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Abstract: The research presented in the paper aims at increasing the capacity to identify security 
weaknesses in programming languages that are less supported by specialized security analysis 
tools, based on the knowledge gathered from securing the popular ones, for which security experts, 
scanners, and labeled datasets are, in general, available. This goal is vital in reducing the overall 
exposure of software applications. We propose a solution to expand the capabilities of security gaps 
detection to downstream languages, influenced by their more popular “ancestors” from the pro-
gramming languages’ evolutionary tree, using language keyword tokenization and clustering based 
on word embedding techniques. We show that after training a machine learning algorithm on C, 
C++, and Java applications developed by a community of programmers with similar behavior of 
writing code, we can detect, with acceptable accuracy, similar vulnerabilities in C# source code writ-
ten by the same community. To achieve this, we propose a core cross-language representation of 
source code, optimized for security weaknesses classifiers, named CLaSCoRe. Using this method, 
we can achieve zero-shot vulnerability detection—in our case, without using any training data with 
C# source code. 

Keywords: software security engineering; machine learning; code embeddings; common weakness 
enumeration; zero-shot classification 
 

1. Introduction 
Cybersecurity risks are moving gradually to the top of both business and global con-

cerns lists, according to The Global Risks Report 2023 issued by the World Economic Fo-
rum [1] and to many other risk professionals. One of the main channels used in hacking 
attacks is software applications, with billions of lines written in various programming lan-
guages, each of them being a potential vehicle for security vulnerabilities. The existing 
technologies and skills to detect security flaws in source code, early in the software devel-
opment process, are limited to a subset of programming languages and security vulnera-
bilities. Increasing the capacity to identify security weaknesses in languages that are not 
well supported by specialized security scanners and analysts, based on the knowledge 
gathered from securing the popular ones, is vital in reducing the overall exposure of soft-
ware applications. We propose a solution to expand the capabilities of security gaps de-
tection to downstream languages, influenced by their more popular ancestors from the 
programming languages’ evolutionary tree, using language keyword tokenization and 
clustering based on word embedding techniques. 

We show that after training a machine learning algorithm on C, C++, and Java appli-
cations developed by a community of programmers with similar behavior of writing code, 
we can detect similar vulnerabilities in C# source code written by the same community, 
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using a core cross language representation of source code, optimized for security weak-
nesses classifiers, named CLaSCoRe. 

1.1. Problem Statement and Research Objectives 
Early detection of security vulnerabilities in source code is the most economical way 

to increase software application resilience. The number and complexity of weaknesses that 
can be introduced in source code by programmers with insufficient experience in building 
secure software, or as a result of the pressure to deliver their products in a very short 
timeframe, are increasing each year. Automated solutions to scan the source code for se-
curity vulnerabilities are available to the communities of programmers, as commercial or 
freeware tools. They are known, in general, as Static Application Security Testing (SAST) 
technologies. SAST technologies may cover one or multiple programming languages, es-
pecially the most popular, like C/C++, Java, JavaScript, or PHP. The most professional 
tools can identify more than 1,000 security weaknesses in source code written in those 
languages. However, the majority of less popular languages do not benefit from auto-
mated scanning solutions, as the market potential is less attractive for developing SAST 
solutions. 

Based on various sources, there are between 250 and 700 active programming lan-
guages in use, and about 8,945 programming languages in history, according to the Online 
Historical Encyclopedia of Programming Languages [2]. The Tiobe Index [3] continuously 
updates the top 50 popularity scores for the 278 programming languages in the inventory. 
Wikipedia [4] presents a list of 687 programming languages per name, category, chrono-
logically, or per generation. An important part of the source code written globally remains 
exposed to security exploitation, as SAST technology coverage remains limited to a subset 
of less than 50 programming languages. As the access to software security experts able to 
manually identify flaws in less popular languages is limited, the embedded cyber resili-
ence of the corresponding software applications is questionable. 

As an alternative to SAST technologies, there is an increasing trend in using machine 
learning-based algorithms to identify security vulnerabilities in source code or within the 
binary format of software components. Most of them are developed using specially de-
signed datasets, with software modules labeled as containing a “vulnerable” or “not vul-
nerable” piece of code, per each supported security weakness listed in public repositories 
like NVD (National Vulnerability Database) [5] or MITRE CWE (Common Weakness Enu-
meration) [6]. As labeled source code is available only for a limited subset of programming 
languages, these solutions complement SAST technologies for the most popular lan-
guages, especially C and Java, and are not able to detect security weaknesses in languages 
not supported with labeled datasets. 

The objective of the current research is to identify the optimal representation of the 
source code and the zero-shot classification model able to detect security vulnerabilities 
in source code written in a different programming language than those used for training. 

1.2. Main Contributions 
We propose a cross-language source code representation, able to preserve the secu-

rity vulnerabilities patterns of the source code developed in various programming lan-
guages, and show that common machine learning algorithms (like Support Vector Ma-
chines) with default configurations can detect these patterns in code written in other lan-
guages which were not part of the training (as long as on the evolutionary tree they are 
influenced by the ones used in the learning phase). This approach can support the com-
munities of developers, mainly those who follow similar strategies in writing code, to 
identify security flaws in software developed using programming languages that are not 
well supported by static analysis tools or software security reviewers. 

