositing a 1.35 µm thick continuous silver film and a 5 nm thick titanium
adhesion film onto a substrate using RF sputtering. Photolithographic wet etching is then
used to create the antenna patterns with appropriate photomasks (Figure 6a). The silver
film was made to be three times thicker than the skin depth value (0.45 µm at 26 GHz)
using standard photolithographic wet-etching processes and appropriate photomasks.
During the photolithography process, the careful alignment of the photomasks and the
substrate is crucial to ensure the accuracy of the antenna. The resulting antenna is optically
transparent, making it suitable for use in applications where visibility is important, such as
in smart windows or heads-up displays. The distance between the antenna elements (pitch)
affects the level of optical transparency, with a wider pitch resulting in higher transparency
levels (ranging from 66% to 89%). This transparency is measured using a UV–visible
spectrophotometer. The process of creating a transparent antenna, illustrated in Figure 6,
involves creating square apertures in the metal layers, with a specific pitch and metal strip
width. In this case, the pitch is 150 µm and the metal strip width is close to 15 µm. The mesh
antenna underwent an optical transparency test using a UV–visible spectrophotometer.
The results showed a transparency of 76% across the visible light spectrum of 400–800 nm.
This confirms the high optical transparency of the mesh antenna, as shown in Figure 6b.
The transparent antenna’s ability to transmit visible light with minimal absorption ensures
its suitability for optical applications.
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5. Passive Transparent Antenna Results and Discussion

As described in Section 2, metal strips were used in passive antenna designs to achieve
beam tilt in three specific orientations (State 1, 2, and 3), as illustrated in Figure 7, which
provides an example of the configuration for State 3.
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The measurement results presented in Figure 8 demonstrate the performance of
the passive transparent antenna in different operating states (1, 2, and 3). The passive
transparent prototypes exhibit improved matching compared to the results in Figure 3 for
the opaque prototype. This probably occurs due to the presence of a metallic grid with very
thin meshes. The antenna shows operation within a frequency range from 15 to 48 GHz for
state 1, state 2’s operation occurs from 21 to 48 GHz, and state 3 works from 19 to 45 GHz
with an S11 magnitude below −10 dB.
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6. Active Transparent Antenna Design

In this section, we will discuss active transparent antennas by substituting the metal
strip with active MA4AGP907 diodes, namely, D1, D2, and D3, as shown in Figure 9a. This
will enable the antenna to switch between states electronically. Note that the performance of
the passive antenna (with metal strip) obtained in the previous sections highlights the losses
brought about by the diodes for the active antenna. The three PIN diodes are connected
in series in order to use only two DC supply voltages (V1 and V2) for the different states
(the configuration is displayed in Table 1). Biasing lines, 200 µm in width, are positioned
perpendicularly to minimize their impact on the radiation pattern. Each DC biasing line in
the system includes an inductor (L = 6 nH) and resistors (R = 100 Ω) in order to block the
RF current and provide protection for the diodes.
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Figure 9. Feeding strategy and geometries of the active antenna: (a) front side, (b) back side, and
(c) diodes’ states.

Table 1. Configuration states.

States V1 V2

State 1 >0 <0 V1 > V2 V1 = 2.9 V, V2 = −2.9 V

State 2 <0 <0 V1 < V2 V1 = −4.3 V, V2 = −2.9 V

State 3 >0 >0 V1 < V2 V1 = 2.9 V, V2 = 4.3V

State 1 is achieved when D1 and D2 are in the ON state, functioning as a short circuit,
while D3 is in the OFF state, acting as an open circuit. State 2 is attained by turning D2 and
D3 ON and keeping D1 OFF. Similarly, state 3 is achieved by activating D1 and D3 while
keeping D2 OFF. A summary of these states is provided in Table 2.

Table 2. Diodes’ states.

State D1 D2 D3

State 1 ON ON OFF

State 2 OFF ON ON

State 3 ON OFF ON

7. Active Transparent Antenna Results and Discussion

The fabrication method for the transparent antenna was showcased in Section 4. The
technique and procedure for achieving transparency in the antenna remain consistent,
with the only distinction being the utilization of individual masks for each antenna. It is
important to note that, in the case of the active antenna, diodes are employed in place of
the metallic strip. The fabricated active antenna is presented in Figure 10.

Figure 11a presents a detailed view of the central section of the transparent antenna
before the PIN diodes are installed. In contrast, Figure 11b illustrates the identical region
after the diodes have been incorporated.
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Figure 11. Zoomed view using an optical microscope. Mesh ground with the petals (a) before the
implementation of the diodes, (b) after the implementation of the diodes.

