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Abstract: The aim of wastewater treatment plants (WWTPs) is to clean wastewater before it is
discharged into the environment. Real-time monitoring and control will become more essential as
the regulations for effluent discharges are likely to become stricter in the future. Model-based soft
sensors provide a promising solution for estimating important process variables such as chemical
oxygen demand (COD) and help in predicting the performance of WWTPs. This paper explores
the possibility of using interpretable model structures for monitoring the influent and predicting
the effluent of paper mill WWTPs by systematically finding the best model parameters using an
exhaustive algorithm. Experimentation was conducted with regression models such as multiple
linear regression (MLR) and partial least squares regression (PLSR), as well as LASSO regression with
a nonlinear scaling function to account for nonlinearities. Some autoregressive time series models
were also built. The results showed decent modelling accuracy when tested with test data acquired
from a wastewater treatment process. The most notable test results included the autoregressive model
with exogenous inputs for influent COD (correlation 0.89, mean absolute percentage error 8.1%) and
a PLSR model for effluent COD prediction (correlation 0.77, mean absolute percentage error 7.6%)
with 20 h prediction horizon. The results show that these models are accurate enough for real-time
monitoring and prediction in an industrial WWTP.

Keywords: soft sensor; wastewater treatment; modelling; resource efficiency; exhaustive search

1. Introduction

The purpose of wastewater treatment is to remove suspended solids, organic matter,
nutrients and harmful compounds from water so that its quality meets certain limit values
before it is discharged back to the environment, typically into the sea or a river. It is
very likely that the regulations and limit values for effluent quality set by the authorities
will be more stringent in the future. The influent wastewater of an industrial wastewater
treatment plant (WWTP) typically contains wastewater from several sources and, therefore,
depending on the sourcing process and how it is operated, the quality (e.g., temperature,
amount of nutrients and organic matter) and quantity of influent can vary significantly.
These changes can be profound and occur quickly, but the heart of the wastewater treatment
process, i.e., biomass, adapts slowly to changes. Drastic changes may be challenging for
the operation of the treatment process and affect the quality of the effluent. In addition, the
treatment process includes varying delays. Hence, there is a need for real-time monitoring
of the WWTP process. Real-time monitoring may include online measurements but also
soft sensors. In this study, the development of soft sensors for chemical oxygen demand is
studied. These soft sensors can help reduce the pollution load and increase the efficiency of
the WWTP process.

Chemical oxygen demand (COD) refers to the amount of oxygen consumed by the
dissolved and suspended matter in a sample when exposed to a specific oxidising agent
under specific conditions [1]. In simple terms, COD provides an estimate of the overall
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organic pollution or contamination level in water or wastewater. COD is a measure of
the wastewater’s capacity to consume oxygen in chemical reactions. Typically in WWTPs,
the COD is used to quantify the amount of harmful organic matter in the wastewater.
The COD is, in many cases, measured in a laboratory offline from a sample or with an
expensive online analyser. However, the harsh process conditions in WWTPs can cause
deterioration and biofilm formation in analyser sensors that can cause interference, which
can lead to reduced measurement precision over time [2]. Therefore, these sensors require
constant maintenance, recalibration or replacement to keep them accurate, which is why
soft sensors could prove to be a good alternative. A soft sensor can be utilised to indicate
the malfunction of a hardware sensor or used instead of a hardware sensor for monitoring
a process variable [3–5]. With a real-time estimator, process operators could match the
process conditions to the incoming COD more accurately. Combined with a predictive
effluent model, with the purpose of predicting the amount of COD discharged into the
water basins, the WWTP operation could be optimised to treat the maximum amount of
wastewater with minimal effort for both environmental and economic gain.

Regression models such as partial least squares regression (PLSR) and multiple linear
regression (MLR) have been used to estimate the COD and other quality parameters in
the past [6]. Mujunen et al. [7] utilised PLSR to estimate COD reduction among other
parameters to analyse the treatment efficiency of a pulp and paper mill WWTP, using a
large number of variables from the WWTP and a forward stepwise procedure to select
the variables. One year later, in a similar study, Teppola et al. [8] utilised multiple linear
regression, principal component regression and PLSR with a Kalman filter to update
regression model coefficients to model COD reduction. Woo et al. [9] applied kernel partial
least squares to model the COD, total nitrogen and cyanide of an industrial coke WWTP
and compared the results with conventional linear PLSR. They found that the kernel partial
least squares method was able to capture the nonlinearities of the WWTP and provide a
better estimate for the modelled variables when compared to the linear PLSR. Dürrenmatt
and Gujer [10] used generalised least squares regression (along with other modelling
methods) to estimate the effluent COD in primary clarifiers and the ammonia concentration
in activated sludge tanks. They found that simple linear models could be used accurately
as soft sensors in a municipal wastewater treatment setting. Abouzari et al. [11] estimated
the COD of a petrochemical wastewater treatment plant using various linear and nonlinear
methods. They found that piece-wise regression linear regression provided relatively high
accuracy and had better reliability compared to other methods. More recent studies on
industrial applications have focused more on either nonlinear model structures or hybrid
model structures and have been a popular research topic, as it is believed that these kinds
of hybrid models could capture both nonlinear and linear behaviour [12].

Machine learning methods have also been a popular option in studies where soft
sensing or prediction of process performance has been the focus [13–16]. Yang et al. [17]
used a nonlinear autoregressive network with exogenous inputs (NARX) model to predict
effluent COD and total nitrogen and compared the results with artificial neural network
(ANN) models. Wang et al. [2] compared nine different machine learning algorithms in
total to predict effluent COD. The resulting models demonstrated a high degree of precision.
Zhang et al. [18] proposed a novel modelling method using dynamic Bayesian networks
with variable importance in projection for soft sensor applications. The study included
comparisons of their new modelling method to PLSR, ANN and other Bayesian networks.
Many studies focus on nonlinear machine learning models, which provide little knowledge
on how a modelled variable could be controlled [19]. These models are also difficult to
implement in practice, which is why there is a significant need for models that could be
directly derived from process measurements and easily implemented into practice.