The representation is based on the concept of splitting the control flow and data flow 
sections of source code into two loosely coupled vectors and applying word embeddings 
and clustering of multiple programming languages’ keywords to the resulting control 
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flow elements, a method to retain the patterns of security vulnerabilities and at the same 
time to remain less dependent on the lexical and semantical structure of the programming 
language used to write them. The word embedding techniques are used to identify se-
mantical relations between keywords across different programming languages (e.g., C, 
C++, Java, C#). Clustering techniques are then used to make the representation less de-
pendent on the lexical structure of the programming language by replacing multiple key-
words with unique values per cluster. In this way, lexically different keywords, but close 
from a semantical perspective to C, C++, Java, or C#, are considered identical, reducing 
the dependency of source code representation from the original language used to write it. 

We use the proposed source code representation to train popular machine learning 
algorithms on datasets written in C, C++, and Java, and test their performance on datasets 
written in C#. All datasets are synthetic and provided by the National Institute of Stand-
ards and Technology (NIST) [7] for software security scanners’ evaluations. We show that 
security vulnerabilities can be detected with good precision in software developed using 
less popular programming languages, as long as datasets are defined for programming 
languages that are positioned as their influencers in the evolutionary tree. 

The novelty of our approach is given by the following techniques: 
• Applying word embedding techniques to a corpus of source code developed in mul-

tiple languages by a community of programmers with similar behavior of program-
ming—an evolutionary step of our previous research [8]. 

• Applying iterative clustering techniques to source code relevant keywords that have 
semantical similarities when used in source code written in different languages by a 
community of developers. 

• Developing a source code representation that is able to preserve security weaknesses 
patterns between different programming languages with close syntactical or seman-
tical structures, as a result of the influence the mainstream languages have on the 
more recent ones. 
The next sections of this document are structured as follows: 

• Section 2—Related Works: describes the state of the art and positions our approach 
in the overall context of machine learning-based security weaknesses detection in 
source code. 

• Section 3—The Proposed Architecture for the Cross Language Source Code Repre-
sentation: describes our approach to transforming source code written in C, C++, Java, 
or C# into an abstract representation that is able to preserve security weaknesses pat-
terns and is less dependent on the original language lexical structure. 

• Section 4—Experimental Results: describes our tests on the source code dataset pro-
vided by NIST, exemplifying the outcome of learning in two main scenarios, “train 
in C#, test on C#” and “train in C, C++ and Java, test on C#.” 

• Section 5—Conclusions: presents our conclusions and the next steps related to the 
cross-language CWE detection approach. 

2. Related Works 
During the last decade, security researchers and experts in machine learning and nat-

ural language processing joined their efforts and worked on solutions able to detect soft-
ware security weaknesses in source code using less deterministic methods, as is the case 
with SAST solutions. These new models are not intended to replace static analysis tools, 
as their role in securing software remains essential; however, the models based on ma-
chine learning and natural language processing are performing better from year to year, 
threatening the supremacy of deterministic SAST technologies. Providers of traditional 
SAST solutions have also embraced these new models, making their solutions more accu-
rate in determining software security vulnerabilities. We present below relevant software 
security and quality scanners, based on machine learning and natural language pro-
cessing techniques, developed in the last decade. 
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Yamaguchi et al. [9] propose Chucky, a model designed to support software security 
analysts in identifying vulnerabilities caused by improper or missing validations of the 
input data, which may lead to unnecessary permissions and access allowed to legitimate 
users (e.g., user access to folders for which they do not have a “need to know”) or to buffer 
overflow scenarios where the computer memory allocated to the application during 
runtime is not protected against being written with malicious instructions by external pro-
cesses, resulting in application disruption, illegitimate remote control, or sensitive data 
access. The model verifies how data being introduced as input to an application is vali-
dated during its entire lifecycle until its transfer to an instruction or process. Chucky iden-
tifies in source code the patterns for validation of input data that is propagated through 
the source code, using Abstract Syntax Trees to keep track of this flow of data, and word 
embeddings to understand the context around the code functions. Experimental tests have 
been executed for specific CVE detection in open-source code libraries. 

Yamaguchi et al. [10] introduced the concept of Code Property Graph (CPG), a data 
structure combining various properties of Abstract Syntax Tree (AST), Control Flow 
Graphs (CGF), and Program Dependence Graphs (PDG). The functions in source code are 
transformed into Code Property Graphs at the individual level and consequently linked 
together in the entire code base (e.g., Linux kernel). The authors show that this combina-
tion of control flow, data flow, and syntactical information is able to preserve patterns of 
CVE vulnerabilities, which are identified by comparing CVE-labeled graph traversals 
with those resulting from the transformation of the source code under analysis. New, un-
published security vulnerabilities, like buffer overflows, have been identified in Linux dis-
tributions using this approach. 

Suneja et al. [11] consider the CPG representation of source code at the function level 
written in C, which is then vectorized through word embeddings via the Word2Vec 
method proposed by Mikolov et al. [12], as to preserve its semantic information, and ap-
plying Graph Neural Networks [13] to identify relationships between the nodes and edges 
of source code graphs. Their model performed better on synthetic datasets like NIST Juliet 
than freeware static analysis solutions. 