Figure 12 provides a close-up view of the biasing section used for the active transparent
antenna. It utilizes a DC-feed inductor and resistor protection mechanism.
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Figure 12. The positions of the inductor and resistor in the fabricated active antenna.

To assess the performance of the active transparent antenna, we present the return
losses depicted in Figure 13. It is worth mentioning that the experimental measurements
exhibit fluctuations or ripples, which could be attributed to potential errors in the measure-
ment process.

The active transparent prototypes demonstrate improved matching compared to the
results shown in Figure 3 for the opaque passive antenna and Figure 8 for the transparent
passive antenna. This enhancement could be attributed to the inclusion of PIN diodes
and their associated losses. The antennas show a capacity to operate within a frequency
range from approximately 15 to 48 GHz for state 1, with a range from 17 to 48 GHz for
states 2 and 3.
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As depicted in Figure 14, the radiation pattern orientation can be altered as anticipated
by adjusting the DC bias of the diodes.
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Figure 14. Measured radiation patterns Eϕ versus ϕ of active transparent antenna operating in
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Figure 15 showcases the gain results for each state of the antenna, presenting a com-
prehensive overview that includes both the measured and simulated outcomes.
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Figure 15. A comparison of the gain between simulations and measurements for the active transparent
antenna operating in states 1, 2, and 3.

In the simulation, state 1 exhibits a gain of 6.5 dBi at 26 GHz, while the measured
gain at the same frequency is 6.7 dBi. For state 2, the simulation shows a gain of 4.4 dBi,
whereas the measured gain is 4 dBi. In the case of state 3, the simulation yields a gain of
5.5 dBi, while the measured gain is 5.1 dBi, with both detected at the same frequency. The
variation in gain can be attributed to the increased level of rear radiation in states 2 and 3.
Importantly, the comparison between the simulated and measured results demonstrates
good agreement.
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8. States Combination

In the first configuration, as shown in Figure 16a, the diode states are switched to
achieve a coverage angle of 300◦ using only three states.
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Figure 16. (a) Polar plot of all three states (Eϕ versus ϕ). (b) Combination of state 1 results in a
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In the second configuration, depicted in Figure 16b, by combining state 1 with either
state 2 or state 3, we can create two different options for tilting the beam of state 1, allowing
for a beam tilt range of −45◦ to +45◦.

9. Effect of PIN Diode Equivalent Resistor on the Beamwidth Control

The radiation beams emitted in state 1 exhibit higher directionality compared to the
other two states. This is attributed to the ground plane’s improved reflectivity in state 1.
In order to achieve a balanced radiation performance across all states in our proposed
structure, we adjusted the bias values of the PIN diodes to function as variable resistors.
The dynamic resistor characteristics, a function of DC bias, are illustrated in Figure 17.
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Figure 17. Diode resistance versus DC diode curent polarization. The yellow circles correspond to
values of 6000, 200, 150, 60, 50, 20, and 0.01 ohms.

The radiation patterns of state 1 are compared with the different diode biasing config-
urations in state 3. In the notion X-IN-X, X represents the value of the equivalent resistor
diode, while IN denotes an infinite value of the equivalent diode resistor (>6000 Ω for
no bias).

According to Figure 18, we have the ability to regulate the aperture of the beam.
When the resistor value is X = 0.01 Ω, the beamwidth is 75◦ at −3 dB. Conversely, when
the resistor value is 200 Ω, the beam aperture increases to 155◦, which is approximately
twice the level of the previous value. Table 3 illustrates the values of the resistors and their
corresponding −3 dB beamwidth angles. The same behavior can be applied to states 2 and 3.
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Table 3. The summary of −3 dB beamwidth controlled by equivalent resistor diodes D2 and D3
while D3 is off (high equivalent resistor value).

R = R2 = R3 θ−3dB

0 75

20 84

50 99

60 104

150 145

200 155

Section 8 demonstrates that, with regard to configuration 1, the coverage can be further
increased by controlling the diode resistor states. Additionally, a null value can be created in
a specific direction. For example, this occurs in state 2 (IN-200-200, that mean IN > 6000 Ω,
and 200 Ω), while state 1 or state 3 exhibit a maximum response at a 305◦ direction, as
illustrated in Figure 19. The purple curve correspond to −3 dB reference level indicator.
This configuration can be particularly useful in applications such as direction of arrival
(DOA) estimation.
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Table 4 provides a summary of all of the configuration cases. Configurations 8 to 10
offer significant control over the beamwidth.
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Table 4. Summarized Configuration states.