In terms of studies where WWTP influent is monitored, municipal WWTPs have been
a popular topic of research. This is largely due to rain having a large effect on the operation
of municipal WWTPs, as the source of the incoming wastewater naturally greatly affects the
characteristics of the wastewater and WWTP operation. Similar modelling methods have
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been used in studies where influent quality parameters are modelled [20–23]. However,
since the main purpose of this research is to study industrial wastewater treatment, these
studies are not further explored here.

This research aims to improve the utilisation of online process measurements in the
context of industrial wastewater treatment plants. Online COD measurement is difficult and
laborious to maintain. If left unmaintained, the measurement reliability is compromised.
In addition, the sampling interval for online measurement is four hours, but with a soft
sensor, the sampling interval can be reduced. Thus, this study focuses on models that
can replace the online measurement device. The aims of this study are to form models
for influent and effluent COD using available process data. The first target is to develop
an accurate model for the influent, specifically to provide a basis for a soft sensor that
estimates COD levels. This model gives online information about the influent COD. The
second target is to construct a predictive model for effluent quality. The working principle
of this model is similar to the influent model, but the goal is to predict the remaining COD
in the wastewater before the wastewater is discharged, assuming the process conditions
remain unchanged. The model proposed can be used for online monitoring of the WWTP.
Because it predicts future effluent COD values, the information it provides can even be
used to prevent undesired changes in the process. It is essential that models developed for
both targets possess a high degree of interpretability and are sufficiently straightforward to
enable direct implementation using process measurements. For this purpose, this work
focuses on straightforward linear model structures.

WWTP process data contain many variables, from which one must be able to select
the most important ones for the modelling. The selection of input variables is typically
conducted based on available data using either an input variable selection method or
process knowledge. The literature reports many techniques for automatic variable selection.
This study does not use these, and thus these methods are not described here. An interested
reader can find an excellent review of these, for example, by Guyon and Elisseeff [24]. In
this study, an exhaustive algorithm is utilised to systematically test various combinations of
online process variables from a pool of variables together with delays and model structures.
Furthermore, suitable training windows are systematically browsed. By systematically sift-
ing through the data, valuable information for modelling can be found. The key advantage
of the whole approach is that it enables a comprehensive exploration of the entire dataset
and model structures. In this study, the following model structures are examined: multiple
linear regression (MLR), partial least squares regression (PLSR), autoregressive exogenous
model (ARX), autoregressive moving average with exogenous input model (ARMAX) and
least absolute shrinkage and selection operator (LASSO). Overall, this method offers a
thorough approach to variable selection, enabling the extraction of important information
from the available data and the creation of straightforward, interpretable models with
real-world applicability.

This paper is organised in the following manner: Section 2.1 includes general knowl-
edge about soft sensor development and the challenges related to it. Sections 2.2 and 2.3
includes an introduction to the case WWTP and to the data collected from the plant. They
outline the key characteristics and configuration of the WWTP, as well as how the data
are used for modelling work. Section 2.4 discusses how these data were pre-processed to
be used for modelling purposes. It explores the techniques used to transform the data to
ensure their suitability for subsequent modelling purposes. Section 2.5 includes a discus-
sion of the proposed modelling approach. Sections 2.6 and 2.7 includes descriptions of the
model structures utilised in this work, as well as the validation procedures used to assess
their performance and accuracy. Lastly, Section 3 includes results from the modelling work
and discussion.
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2. Materials and Methods
2.1. Soft Sensor Development

Soft sensors are mathematical models that combine the outputs of one or more hard-
ware sensors to estimate the targeted variable. A data-based soft sensor uses historical
data to predict or estimate the variable of interest, even when direct measurements are
not readily available. One of the main advantages of soft sensors is that they enable the
estimation of hard-to-measure variables by a created mathematical model that consists
of easy-to-measure variables. The mathematical models used in soft sensors are usually
derived from data using statistical or machine learning methods. For the soft sensor output
to be reliable, there needs to be a large amount of relevant data for soft sensor training [25].

One of the challenges is to find relevant data for model training. The data used for
training and validation of the data-derived model should be of high quality to ensure a
high-quality soft sensor. There can be various issues related to the data, such as nonlinear
behaviour, different process phases and multicollinearity, which make modelling more
difficult. Challenges related to information can relate to possible process deviations, sensor
faults or over-fitting, or deterioration of the soft sensor model, all of which can make the
development of soft sensor models more difficult. Lastly, challenges can be related to the
implementation of expert knowledge. Leveraging process knowledge can be valuable in
tasks such as pre-selecting relevant process variables or manually detecting outliers in the
data, which can enhance the accuracy and reliability of the soft sensor model. Process
knowledge can be utilised, for example, in the pre-selection of a process variable or manual
detection of outliers [26]. Overall, these challenges in data acquisition, data-related issues,
information challenges and utilisation of expert knowledge can pose significant hurdles in
the development and successful implementation of high-quality soft sensor models.

2.2. Wastewater Treatment Plant

Data from a certain wastewater treatment plant related to a paper manufacturing plant
were utilised in this study. A simplified schematic of the wastewater treatment plant in
question is depicted in Figure 1. The wastewater leading to the WWTP originates from
multiple sources. These sources include paper machines and the debarking process. The
wastewaters from paper machines flow to the wastewater tank as individual streams. This
tank also includes the wastewater from debarking. In addition, one wastewater stream
(paper machine filtrate) enters the pumping station after primary clarification. The positions
where online COD is measured are indicated in Figure 1.
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Figure 1. Simplified schematic of the studied wastewater treatment plant and activated
sludge process.