Russell et al. [14] compiled a list of more than 1 million C/C++ functions from open 
sources (NIST SARD suite, GitHub, Debian Linux distributions) and developed a labeled 
dataset with both synthetic (NIST) and natural code, with the support of static analysis 
tools and security professionals. The authors used Convolutional Neural Networks 
(CNN) and Recurrent Neural Networks (RNN) for features extraction and applied the 
“Bag-of-Words” Embedding Model to the tokenized code, training the solution with the 
Random Forest ensemble classifier for CWEs identification. The authors showed that re-
sults on synthetic datasets are better than those on natural code. 

Li et al. [15] propose the SySeVR (Syntax-based, Semantics-based, and Vector Repre-
sentations) format for C/C++ source code, which includes word embeddings techniques 
(Word2Vec), intended to preserve the lexical and semantical information with relevance 
to security vulnerabilities. The security flaws contextual information is obtained with a 
method inspired by the region proposal [16] concept familiar for image processing. This 
representation is proven to be highly effective for security weaknesses classification by 
deep neural networks. Xuan et al. [17] apply the SySeVR framework to parse C/C++ sam-
ples from the NIST SARD dataset and uses word embeddings (Word2Vec) to normalize 
the code so that its length remains constant when fed to machine learning classifiers, out 
of which Random Forest provided the best results. The model has been supported by a 
professional static analysis tool in mapping vulnerable code functions to categories of se-
curity flaws like arithmetic expression, pointer usage, and array usage vulnerability. 

Saha et al. [18] developed a method to automatically capture patterns including se-
quences of instructions from CWEs published in databases like NIST SARD, each CWE 
being enriched with the information collected from CVE repositories. They propose the 
ML-FEED (Machine Learning Framework for Efficient Exploit Detection), which extracts 
individual instructions from the newly developed exploit database and label them with 
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the CWEs that these instructions may trigger. The instructions are transformed to vectors 
via word embeddings using FastText [19], and a multi-label classifier designed as a Feed-
forward Neural Network (FNN) is used to predict all exploits that a specific instruction 
can execute. Instructions which are not linked to any CWE are white-listed and are by-
passed in the classification process, contributing to increased performance. 

Wang et al. [20] developed the DeepVulSeeker architecture based on the pre-trained 
semantic model named UniXcoder [21] built on transformers and efficient in encoding 
natural language to program languages. The pre-trained semantic model is applied to the 
structural representation of the source code via AST, CGF, and Data Flow Graphs (DFG); 
the CWE patterns are identified by CNN and FNN types of neural networks. 

New trends consider using Large Language Models as security scanners, secure code 
generators, and pedagogical solutions for software developers or software security ana-
lysts. The models are able to generate source code in different programming languages to 
explain in detail how to fix the software [22] and hardware [23] security weaknesses or 
quality bugs [24] within the products under development and to develop new versions 
with improved security. This characteristic of “self-healing” has to be well managed by 
data scientists and security professionals, as to obtain a strong “security by immunity” of 
Artificial Intelligence generated source code in the future. An important fact related to 
ChatGPT-based models of security scanners referred to within this section is that the train-
ing dataset, despite its huge size and coverage, does not include information about vul-
nerabilities discovered in the last 2 years, being limited to data generated in 2021 at the 
latest. On the other hand, datasets like NIST SARD Suite are even older, its C# knowledge 
base being developed in 2016, the Java dataset updated in 2017, with the latest updates 
being provided in 2022 for the PHP and C/C++ datasets. 

Similar approaches are used in code quality scanners, for software bug detection. 
Software quality bugs are detected using methods similar to those applied for detecting 
security vulnerabilities. ChatGPT identifies quality bugs with a success rate of 77.5% and 
is able to recommend fixes [24] using human interaction and follow-up in dialogue-based 
communication. On a conceptual level, methods used to detect quality bugs may be used 
to detect security vulnerabilities as well, because these models look in similar ways for 
lexical and semantical patterns within the source code. The accuracy of Large Language 
Models is not always the intended one, as these models are not trained specifically on 
security and quality detection activities. As an example, using CodeBERT, the particular 
Bidirectional Encoder Representations from Transformers (BERT) model adapted for 
source code, software defects are identified by Pan et al. [25] with newly trained or pre-
trained models with average F1 values between 0.5 and 0.6. The various models in the 
literature for detecting security and quality patterns in source code with their main char-
acteristics are presented in Table 1. 

A zero-shot, cross-language scanner leveraging the similarities among programming 
languages by training the model to identify CWEs in Java and detecting vulnerabilities in 
C#, has been proposed by Chauhan [26]. The solution applies per each language in scope 
(Java and C#) the code2vec [27] embeddings method, to capture the semantic properties 
of source code, converting the code snippets in fixed lengths feature vectors. The best re-
sults on the NIST SARD suite, using RNN-based, zero-shot, classifiers, are F1 = 0.55 for 
the “C# to Java” scenario and 0.74 for the “Java to Java” scenario. 