Configuration State D1 D2 D3 Beam Characteristic

1 State 1 ON ON OFF Broadside 0◦

2 State 2 OFF ON ON +90◦ left

3 State 3 ON OFF ON −90◦ right

4 State 4 OFF OFF OFF large

5 State 1 + 2 OFF OFF ON +45◦ tilt

6 State 1 + 3 OFF ON OFF −45◦ tilt

7 State 2 + 3 ON OFF OFF Bidirectional ±90◦

8 State 1
(R1-IN-R2)

Variable diode
equivalent
resistor R1

Variable diode
equivalent
resistor R2

OFF Control of beamwidth
around 0◦

9 State 2
(IN-R3-R2) OFF

Variable diode
equivalent
resistor R2

Variable diode
equivalent
resistor R3

Control of beamwidth
around +90◦

10 State 3
(R1-R3-IN)

Variable diode
equivalent
resistor R1

OFF
Variable diode

equivalent
resistor R3

Control of beamwidth
around −90◦

Table 5 provides a comparison between the presented antennas and recently published
pattern-reconfigurable antennas. In [6], four PIN diodes were used to achieve nine states,
but the coverage was limited to 30◦. Ref. [13] used three PIN diodes but achieved only two
distinct states and covered just conical and broadside aspects. In [15], the authors achieved
a coverage angle of 360◦ but utilized 12 PIN diodes. In [16,17], the antennas are larger
in size compared to this design, have only four working modes, and cover only 6.7% of
bandwidth in [16] and 34% in [17]. Similarly, ref. [23] used 16 PIN diodes to cover only
22.5◦. In [24], the authors also employed 16 PIN diodes to achieve 8% on bandwidth and
a coverage of only 45◦. In contrast, our design successfully achieved more than 10 states,
with just 3 diodes used as ON/OFF switches and variable resistors.

Table 5. Beam switching and bandwidth improvement design summary.

Ref. Antenna Method RF
Component

BW
(%) No. of States Coverage

Angle Gain (dBi)

[6] Patch Parasitic tuning 4 PIN diodes 0.6 9 30◦ 7

[13] Patch Parasitic tuning 3 PIN diodes 23.5 2 Conical/broadside 6.9–8.2

[15] Patch Parasitic tuning 12 PIN diodes 14.5 6 360◦ 10

[16] Planar Switchable stubs 4 PIN diodes 6.1 4 90◦ 5

[17] Monopole Multiple radiators 4 PIN diodes 34 4 90◦ 2.8–3.7

[23] Patch Multiple radiators 16 PIN diodes 2.6 16 22.5◦ 4.4–6

[24] Dipole Parasitic tuning 16 PIN diodes 8 5 45◦ 5.2–6.5

[32] Triple
Vivaldi

Non-transparent
microstrip line 3 PIN diode 70 3 300◦ 5.5

[33] Cone Parasitic reflectors Liquid metal 45.5 4 30◦ 6.7

[34] Tapered slot Multiple radiators 4 PIN diodes 71 2 90◦ 6.4

[35] Patch Parasitic tuning 6 PIN diodes 29 12 30◦ 8

This work Triple
Vivaldi

Transparent
microstrip line 3 PIN diodes 66.7 10 300◦ 6.45

In [32], the authors presented a similar design to this work, albeit using a non-transparent
substrate (Rogers) with an opaque structure. Additionally, they did not propose any control
of the beam tilt (which only has 3 directions), beamwidth control, or state combination.
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In [33], the authors used a liquid metal to switch between four states, but the antenna
achieved a coverage of only 30◦.

In [35], the authors used 6 PIN diodes and 12 states but achieved a coverage of only
30◦. Finally, in [34], four PIN diodes were utilized to cover 90◦.

Therefore, the presented design offers optical transparency, making it suitable for
integration into various applications such as smart windows and smart glasses without
compromising the device’s appearance. It boasts a wideband antenna (66.7% bandwidth),
more than 10 states for beam control, and allows for a coverage of 300◦ with just 3 PIN diodes.

10. Conclusions

This study introduces a transparent wideband Vivaldi antenna that offers more than
10 state pattern reconfigurabilities. This is achieved by utilizing three PIN diodes, enabling
control over beam switching, beamwidth, and beam direction in the horizontal plane.
The antenna operates within the frequency range of 18–45 GHz, providing a fractional
bandwidth of 66.7%. Notably, the antenna exhibits a transparency level of 76% across the
visible light spectrum. Furthermore, the antenna is able to cover 300◦ with 80% efficiency
within the targeted 5G frequency band from 24 to 28 GHz.
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