The wastewater purification process at the plant consists of primary clarification as
a primary treatment method and activated sludge process as a secondary treatment. The
primary clarifier plays a crucial role in removing pollutants from the wastewater. It operates
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by allowing the settling of heavier or more readily separable solids at the bottom of the
clarifier, forming a sludge layer, while the clarified water is collected from the top. The
primary clarification helps improve the overall efficiency and cost-effectiveness of the
process. After the primary clarifier, the paper machine filtrate stream is mixed with the
rest of the wastewater. This combined wastewater is then pumped into a tank to wait
for aeration. At this point, the wastewater quality measurements that are important for
assessing the effectiveness of the treatment process and monitoring the performance of the
plant are taken. Parameters such as COD, temperature, pH and other indicators provide
valuable information about the overall condition of the wastewater going into aeration. The
wastewater is then divided into two streams for the rest of the wastewater treatment. Next,
the wastewater streams are sent to biological wastewater treatment, where the wastewater
is mixed with air in a tank during the aeration process. The continuous circulation of
air promotes the degradation of organic matter present in wastewater through the action
of microorganisms. Following the biological treatment (aeration) stage, the wastewater
undergoes the final treatment step in a secondary clarifier. In this step, the remaining
pollutants and sludge are separated and removed from the wastewater, further improving
its quality. The sludge is collected and further processed for disposal or potential reuse.
Once the wastewater has undergone all the mentioned treatment steps, it is considered
sufficiently treated and ready for discharge into the river. This final step ensures that
the purified wastewater meets regulatory requirements and minimises its impact on the
receiving water body.

2.3. Data Collection

Three datasets were received from an actual WWTP process, including online mea-
surements from the automation system. Data from the related paper machine were also
received. Online data were stored at a one-minute frequency. Table 1 shows the relevant
information about the datasets used.

Table 1. Dataset content information and its usage for modelling.

Data Length Variables Variable Info Dataset Usage

Dataset 1 1 year 44 Wastewater treatment process data Effluent model development
Dataset 2 4.5 months 31 Wastewater treatment process data Influent and effluent model development
Dataset 3 6 months 17 Wastewater data from paper machines Influent and effluent model development

Dataset 1 was the largest of the received datasets, containing one year’s worth of
data. The initial dataset from the plant included 44 online measurements. From these
measurements, 27 were chosen for the next step after the data pre-processing phase. Some
variables were neglected because they contained no useful information. The measurements
in Dataset 1 included data on temperature, pressure, flow rate, liquid level and various
quality measurements from the wastewater process. Dataset 2 included similar data to
Dataset 1, i.e., measurements from the wastewater treatment plant, but it covered only the
summer period. Dataset 3 included measurements about WWTP influent obtained from the
paper machine automation system and covered about the same time period as Dataset 2.
These data were crucial for the development of the influent soft sensor. Dataset 2 spanned
approximately 4.5 months, while Dataset 3 covered a period of six months. Datasets 2 and 3
were aligned and merged, and thus, about 1.5 month period from Dataset 3 was removed.

Dataset 1 was utilised as training data in developing the predictive effluent model.
Dataset 2 served two purposes. Firstly, it was used as validation data for the predictive
effluent model. Secondly, it was utilised in conjunction with Dataset 3 for developing an
influent soft sensor model.

The device responsible for online COD measurement extracts periodic wastewater
samples at a four-hour frequency. These samples undergo thorough analysis giving the
online data that are promptly recorded within the automation system. This means that
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online data for the targeted variables are updated roughly every four hours. This applies to
both the influent and effluent COD measurements.

2.4. Data Pre-Processing

The data were pre-processed using MATLAB® software. The purpose of data pre-
processing was to process the available data into the most complete form so that it could
be used for modelling purposes. This included multiple steps. Firstly, variables that were
constant (such as set point values for certain variables) were removed from the datasets.
Variables were also removed if they included many Not a Number (NaN) values. Such
variables contained no useful information from the modelling perspective.

The NaN values were replaced with interpolated values. Removal of NaN values
from the data is important because they can cause issues with mathematical operations
and modelling methods later. In this study, linear interpolation was employed to replace
NaN values, utilising either the last known value or the next known value. The choice
between these options depended on factors such as whether the variable began or ended
with a NaN value.

Removal of NaN values was followed by an automatic outlier detection method.
Outlier detection is an important step in data analysis and modelling. Firstly, it helps
ensure data quality by identifying and addressing data errors, leading to higher data
integrity and reliability. It also enables accurate statistical analysis by preventing distortions
in data distribution and calculations of statistical measures. The ‘quartiles’ method was
used to identify outlier points automatically [27]. In this method, data elements that are
1.5 interquartile range (IQR) below the lower quartile or above the upper quartile are
automatically classified as outliers. The IQR can be calculated as in Equation (1):

IQR = Q3 −Q1, (1)

where Q3 represents the upper quartile (75 per cent of values from lowest to highest) and
Q1 the lower quartile (25 per cent of values from lowest to highest). After detecting the
points that are above or below 1.5 IQR of their respective quartile, the points were marked
as outliers and changed to NaN values. This was performed so that the locations of these
points would not go missing during deletion, as the removal of values from different parts
between datasets would lead to discontinuity with the data timestamps if removed directly.

Usually, during this part of data pre-processing, data timestamps would also have to
be fixed. However, the timestamps did not include any errors or multiple values, which is
why the timestamps could be ignored during the data pre-processing and modelling as
every data point was recorded at steady one-minute intervals.

Next, data points from the dataset, which were clearly outliers (such as negative pH
values), were changed to NaN values. Other outlier points were detected by manually
inspecting the data for possible outliers. Possible outlier points were left in the dataset if it
was unclear whether the point was an outlier or a correct reading. The NaN values were
then replaced with interpolated values similarly to before.