The proposed Cross Language Source Code Representation (CLaSCoRe) model is po-
sitioned as a cross-language CWE scanner, built on word embeddings and clustering tech-
niques to define security weaknesses patterns within source code which are detected by 
supervised machine learning classifiers like Support Vector Machines. We believe that our 
zero-shot, cross-language model is filling the state-of-the-art gap in CWE detection within 
source code, using a model easy to implement by the communities of software developers 
and security analysts. 
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Table 1. State of the Art in Machine Learning and Natural Language Processing based Source Code 
Security Scanners. 
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Chucky  
(2013) 

  x   x       Clustering   x x x   
LibTIFF, 
Pidgin 

CPG  
(2014) 

  x           
Static 

Analysis 
      x   

Linux 
kernel 

Russel et al. (2018) x         x   RF   x   x x Draper 
AI4VA 
(2020) 

x             GNN   x   x x 
Draper, 
s-bAbI 

Chauhan 
(2020) 

x           x RNN   x   x x   

SySeVR 
(2020) 

x x           RNN /CNN   x     x 
CVE 
NVD 

Do Xuan et al. 
(2022) 

x             RF   x     x   

Zaharia et al. 
(2022) 

x     x  RF, DT  x x  x  

ML-FEED 
(2022) 

x             FNN   x   x x 
CVE 
NVD 

DeepVulSeeker 
(2023) 

x             CNN/FNN x     x x 
QEMU, 

FFMPEG 

ChatGPT 3.5 
(2023) 

x     x x x   LLM x         
Large 

data until 
2021 

ChatGPT 3 
(2023) 

    x x x x   LLM x         

QuixBugs 
& Large 

data until 
2021  

CodeBERT 
(2023) 

    x         LLM x         
PROMIS

E 
CLaSCoRe 

(2023) 
x           x SVM   x x   x   

3. The Proposed Architecture for the Cross-Language Source Code Representation 
We propose the architecture presented in Figure 1, to transform source code written 

in various programming languages into the CLaSCoRe representation. This concept 
builds on our previous research related to machine-learning-based security pattern recog-
nition techniques [8], able to detect security weaknesses in C/C++ and Java using a mix of 
keywords (tokens) from both languages. The CLaSCoRe representation maintains the 
minimal, core traits of source code needed to classify it as “vulnerable” or “not vulnera-
ble”, although it is less dependent on the lexical and semantical structure of the original 
programming language. 
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Figure 1. Cross Language Source Code Representation development architecture. 

Examples of code snippets from NIST datasets, with vulnerable functions written in 
Java and C#, input to the Tokenizer, are displayed in Table 2. The steps for building the 
ClaSCoRe representation are described in more detail below. 

Table 2. CWE 78 (OS Command Injection using Use environment variable) vulnerability in Java and 
C# code. 

 
Java Vulnerable Function 

 

 
C# Vulnerable Function 

 
     
public void bad() throws Throwable 
{ 
String data; 
if (PRIVATE_STATIC_FINAL_FIVE = = 5) 
{ 
data = System.getenv(“ADD”); 
} 
else 
{ 
data = null; 
} 
 
String osCommand; 
if (System.getProperty(“os.name”).toLowerCase(). 
indexOf(“win”) >= 0) 
{ 
osCommand = “c:\\WINDOWS\\ 
SYSTEM32\\cmd.exe /c dir “; 
} 
else 
{ 
osCommand = “/bin/ls “; 
} 
Process process = Runtime.getRuntime(). 
exec(osCommand + data); 
process.waitFor(); 
} 
 

     
public override void Bad() 
{ 
string data; 
if (PRIVATE_CONST_TRUE) 
{ 
data = Environment. 
GetEnvironmentVariable(“ADD”); 
} 
else 
{ 
data = null; 
} 
String osCommand; 
if (RuntimeInformation. 
IsOSPlatform(OSPlatform.Windows)) 
{ 
osCommand = “c:\\WINDOWS\\ 
SYSTEM32\\cmd.exe /c dir “; 
} 
else 
{ 
osCommand = “/bin/ls “; 
} 
Process process = Process. 
Start(osCommand + data); 
process.WaitForExit(); 
} 
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3.1. Multi-Language Tokens Inventory 
The proposed solution is used to train machine learning algorithms for the detection 

of vulnerable code written in C, C++, and Java and to later detect the same vulnerabilities 
in C#, so we collect all possible keywords we may find in all these programming lan-
guages. We named these keywords tokens, by convention, as they will contribute to the 
tokenization of source code into the CLaSCoRe format. 

The keywords included in the inventory are the following: 
• the reserved keywords for C++98 and C++11, which include the C keywords; 
• the Portable Operating System Interface POSIX.1-2017 identifiers and functions from 

The Open Group [28]; 
• Linux or Windows functions which we may find in source code written in C/C++ 
• the reserved keywords for Java; 
• Java predefined classes, methods, variables, operators, constructors, or interfaces 

[29]; 
• the reserved and contextual identifiers for C# [30]. 

We have identified a total of 1,782 tokens specific to C/C++ programs, 19.775 tokens 
specific to Java code, and 120 C# tokens. Some of the tokens are specific to more than one 
programming language. As a result, after removing all duplicates, the total number of 
tokens present in the source code written in C, C++, Java, or C# languages is 21,464. We 
selected from the full list of tokens the ones which are present in the NIST datasets for the 
programming languages in the scope of our research to optimize the speed of processing. 
We have identified 920 tokens that appear in the NIST dataset at least once. 