Once all outliers and NaN values were removed and interpolated from the data, the
data were standardised. Standardisation is performed so that every variable uses the same
common scale and can be performed with many different formulas. However, since most
of the variables in the datasets were close to normally distributed, the standardisation was
performed using the standard score formula (Equation (2)) [28]:

Zi =
xi − x

S
(2)

where x is the mean, and S is the standard distribution of the variable being standardised.
The standard score Zi represents how many standard deviations the actual value xi differs
from the variable mean.
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The datasets were then sampled utilising a moving median [29], where a median from
a certain point window is used to represent all the data points from that window. The data
points that were used to calculate the median were removed afterward, and only one point
remained to represent all the removed values. Consequently, this means that the number of
data points in each variable decreases drastically without losing any critical information.
This type of averaging is beneficial as it allows more efficient calculation as well as filtering
of the data. The efficient calculation is important later as an algorithm is utilised in the
modelling part, which can be considered computationally heavy. The original minute data
were reduced to a median of two-hour time intervals between data points.

As the last step of the pre-processing stage, the variables in the datasets were sub-
jected to a nonlinear scaling algorithm with the purpose of making linear methodologies
applicable to nonlinear cases. The nonlinear scaling algorithm was developed by Juuso [30].
The purpose of this method is to consider the nonlinear effects of the data. The scaling
function transforms the data and scales it to a range of [−2, +2] using two monotonously
increasing functions. One function is identified for the range of [−2, 0] and the other for the
range of [0, +2]. Nonlinear scaling of variables is mainly utilised in regression modelling.
Experiments were also performed without nonlinear scaling.

2.5. Modelling Methodology

Modelling of the influent COD and effluent COD was carried out by testing different
model structures on both cases and tuning the optimal model parameters utilising an
exhaustive algorithm. Figure 2 shows the overall flow of the modelling methodology steps,
including the data pre-processing and analysis steps that were discussed in detail in the
earlier section.
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Since three different datasets were received, the first step was to divide the data into
training, test and validation data for both cases. For the influent model, we combined
Datasets 2 and 3 into one from the same time period. This was performed because Dataset
3 included data on incoming wastewater from the paper machines that were thought to
be important for the estimation of influent COD. The aim was for every measurement
that was used in modelling to originate from before or at the aeration inlet pool for the
influent model. As discussed above, Dataset 3 fits this criterion perfectly. Variables that
fit this criterion were picked from Dataset 2. Dataset 3 had to be trimmed a little due to
being slightly longer than the other to make sure that the timestamps would fit correctly
and be comparable to each other, as discussed in Section 2.3. It was noticed during the
data pre-processing stage that Datasets 2 and 3 both had a section of data that was of poor
quality that could not be used for modelling or validation. The majority of the data before
the poor-quality section could be used for model training and testing and the later part for
model validation.

For the effluent model, it was decided to use Dataset 1 for training and Dataset 2,
which included nearly the same variables, for model validation. One deciding factor was
that Dataset 1 was the longest of the three datasets and would contain the largest number
of variables. However, some of the variables in Dataset 1 could not be utilised because they
could not be found in Dataset 2. It was then decided which datasets would be used to model
which case; the modelling work for each of the targets could be performed separately.

Both cases were modelled utilising a similar modelling strategy. The modelling work
was performed by testing different model structures to see which model structure would
fit the data best. Interpretable model structures were prioritised during the selection. The
model structures and analysis methods tested included:

• Autoregressive exogenous model (ARX), autoregressive moving average with exoge-
nous input model (ARMAX);

• Multiple linear regression (MLR), partial least squares regression (PLSR);
• Least absolute shrinkage and selection operator (LASSO).

After the model structure was chosen, it was tested on the chosen dataset by sys-
tematically testing for different attributes. In general, everything that could be tested
systematically was considered. Features that could be tested varied depending on the
chosen model structure. Systematic testing included:

• Time delays;
• Training windows;
• Variable combinations;
• Model orders (when needed).

Systematic testing of different attributes was conducted by utilising a design matrix
in for-loop in MATLAB® software. The design matrix is based on full factorial design is a
statistically valid way to systematically test for different variables, in this case, different
attributes [27]. The variables that were chosen for systematic testing were collected into a
matrix pool. The numbers in the design matrix represent the indexes of the variables in the
pool of variables. For example, with a model using five input variables, experiment 1 would
consist of variables 1, 2, 3, 4 and 5; experiment 2 would consist of variables 1, 2, 3, 4 and 6.
The design matrix for variables was constructed in the following manner:

1. Choose the total number of variables for the pool of variables.
2. Choose the number of variables for the model.
3. Construct a full factorial design, where the total number of variables in the pool act as

levels and the chosen number of variables as factors.
4. Remove rows containing the same variable index.
5. Remove rows that are not unique.

The number of chosen variables for the pool and the number of variables in the model
essentially determine how many experiments there will be. However, before the formed
design matrix can be used for modelling, some adjustments need to be performed. Rows
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that contain the same variable indexes (multiple same numbers) need to be removed from
the matrix, as it is not beneficial to model cases where the same variable is taken into the
model twice. The same applies to cases where the rows are not unique (same numbers,
different order). The last two steps are not necessary but make the calculation time faster.

Time delays and model orders could be tested directly by creating a full factorial
design of the desired range of time delays and model orders. For the influent models, time
delays were tested between data points 1 and 16. With time intervals of two data points in
the full factorial design, this meant that there were 32,768 possible time delay combinations
to test for each attribute. A similar strategy was utilised when testing for different model
orders. However, model orders were limited to the range from 1 to 6. For five variables,
this would still mean 7776 different model order combinations. Lastly, different model
training windows were tested over the dataset in a sliding window. The training window
size also varied from a couple of hundred data points to the whole dataset. Therefore, the
whole dataset was examined as thoroughly as possible to find the critical information.

The effluent model was modelled using the same strategy. However, it was found
that fewer variables were needed to model the effluent COD, which is why more freedom
was given to testing different attributes, as testing for three attributes is computationally
significantly lighter compared to five variables. Furthermore, the effluent measurements
are located farther away compared to the influent model, which is why it also made sense
to increase the range for time delay testing.

In addition, tests with changes to the data pre-processing step were performed. These
changes included modelling without the usage of nonlinear scaling. This could especially
be performed with dynamic model structures when using more complex model orders.
This is because one of the purposes of scaling the data with a nonlinear scaling function is
that complex model structures are not needed in the modelling phase. Aside from tests
with and without nonlinear scaling, modelling was performed with different values from
the moving median window size. We experimented with different sampling rates for a
2, 4 and 8 h moving median value.

The purpose of the following pseudocodes is to provide further explanation of the
modelling work. The purpose of these codes is to systematically test all possible variable
and parameter combinations and store the results. This section includes pseudocodes for
the ARX/ARMAX model structures and one for linear model structures. The pseudocode
for the ARX model structure is presented in Figure 3.
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As discussed in Section 2.5, multiple inputs are required for the code to work. Most
importantly, the variable pool, design matrixes for the variables, model orders nb and
delays. For the ARMAX model, an additional for loop is required for the model orders.
The last loops are for determining the lengths and starting points of the varying sliding
windows. It is important to consider the length of the data when defining the sliding
windows and their starting points so that the whole data can be utilised with varying
sliding windows and their starting points without producing an error. Inside the main
for loop, the training data should be formed based on the indexes of the variable design
matrix and the sliding window. An ARX model should be formed from this training data
together with the selected delays and model orders. After the model was trained, validation
data were formed based on the selected variables. The length of the validation data is the
same every loop, as the model performance must be tested on data from the same period
every time. Lastly, the results from the performance evaluation as well as important loop
data, must be stored into a variable. This is important so that the results can be accessed
afterward to see which variables, model orders, delays and training periods from the
available data give the best results. The best model structure is then further tested with
independent test data. The code for linear models worked in a similar manner (Figure 4).
However, there are some differences. The linear model structures do not include model
orders at all. The variables were also manually delayed. Finally, the code for linear models
includes cross-validation in the loop.
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2.6. Model Structures

Different model structures were utilised during this modelling work, including dy-
namic time series model structures such as the ARX and ARMAX. Aside from dynamic
time series models, simple regression models such as PLSR and MLR were used. Lastly, we
experimented with LASSO regression.

2.6.1. Dynamic Model Structures

Two dynamic model structures were chosen for this study. The ARX and ARMAX
time series models are linear representations of a dynamic system [31]. The ARX model
structure can be represented by the following Equation (3):

y(t) + a1y(t− 1) + . . . + ana y(t− na) = b1u(t− nk) + . . . + bnb u(t− nb − nk + 1) + e(t), (3)

where y(t) represents the model output at time t, and na and nb represent the chosen model
orders. The model delays are represented by nk, which states how many input samples
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occur before that specific input affects the model output. Finally, e(t) represents the white
noise value of the system.

The ARMAX model structure is similar to that of the ARX. The major difference
between the model structures is that the ARMAX model includes the moving average (MA)
term [32]. The ARMAX model can be represented by the following Equation (4):

A(q)y(t) = B(q)u(t− nk) + C(q)e(t), (4)

where, similarly to the ARX model, y(t) represents the model output at time t, na, nb and
nc (included in A, B and C components) are the orders of the ARMAX model, nk represents
the model delays and finally, e(t) is the value of the white noise disturbance.

2.6.2. Static Model Structures

As stated above, of the static modelling methods, PLSR and MLR models were utilised
in this study. The advantage of linear regression models is that they are interpretable. How-
ever, these model structures may fail to capture nonlinear or dynamic relationships. In this
work, nonlinear scaling is utilised in the case of regression models, as stated in the section
on nonlinear scaling, which means that nonlinearities are considered this way and should
make these model structures perform well without losing their interpretability. Below
(Equation (5)), the MLR model structure is given with n amount of input variables [33]:

ŷ = b0 + b1x1 + b2x2 + . . . + bnxn, (5)

where ŷ represents the predicted values; xn the predictor variables; bn represents the slope
coefficients for the explanatory variables used in the model; and, finally, b0 is the y-intercept
term. The MATLAB® function ‘regress’ was utilised to calculate the b coefficient estimates.
For PLSR, the MATLAB® function ‘plsregress’ was utilised [34]. The function follows the
SIMPLS algorithm developed and discussed in detail by De Jong [35].

2.6.3. LASSO Regression

Lastly, we experimented with modelling methods that automatically choose variables
for the models. LASSO regression does the variable selection and model training simulta-
neously [36]. It can be a suitable method, especially when there is a situation where data
are abundantly available (especially a lot of variables). The LASSO method minimises the
sum of squared error, while the model regression coefficients that are not important are
given values close to zero [37]. The LASSO model solves the following Equation (6) for
different values of λ:

min
β0,β

(
1

2N ∑N
i=1

(
yi − β0 − xT

i β
)2

+ λ∑p
j=1

∣∣β j
∣∣), (6)

where λ represents the regularisation term, N represents the number of observations,
yi represents the response at observation i, xi represents the input data at observation i, p is
the vector length, and β0 and β are the model parameters (regression coefficients).