3.2. Identifying Semantic Similarities between Tokens from Multiple Languages 
We identify semantic similarities between the 920 tokens in our inventory using as a 

corpus the entire dataset of “vulnerable” and “not vulnerable” source code provided by 
NIST for C, C++, Java, and C# programming languages. An important characteristic of the 
dataset provided by NIST is that the code is synthetic, and it follows similar characteristics 
of code writing, as in the case of communities of programmers having a similar approach 
and behavior in writing software programs. One of the main research goals is to support 
these communities in the identification of vulnerable source code written in programming 
languages they use to develop applications (like C# in our case), once they have the tech-
nical and human ability to detect and label vulnerabilities in other, more popular lan-
guages (C, C++, Java). 

To semantically group the tokens, we use word embedding techniques like 
Word2Vec, supported by Natural Language Processing concepts, implemented by NLTK 
(Natural Language Toolkit) [31]. The resulting word vectors, specific to every keyword in 
the inventory, preserve the contextual similarity between tokens from multiple program-
ming languages. 

New techniques aimed at identifying semantic similarities between tokens from dif-
ferent languages are being developed, like the multilingual, cross-lingual, or polylingual 
language models [32]. The cross-lingual models are, in general, pre-trained on text written 
in multiple languages, reducing the influence of the semantics culturally embedded 
within the source code created by developers which are part of a stable community. On 
the other hand, these models typically require large amounts of training data and pro-
cessing power, with an increased complexity, which may not be “developer-friendly”. 
Additionally, the cross-lingual models strongly rely on very well-aligned data between 
languages, which is a challenge when defining a dataset with vulnerable code in Java, C, 
C++, and C#. However, our future work will consider testing the impact of the multilin-
gual and cross-lingual models on CLaSCoRe representation. 

3.3. Clustering Tokens from Multiple Languages, Based on Semantic Similarities 
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The word vectors are used to develop clusters of tokens from different programming 
languages, all tokens in a cluster being replaced in the next phases with the cluster iden-
tification number. As a result, the lexical and semantical differences between program-
ming languages are reduced and the code representation is less dependent on the lan-
guage. 

We propose the K-Means clustering algorithm for the word embedding vectors. 
Based on our previous research, other clustering algorithms, like Hierarchical Agglomer-
ative Clustering (HAC), behave in a similar way. 

The word vectors resulted from the NIST dataset corpus, and the 920 tokens vocab-
ulary are grouped in two main clusters, which can be observed visually in Figure 2. The 
elbow score, calculated and presented in Figure 3 using the KElbowVisualizer [33], sug-
gests a number of 17 clusters, each containing an average of 54 tokens. This may lead to a 
very abstract and generic representation of the source code, and being unable to preserve 
the security weaknesses patterns. We have chosen to apply iterative clustering and obtain 
clusters with 10 tokens or less, balancing the desired independence on the programming 
language with an acceptable level of abstraction that still captures the security vulnerabil-
ity patterns. We have generated with this approach 167 clusters of tokens. Examples of 
tokens’ clusters are presented in Table 3. 

Table 3. Examples of clusters containing mixed tokens from C/C++, Java, and C# languages. 

Cluster Token 
Token Found in:  

Cluster Token 
Token Found in:  

C/C++ Java C# C/C++ Java C# 

65 

args   x 

1 

command  x  

assign  x  executable  x  

connect x x  program  x  

pass  x  run  x  

8 

char x x x 

156 

_stat x   
data  x  attempted  x  

databuffer  x  hour  x  
pipe x x  increment  x  
static x x x inputsource  x  
void x x x process  x x 

wchar_t x   runtime  x  

26 

_wfopen x   

17 

case x x x 
_wgetenv x   declared  x  

abstract  x x else x x x 
eof  x  fgets x   

invoke  x  flags  x  

sum  x  hit  x  

test  x  rand x   

var  x x statement  x  

verify  x  string  x x 
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Figure 2. Bi-dimensional view of NIST dataset tokens’ word vectors. 

 
Figure 3. The Elbow method suggests a number of 17 clusters of tokens. 

3.4. Source Code Tokenization 
Source code snippets are tokenized using a specially designed parser, named To-

kenizer, available at sergiuzaharia/CWE_Scanner [34]. The parser translates the source 
code snippets with “vulnerable” and “not vulnerable” code into the CLaSCoRe represen-
tation. 

Before tokenization, all comments and pre-processing directives are removed from 
the code. The parser transforms the code in two different vectors: control flow and data 
flow. The rationale of this split is to capture the programming behavior embedded in the 
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source code as a specific succession of reserved keywords and instructions. The data flow 
section includes all other keywords (like identifiers, functions, and methods’ given names) 
in a codified format, as defined in Section 3.4.2. The model is an evolutionary step of the 
Intermediate representation composed of the loosely coupled control and data flows, de-
fined in [35] and improved in [36] and [8]. 