2.7. Model Validation

The models were validated with a dataset that was not used during model training.
In the case of ARX/ARMAX, a training window was utilised to systematically pick a
part of the dataset, train a model and compare the results over the rest of the dataset.
In the case of regression models, k-fold cross-validation was used to divide the datasets
into training and test data. K-fold cross-validation divides the dataset into k number
of folds (or partitions) that are nearly equal in size. After the data were divided, the
k − 1 number of folds was used for model training, and the remaining data were used for
model validation. This procedure was iterated k times, which means that each fold was
successively utilised in validation, and the remaining data were used as training data [38].
The value for k was chosen to be 5 because there a large dataset was available and a separate
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independent validation dataset to test the effluent model on. With this k-value, it was
believed that the results would be the most realistic as opposed to biased or optimistic.
Monte Carlo repetitions were utilised to repeat this process 2000 times each time model
training was performed. Both models were also subsequently tested with independent
validation data afterward.

There are many ways to evaluate the performance of an identified model. Com-
monly utilised measurements include the root mean squared error (RMSE), mean absolute
percentage error (MAPE) and the correlation coefficient (r). The following equations
were used to calculate these performance metrics for the identified models to evaluate
their performance [39]:

MSE =
1
N ∑N

t=1(ŷt − yt), (7)

RMSE =
√

MSE, (8)

APEt =
|ŷt − yt|

yt
·100%, (9)

MAPE =
1
N ∑N

t=1 APEt, (10)

rxy =
∑n

i=1 (xi − x)(y1 − y)
(n− 1)SxSy

, (11)

where ŷt represents the predicted values, yt is the measured values, N is the number of
data points, ŷ is the response variables mean and t represents time.

3. Results and Discussion

Modelling work was carried out as described in Section 2.5. In this section, the results
are presented and discussed. A summary of the results for influent COD modelling are
presented in Table 2. After the best model parameters and structures were identified, a
set of measurements were calculated to evaluate the performance of identified models, as
discussed in Section 2.7.

The Dynamic model structures (ARX/ARMAX) performed the best when identifying
the model for the influent COD. The ARX model demonstrated strong performance on
both the training dataset, with a correlation coefficient of 0.82, MAPE of 9.4% and RMSE of
242.7 mg/L. Similarly, on the test dataset, the ARX model exhibited good results, achieving
a correlation coefficient of 0.89, a MAPE of 8.1% and an RMSE of 191.1 mg/L. In terms
of other models, PLSR and LASSO models also show reasonable performance with mod-
erate r values and acceptable MAPE and RMSE values. The MLR model shows weaker
performance compared with the other models (lower r values and higher MAPE and RMSE
values). The most effective model (ARX) for the influent soft sensor model is depicted in
Figure 5a. In this figure, the measured COD from the aeration inlet pool is represented by
the black line, and the modelled COD is represented by the blue line as a function of time.
The grey area that is plotted in the figures represents the 95% prediction interval estimated
with training data. The ARX/ARMAX models had correlation coefficients of approximately
0.8. In both cases, the same variables were chosen for the model as input variables by the
algorithm. The variables included two inflows from the paper machines, the flow from
debarking, and pH and temperature from the aeration inlet pool. The addition of the
moving average term to the model did not increase the correlation coefficients significantly.
Hence, the ARX (orders: na: 6, nb: (2 5 4 5 5)) model can be considered better as the model
structure is simpler than the ARMAX model. The best model structures were attained
when nonlinear scaling was omitted, and the dynamic model coefficients increased slightly.
The identified model structure was then tested with validation data that had not been used
in the model training. The results from this testing are presented in Figure 5b.
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Table 2. Identified influent COD model structures and their performance metrics.

Inputs Model
Structure

Nonlinear
Scaling

Training
Data r

Training Data
MAPE [%]

Training Data
RMSE [mg/L]

Test
Data r

Test Data
MAPE [%]

Test Data
RMSE [mg/L]X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8

x x x x x ARX No 0.82 9.4 242.7 0.89 8.1 191.1
x x x x x ARMAX No 0.80 8.8 221.8 0.85 7.5 177.4

x x x x x MLR Yes 0.46 15.03 399.8 0.4 17.1 371.4
x x x x x PLSR Yes 0.72 10.87 245.9 0.74 7.8 147.6

x x x x x LASSO Yes 0.55 12.9 284.3 0.70 12.2 208.5
1 Paper machine wastewater flow (1); 2 paper machine wastewater flow (2); 3 paper machine wastewater flow (3); 4 aeration inlet pool pH; 5 pumping station wastewater temperature;
6 primary clarifier moment; 7 primary clarifier sludge amount; 8 temperature from neutralisation.
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Figure 5. Measured influent COD (black) and soft sensor estimates (blue) as a function of time
(1 data point = 2 h), (a) training data (correlation 0.82, MAPE 9.4%). (b) Model testing on independent
test data (correlation 0.89, MAPE 8.1%). Grey area is the estimated 95% prediction interval.

A summary of the results for effluent COD modelling are presented in Table 3. For
effluent predictive models, both the chosen dynamic model structures and the linear model,
especially the PLSR structure without nonlinear scaling, worked well. The PLSR model
without nonlinear scaling demonstrated good performance on both the training dataset,
with a correlation coefficient of 0.74, MAPE of 15.7% and RMSE of 42.5 mg/L. On the
test dataset, the PLSR model without nonlinear scaling also showed good results, with a
correlation coefficient of 0.77, a MAPE of 7.6% and an RMSE of 23 mg/L. The PLSR model
with nonlinear scaling also stands out as a well-performing model with high correlation
coefficients (r values), low MAPE values and low RMSE values for both the training and test
data. The MLR model with nonlinear scaling also performs reasonably well, although it has
slightly lower correlation coefficients and higher MAPE and RMSE values compared with
PLSR models. The identified ARX/ARMAX models worked best overall for the effluent
prediction case based on correlation and MAPE values. However, because one of the goals
of this research was model simplicity, more attention was also given to the linear regression
model structures as they work for these data.

The identified PLSR model outputs (blue) and measured effluent COD (black) training
data are plotted in Figure 6a. The variables chosen for this model were all located at the
aeration inlet pool. The variables included the COD, pH and oxygen of the aeration inlet
pool. The optimal delays for the identified PLSR model for these variables were 10, 10
and 20 data points, respectively. Since the minimum delay for the model is 10, this would
indicate that effluent COD can be predicted 20 h in advance (one data point corresponds to
two hours of data), assuming that there are no significant process changes. As discussed in
Section 2.4, different moving median values were experimented with, and the 2 h period
provided the best results from both the data analysis and modelling perspective. For the
training data, the performance metrics show a correlation coefficient of 0.74. Similarly to
the influent model, the identified model was tested on independent validation data. The
results are presented in Figure 6b.

One explanation for why the correlation is much higher in the validation data when
compared to the training data in the case of the effluent model is the number of data points.
The training data contained approximately 4000 data points, whereas the validation dataset
utilised was only 600 data points long, for the reasons discussed in Section 2.5. The COD
measurement does not work as intended between data points 440 and 520 on the test data
(Figure 6b), as the measurement output is constant for a long period of time. During this
time, the model outputs significantly lower values and provides a much better estimate
of the COD than a measurement device that is not working. Such malfunctions occur at
constant intervals due to sensor fouling. Zoomed in perspective is presented in Figure 7.
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Table 3. Identified effluent COD model structures and their performance metrics.

Inputs Model
Structure

Nonlinear
Scaling

Training
Data r

Training Data
MAPE [%]

Training Data
RMSE [mg/L]

Test
Data r

Test Data
MAPE [%]

Test Data
RMSE [mg/L]X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8

x x x PLSR No 0.74 15.7 42.5 0.77 7.6 23.0
x x x PLSR Yes 0.71 12.5 28.6 0.68 14.5 36.3
x x x MLR Yes 0.68 12.4 29.9 0.67 25.1 59.4
x x x LASSO Yes 0.65 13.3 27.5 0.54 21.3 29.4
x x x ARX No 0.79 14.2 38.6 0.8 10.4 31.7
x x x ARMAX No 0.80 14.2 38.5 0.78 10.3 31.4

1 Aeration inlet pool COD 2; 2 aeration pH; 3 aeration oxygen 1; 4 aeration oxygen 2; 5 aeration air pressure; 6 paper machine wastewater flow (4); 7 pumping station flow rate;
8 debarking wastewater flow.
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Figure 6. Measured effluent COD (black) and model estimates (blue) as a function of time with a
prediction horizon of 20 h (1 data point = 2 h): (a) training data (correlation 0.74, MAPE 15.7%);
(b) model testing with independent test data (correlation 0.77, MAPE 7.6%). Grey area is the estimated
95% prediction interval.

Further model validation was performed by analysing the residuals of the created
models. Histograms and normal probability plots were drawn for the training and test sets
to evaluate model performance visually. A normal probability plot compares the residual
to what would be expected if the data followed a normal distribution. The data are plotted
in a way that should result in a straight line. If not, it suggests that the data do not conform
to a normal distribution [27]. For the model to be considered good, the model residual
should be close to normally distributed. The residuals for the influent COD soft sensor are
plotted in Figure 8.
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Figure 7. Zoomed view of Figure 6b at time period 400–550 when hardware sensor is malfunctioning
(approximately 440–520).

The histogram and the normal probability plot for the soft sensor training data residual
in Figure 8a,b suggest that the residual appears to be normally distributed. Minor deviations
can be observed at the tails of the distribution. The soft sensor test data residual in
Figure 8c,d, on the other hand, shows more deviations at the tails yet shows a relatively
straight line in the middle portion of the data. For the effluent COD predictive model,
the training data in Figure 9a,b shows significant deviation for residual values that differ
from the predicted values by one standard deviation (approx. 10% of values). A similar
phenomenon could be observed in the effluent COD test data in Figure 9d, albeit to a
lesser degree.
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Figure 8. Influent soft sensor model residual for training and test data: (a) training data residual
histogram; (b) training data residual normal probability plot; (c) test data residual histogram; (d) test
data residual normal probability plot.

Lastly, some properties of the residual were calculated (Table 4) to numerically verify
the observations. The range indicates the span of residual values, while the standard
deviation represents the spread or variability around the model predictions. Skewness and
kurtosis reveal the shape and potential outliers in the residual distribution. Monitoring
these properties can help identify model deficiencies and guide further improvements.

Table 4. Residual properties.

Residual Range Std. Deviation Skewness Kurtosis

Influent model training data [−1.4, 2] 0.54 0.19 2.91
Influent model test data [−0.8, 1.3] 0.43 0.74 3.3

Effluent model training data [−2.4, 2.9] 0.67 0.63 4.3
Effluent model test data [−1.2, 2.87] 0.55 0.34 3.84
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Figure 9. Effluent predictive model residual for training and test data: (a) training data residual
histogram; (b) training data residual normal probability plot; (c) test data residual histogram; (d) test
data residual normal probability plot.

The effluent training data exhibit residual values ranging from −1.4 to 2, with a stan-
dard deviation of 0.54. The distribution of residuals is moderately peaked (kurtosis = 2.91)
and is slightly skewed (skewness = 0.19) with a longer tail on the right side. This suggests
the presence of some outliers or heavy-tailed behaviour. These values are good for a model
made with industrial data. The test data for the influent model show residual values
ranging from −0.8 to 1.3. The standard deviation decreases slightly to 0.43, indicating
a relatively smaller spread of residuals compared to the training data. The distribution
remains slightly skewed (skewness = 0.74) and exhibits a higher peak (kurtosis = 3.3),
suggesting a higher probability of outliers.