3.4.1. The Control Flow Vector 
For the tokenization process, we use the vocabulary that was developed based on the 

method defined in Section 3.1. The vocabulary consists of the 920 keywords specific to C, 
C++, Java, and C# programming languages, which were identified as having at least one 
appearance in the NIST dataset for these languages. Source code tokens are checked 
against the vocabulary and, when identified, they are replaced with their respective clus-
ter identification number, resulting from the clustering step defined in Section 3.3. For 
example, the token “else”, which we can identify in source code written in C/C++, Java, or 
C#, is replaced with the integer value 17, according to Table 3. 

3.4.2. The Data Flow Vector 
The data flow vector includes all tokens which are not part of the vocabulary, like 

names given by the code writers to various functions, classes, variables, etc. As these iden-
tifiers may be named in infinite ways, depending on programmers’ imagination or the 
software program’s roles, the identifiers are transformed into a generic value, an integer 
capturing the order of appearance of the identifier in the source code. If one identifier 
appears more than once in the code snippet, it maintains the initial value, precisely the 
order of its first appearance in the code. 

The pair of the control flow and data flow vectors represents the Cross-Language 
Source Code Representation (CLaSCoRe), being used as input to machine-learning-based 
classifiers as a core representation of the code. 

4. Experimental Results 
4.1. Learning Scenarios 

The NIST dataset with “vulnerable” and “not vulnerable” code is used in two sce-
narios, illustrated in Table 4. 

Table 4. Training scenarios on the NIST dataset with “vulnerable” and “not vulnerable” code. 

Scenario Training Dataset Testing Dataset 
C# to C# C# code snippets  C# code snippets 

Other to C# C, C++, Java code snippets C# code snippets 

The “C# to C#” scenario considers training various machine learning algorithms on 
the C# dataset with “vulnerable” and “not vulnerable” code, to assess the quality of the 
CLaSCoRe representation. The C# dataset with code samples is split into training and test-
ing sets with both “vulnerable” and “not vulnerable” code. 

The “Other to C#” scenario is basically a zero-shot classifier for C#. It considers the 
training on datasets written in C, C++, and Java languages in order to detect security vul-
nerabilities (CWEs) in code written in C#. In this scenario, no C# code snippet is used 
during the training process. 

4.2. Dataset Processing 
The NIST dataset with “vulnerable” and “not vulnerable” code written in C, C++, 

Java, and C# was sanitized, and all comments and pre-processing directives were re-
moved. We isolated “vulnerable” functions and “not vulnerable” functions per CWE, for 
the four programming languages, making use of NIST developers’ convention to name 
“vulnerable” functions with “GOOD” and “not vulnerable” functions with “BAD”. 
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Examples of “vulnerable” functions written in Java and C# are displayed in Table 2. We 
observe similar programming behavior in writing two pieces of code in C# and Java, spe-
cifically in the order of operations and usage of instructions, despite the lexical differences 
between these two programming languages. The processing units in the learning process 
represent functions or methods, as they are defined to include the entire context of vul-
nerabilities, a characteristic of the NIST suite. 

In addition, the clustering of the word vectors resulting from the Word2Vec word 
embedding process adds a layer of abstraction to the source code written in different pro-
gramming languages, preserving the semantic meaning. We observe in Table 2 that the 
token name “Runtime” in the Java code snippets and the token named “Process” in the 
C# code of a CWE 78 vulnerable function, are part of the same cluster, which means they 
will have the same value in the CLaSCoRe representation, as they would represent the 
same keyword. The clustering of the word vector is, in this way, reducing to some extent 
the dependency on the programming language. 

We have identified 50 CWEs, out of the 178 CWEs in the NIST Software Assurance 
Reference Dataset (SARD) suite, supported with code in all four programming languages, 
and only 8 CWEs for which we can sum up a number of more than 1500 samples written 
in C, C++, and Java, with at least 250 samples per each of the four programming languages. 
The CWE 134 vulnerability samples have also been excluded, as they behave as outliers 
for all previous [8,35,36] and current experiments, producing low-performance results. 
The list of remaining CWEs included in the experiments and their associated numbers of 
vulnerable samples are illustrated in Table 5. 

Table 5. The number of vulnerable code samples in C, C++, Java, and C# per CWE. 

 Vulnerable Code Samples 

CWE Name C# C++ C Java Total Samples Written in C, 
C++, and Java 

CWE190 6039 1404 5040 7015 13,459 
CWE191 4026 858 3864 5612 10,334 
CWE78 600 2200 5600 720 8520 
CWE369 2562 468 1008 3050 4526 
CWE789 2177 1080 560 2537 4177 
CWE400 2013 390 840 2396 3626 
CWE197 8100 396 1008 1980 3384 
CWE606 610 260 560 732 1552 

For each programming language, we selected the methods and functions named 
“GOOD” in the NIST dataset and labeled them as “not vulnerable”. The number of “not 
vulnerable” samples, after being represented in a CLaSCoRe format and removing dupli-
cated entries, are represented in Table 6. The “not vulnerable” functions contain secure 
versions of all the vulnerable code snippets, meaning that, in the training dataset used for 
a specific CWE, we included the “vulnerable” code snippets to the respective CWE, and 
secured code snippets that were highly relevant to the respective CWE (fixing that vulner-
ability) and code which were not related to the CWE, but were free of other CWEs present 
in the NIST suite. 

Table 6. The number of “not vulnerable” code samples in the NIST suite, per programming lan-
guage. 

Programming Language “Not Vulnerable” Code Samples 
C# 14,323 

C++ 13,341 
C 19,457 

Java 15,171 
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For the learning scenarios presented below, we retained a randomized 80% of the 
dataset samples for learning and the rest of the 20% for testing. Cross-validation using 5 
groups of samples, with similar sizes, from the training set was enabled to support the 
calculation of accuracy means and standard deviations in both scenarios. 

4.3. Learning Scenario “C# to C#” 
The NIST dataset with C# code has been used in training the machine learning algo-

rithms included in the Scikit-learn platform, to detect CWE patterns in source code. The 
results are similar in quality to our previous experiments on C, C++, and Java, which are 
illustrated in Table 7. We observe the very good performance of all machine learning al-
gorithms to detect CWE patterns in the CLaSCoRe representation of the NIST dataset code 
snippets which are written in C#. 

Table 7. F1 Score Average per machine learning algorithm, for the 8 CWEs in scope, in the “C# to 
C#” and, respectively, “Other to C#” learning scenarios. 

 F1 Score Average  

Machine Learning Algo-
rithm K-NN 

Decision Tree 
(DT) 

Random  
Forests (RF) 

Support Vector  
Machines (SVM) 

Scenario “C# to C#” 0.97 0.98 0.99 0.90 
Scenario “Other to C#” 0.63 0.45 0.43 0.72 

The machine-learning-based classifiers have been configured as below: 
• SVM (SVC): class_weight = None, kernel = rbf; 
• Decision Tree: splitter = best, criterion = gini; 
• KNeighborsClassifier: n_neighbors = 7, weights = uniform, algorithm = auto; 
• Random Forests: n_estimators = 100, criterion = gini. 

4.4. Learning Scenario “Other to C#” 
The “Darwinian” evolution of programming languages resulted in lexical and se-

mantical similarities between them. As an example, the C# programming language has 
been developed starting from C++ and Java languages. Before, C++ was influenced by C 
and Algol, the last one being influenced by Fortran [37]. We derive from here that C# is 
directly influenced by C, C++, and Java, and indirectly influenced by Algol and its prede-
cessor, Fortran. We intend to make use of C# inherited characteristics from C, C++, and 
Java, in detecting security weaknesses in C# source code by learning their patterns in code 
written in other languages, like C, C++, and Java. 

As a result, we trained the same machine learning algorithms used for the “C# to C#” 
scenario to detect CWEs on NIST code written in C, C++, and Java, and tested them on 
NIST code written in C#. As seen in Table 2, the code snippets of the NIST dataset have 
some similarities in the order of operations and in the overall business logic, as they are 
created by the same community of programmers. Despite some differences between the 
lexical and semantic structures, they are also visible. Our intention is to observe how these 
two properties of the code, the influence of their ancestor languages and the similar be-
havior of writing code within a community of programmers, may help security analysts 
detect weaknesses when they lack static analysis tools, skills, or datasets for the down-
stream or exotic languages used by the developers in their organizations. 

According to the results displayed in Table 7, the Support Vector Machines (SVM) 
algorithm is able to detect CWE patterns in source code written in C#, when no C# code 
has been used in training if we use code written in C, C++, or Java during the training 
phase. Other machine learning algorithms did not perform well enough. 

The results should be positioned and valued in the following context: 
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• Not all possible C# code tokens were included in the vocabulary during the experi-
ments; for example, the Windows API tokens (e.g., the “GetEnvironmentVariable” 
token observed in the C# code section of Table 2) or the .NET tokens. 

• The word embeddings were applied to the NIST corpus with C, C++, Java, and C# 
synthetic code, with word similarities being identified in this limited context. In the 
next stages, the word similarities will be generated on a much larger corpus of code 
from public sources, which will lead to new and more relevant clusters per each sub-
set of tokens. 
The detailed results for the Support Vector Machines classifier applied to the 8 CWEs 

in scope are presented in Table 8. 

Table 8. F1, recall, precision, and accuracy scores of the Support Vector Machines classifier applied 
to the 8 CWEs in scope, in the “C# to C#” and, respectively, “Other to C#” learning scenarios. 

CWE Name 
Scenario “Other to C#” Scenario “C# to C#” 

F1 (SVM) Recall 
(SVM) 

Precision 
(SVM) 

Accuracy 
Mean (SVM) 

F1 (SVM) Recall 
(SVM) 

Precision 
(SVM) 

Accuracy 
Mean (SVM) 

CWE190 0.75 0.82 0.69 0.91 0.95 0.94 0.96 0.97 
CWE191  0.73 0.82 0.67 0.91 0.93 0.94 0.93 0.97 
CWE78  0.72 0.80 0.65 0.91 0.82 0.99 0.70 0.98 
CWE369  0.75 0.78 0.71 0.86 0.83 0.95 0.74 0.95 
CWE789  0.68 0.78 0.61 0.95 0.91 0.94 0.89 0.97 
CWE400  0.70 0.82 0.61 0.83 0.94 0.98 0.90 0.98 
CWE197  0.69 0.80 0.60 0.87 0.96 0.94 0.99 0.96 
CWE606  0.77 0.75 0.79 0.88 0.82 0.96 0.72 0.98 