The effluent model’s training data exhibit residual values ranging from −2.4 to 2.9.
The standard deviation of 0.67 indicates a larger spread of residuals compared to both
the influent model’s training and test data. The distribution is similarly slightly skewed
(skewness = 0.63) with a higher peak and heavier tails (kurtosis = 4.3), also suggesting the
presence of extreme values or outliers. The test data for the effluent model show residual
values ranging from −1.2 to 2.87. The standard deviation is 0.55, indicating a moderate
spread of residuals. The distribution remains slightly skewed (skewness = 0.34) with a



Appl. Sci. 2023, 13, 7848 19 of 22

lower peak and lighter tails (kurtosis = 3.84) compared to the model’s training data. Overall,
it seems that both models are a decent fit for their intended purposes, even if the models
sometimes exhibit outliers. Considering that the models are a representation of a real
wastewater treatment process, modelled with real data where situations and circumstances
can vary significantly.

In general, the models perform well, especially when considering the complexity of
the wastewater treatment process. Our study yielded results that are similar to previous
industrial wastewater studies employing linear model structures. For example, Abouzari
et al. [11] reported correlations between 0.68 and 0.835 for various linear models on test
data. However, it should be noted that there can be significant differences between different
industries on the formation of wastewater. When compared to studies that use machine
learning methods for COD modelling, the linear model structures are unable to reach as
high accuracies. For example, Güçlü and Dursun [13] were able to reach a correlation
of 0.85 on the test data using an artificial network and a somewhat lower MAPE value
(approximately 5%). However, as previously mentioned, linear model structures offer
significant practical advantages such as interpretability, straightforward model adaptation
and computational efficiency.

It is important to consider the specific requirements of the problem and the trade-off
between model accuracy and complexity when choosing the most appropriate model,
especially since the online hardware data are used mainly for monitoring purposes as
laboratory analyses are required to ensure that effluent COD levels are within limits. Thus,
the requirement for soft sensor accuracy is not that strict, and an acceptable margin of error
ranges between 10 and 20%. This level of deviation is considered reasonable and tolerable,
given the nature and objectives of the monitoring tasks at hand.

There are still some limitations and uncertainties in the models and, thus, possibilities
for future work. One goal of this work was to develop interpretable models. However,
the models developed here do not capture how the changes in manufactured paper grade
affect the incoming COD to the WWTP well, for example. One solution could be to create
multiple sub-models for each condition. However, this would require additional data
fusion concerning the manufactured paper grades.

One of the limiting factors regarding the modelling work is that the data utilised for
influent soft sensor modelling were acquired during a summer period. This may mean that
the model can accurately estimate COD during similar summer conditions. Therefore, the
knowledge of how the modelled solution would behave during winter conditions is still
missing. The models have learned how the system behaved during the specific period that
the data are from, which means that if the dynamics of the WWTP change over the years,
the accuracy of these models may decrease. This is likely to happen when the WWTPs
and the paper machine equipment are older, which may change the process dynamics.
Therefore, it is important to keep in mind that the models developed here will occasionally
require retraining or continuous adaptation for them to remain accurate.

It should also be noted that the dataset used for influent COD modelling only contained
useful information regarding the flow rate of the incoming wastewater from the paper
machines. With more useful quality data on the incoming wastewater streams, the soft
sensor model could be significantly more accurate and simpler. Measurements from both
the wastewater and the paper machines themselves could also potentially be utilised in
modelling these kinds of model-based soft sensors.

Further research could include studies with more abundant data from process variables
at the source of the wastewater. How the wastewater is formed naturally has a large effect
on the overall quality of the wastewater, which is why data on the origin of the wastewater
are valuable for influent soft sensor modelling. One interesting topic of research could
include studies on how the influent soft sensor and the effluent predictive model could
be combined.

The effluent predictive model relies on influent COD measurements as an input
parameter. This value can be provided by the influent COD soft sensor model, and thus
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it is possible to predict the effluent COD without the need for physically measuring the
influent COD. However, as discussed, for the models to replace the hardware sensor, model
adaptation tools need to be developed. This would be a more challenging task if no online
COD measurements were available. Instead, other measurements and laboratory data must
be utilised to update the model coefficients effectively. This is not studied in this paper and
would need more research.

The models developed need to be tested in practice. Implementation of these models
is straightforward and only requires changes to the plant’s automation system to include
the calculation of COD from the existing process measurements. This would give the plant
a new monitoring tool, which can be useful as itself or in conjunction with the hardware
sensor, especially in determining when the hardware sensor needs replacing and providing
an estimate during that time, as depicted in Figure 7. The soft sensors also allow for
lowering the sampling frequency of the hardware sensor, which in turn leads to reduced
sensor maintenance costs as the measurement instrument is used less frequently. This can
be very beneficial because the hardware sensor would be there to generate data for model
adaptation but with lower costs.

4. Conclusions

The results indicate that measurements of paper machine wastewater streams can be
utilised in estimating the total COD of wastewater incoming to the wastewater treatment
plant with reasonable accuracy. The best model structure for the influent model was found
to be an autoregressive-exogenous (ARX) model with low model orders. The chosen model
structure was able to estimate incoming COD with a correlation coefficient of 0.82 and
MAPE of 9.4% on the training data. For independent test data, the correlation and MAPE
between the estimated model and measured outputs were 0.89 and 8.1%, respectively.

The results also indicate that measurements of the wastewater treatment plant are
sufficient to predict the amount of COD present in the effluent. For the predictive effluent
model, the partial least squares regression model was chosen from the results. Dynamic
models such as the ARX models give similar results; however, more interpretable models
were prioritised for this case as they were also able to obtain acceptable results. The
chosen partial least squares regression model was able to estimate the effluent COD with
a correlation of 0.74 and a MAPE of 15.7% for the training data. For the test data, the
correlation and MAPE were 0.77 and 7.6%, respectively. The results seem reasonable
considering the complexity of the wastewater treatment process. The delays indicate
that the level of COD can be predicted approximately 20 h before the wastewater leaves
the plant.
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