We can conclude that our method allows security analysts to identify security weak-
nesses in C# source code with acceptable accuracy when they lack a C# dataset to train the 
machine learning algorithms, but they have access to labeled code written in C, C++, and 
Java, from the same community of programmers. The accuracy averages at 0.89 in the 
“Other to C#” scenario with a standard deviation averaging at 0.054 for all CWEs in scope. 
For the “C# to C#” scenario, the accuracy mean is 0.97 with a standard deviation averaging 
at 0.017. 

We obtained an average recall score equal to 0.80 in the “Other to C#” scenario for 
SVM and a recall score equal to 0.95 in the “C# to C#” scenario, for the same machine 
learning algorithm. This result can be interpreted in the following way: if we are able to 
identify 95% of the ʺvulnerable code in a C# dataset, using a method based on CLaSCoRe 
representation and a C# dataset for training, in the same way, we are able to identify 80% 
of the vulnerable code in the C# dataset after training the algorithm to detect security vul-
nerabilities in C, C++, and Java code written by programmers within the same community 
of developers. 

The performance of CLaSCoRe representation in the “Other to C#” scenario, as zero-
shot classification, has been in average F1 = 0.80 on the NIST SARD dataset, and 0.95 in 
the “C# to C#” scenario, better than in similar approaches [26]. The advantage of learning 
from multiple languages that are linked together by a lexical and semantical inheritance 
is essential for zero-shot software security scanners. More, the loosely coupled control and 
data flow vectors make the ClaSCoRe representation partially language agnostic and, at 
the same time, able to capture the patterns of security vulnerabilities (CWEs) which are 
shaped by both reserved keywords, methods, functions, and developers’ defined varia-
bles being processed by them. The model is able to partially fill the gap between the struc-
ture, lexical, and semantic differences between programming languages, especially when 
they are strongly interconnected on the language influence map. 

The inheritance at lexical and semantical levels, transmitted “genetically” to newer 
programming languages from their “ancestors”, is valuable to security analysts when 
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datasets and skills are limited for new, not-yet-popular languages. Programs written in 
downstream languages, influenced by more popular ones, do not benefit, in general, from 
the same number of software security experts and technologies to detect security weak-
nesses (CWEs) in the early versions of applications developed by the same community of 
programmers. Using the CLaSCoRe representation of source code, we were able to detect 
security vulnerability patterns in software written in a different language than the ones 
used for training, as long as the code was written in a downstream language, and we had 
enough samples in upstream languages. 

We observe that most graph-based representations are not identified as cross-lan-
guage or language agnostic, their dependency on the programming language being 
higher than in our model. We group the tokens in clusters based on their semantic simi-
larity, making the ClaSCoRe representation less dependent on the lexical structure of pro-
gramming languages and portable between them. 

The ClaSCoRe representation performs very well in the “C# to C#” scenario, similar 
to or better than most of the models described in Section 2, with an average F1 score of 
0.96 for all CWEs in scope and all machine learning algorithms tested, which indicates 
that the semantical representation and clustering of tokens included in the multi-language 
source code provided by the community of developers are beneficial as well in single lan-
guage models. 

5. Conclusions 
The ability to identify security vulnerabilities within source code written in program-

ming languages that are not well supported with security scanning tools, software secu-
rity analysis, and labeled datasets, using the collective knowledge acquired during the 
process of securing more traditional applications developed in popular languages, in-
creases the overall resilience of the global software surface. Communities of developers 
with similar behavior in writing source code may use this characteristic to identify vul-
nerabilities in modules and functions written in programming languages less supported 
by security tools, experts, and datasets, as long as they have developed similar modules 
in popular languages supported by static analysis technology and are well connected on 
the languages influence map. Identifying 80% of security flaws implies reducing the attack 
surface significantly, considering also that new and less popular languages are also tar-
geted by fewer cyber criminals, the know-how being limited on both sides. 

We conclude that ClaSCoRe, a core representation of source code for machine=learn-
ing-based classifiers, is less dependent on the programming language than the original 
code and still able to preserve the lexical and semantical representation of the security 
weaknesses which may be part of it. 

The potential limitations and challenges faced by our proposed representation are: 
• The availability of large, labeled datasets with vulnerable code for multiple CWEs 

within the communities of developers. 
• The level of source code abstraction, which may reduce the influence of behavioral 

patterns of vulnerable and clean code writing. 
Following our vision, we plan to advance our research in the future in two main di-

rections: 
• To include more C, C++, Java, and C# code in the word embedding process to create 

more realistic word similarities between the programming language tokens. 
• To include more tokens in the vocabulary, from all major software development 

frameworks and libraries used by programmers around the world, increasing the 
ClaSCoRe representation footprint. 

• To expand the zero-shot model to other programming languages that are more dif-
ferent from the training languages (from a lexical and semantical perspective) since, 
in our case, C# is quite close to C/C++ and Java languages. 
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