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Abstract: Intelligent machinery fault diagnosis is one of the key technologies for the transformation
and competitiveness of traditional factories. Complex production environments make it difficult
to maintain good prediction performance using traditional methods. This paper proposes a deep
convolutional neural network combined with an adaptive environmental noise method to achieve
robust fault classification. The proposed method uses six-dimensional physical signals for data fusion
and feature fusion, extracts obvious features and enhances subtle features, and uses continuous
wavelets and Gramian angular fields to transform signals with different physical and frequency
characteristics into time–frequency maps and two-dimensional images. The fusion technology of
different signals can provide comprehensive features for fault prediction, improving upon the blind
spots of traditional methods to extract features, and then perform prediction and classification
through deep convolutional neural networks. In the experiment, the tool failure classification of the
dental milling machine is used as a verification case. The results show that the prediction accuracy of
the proposed method is nearly 100%, much better than other comparison methods. In addition, white
noise was added in the experiment to verify the noise immunity of the model. The results show that
the accuracy of the proposed method is 99%, which is better than other comparison methods in terms
of accuracy and robustness, proving the effectiveness of the proposed method for fault diagnosis
and classification.

Keywords: adaptive; convolutional neural network; fault diagnosis

1. Introduction

The demand for dentures continually increases year after year. Since 2001, the global
compound annual growth rate of the dental implant market has been around 17.7%. Prob-
lems such as cutter wear during the creation of dentures can result in missing edges and
decreased accuracy, rendering the product defective and unusable. At present, the only
way the quality of the cutter is determined is through the traditional calculation of the
number of finished products, making it difficult to reduce costs or improve production
quality. Additionally, overheating caused by excessive tool wear and dull blades often
causes the tool to tip or even break. Therefore, a key technology for upgrading the current
denture processing is an intelligent prediction method of the quality of the tool.

As modern industries shift towards artificial intelligence, an important research di-
rection is predicting and diagnosing malfunctions in intelligent machinery. Mechanical
malfunctions tend to be small and hard to detect. When these failures occur, it often causes
equipment shutdown or damage, which indirectly causes economic losses or casualties.
Therefore, an important core technology of smart machinery is how to improve equipment
activation through intelligent sensing and fault diagnosis prediction, and how to reduce the
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risk of downtime due to equipment failure. There are many types of mechanical equipment
failures, such as abrasion and damage of the processing machine’s spindle cutter [1–7], the
abnormal damage of the bearing [8–12] or gearbox of the rotary machinery due to the harsh
environment, rotational instability caused by mechanical failures of the power generator,
etc. Therefore, accurate prediction of mechanical failures will reduce production losses, a
key factor, and condition for the efficient production of smart machinery.

Intelligent machinery fault diagnosis is divided into five steps, namely: (1) data
collection; (2) data preprocessing; (3) feature extraction; (4) model training; and (5) fault
classification. Data-driven intelligent sensing not only relies upon accurate data acquisition
and data preprocessing, but feature extraction is also a major factor. In practice, sensory
data are affected by noise in harsh production environments, and redundant information
reduces the accuracy of model predictions. The sensory data captured by mechanical fault
diagnosis includes vibration, noise, currents, temperature, cutting force and rotational
speed, and so forth. Different sensors have different sensitivities and characteristic modes
for fault diagnosis, making it difficult to use a single sensing data to improve the accuracy
of fault classification for complex equipment and varying working conditions. The data
fusion method of fusing sensor data would be suitable for analyzing various types of
faults in complex systems. Data fusion can strengthen features and improve the prediction
results of the above conditions [13], according to Jiang et al. An adaptive transfer learning
framework of multi-layered feature fusion is proposed by combining multi-linear mapping
with a convolutional neural network (CNN) to improve the model diagnosis inaccuracies
caused by complex environments [14]. According to Zhang et al., extracting features
from grayscale images of multi-vibration sensing signals with fewer computing resources
reduces network parameters and the risk of overfitting [15].

Multi-dimensional feature extraction not only has high computational complexity
but also requires more expertise and manpower. Although it improves the diagnostics,
it is more difficult than extracting single sensor features. For example, the curse of di-
mensionality, data range, and noise can cause many issues. The accuracy of the model
is directly affected by how effectively the feature fusion is dealt with. Pacella et al. used
PCA (principal components analysis) for dimensionality reduction of a diesel generator’s
multi-sensing data to improve clustering results [16]. Zhang used PCA to reduce the data
dimension from six to three, reducing the complexity of the back-end algorithm [17]. Using
digital signal processing, feature extraction transforms the original time domain into a
frequency domain or time–frequency domain signals, while fast Fourier transform (FFT)
and wavelet transform (WT) [18–24] have been verified as effective methods. However, FFT
is only suitable for stationary signals, and cannot be effectively analyzed for non-stationary
signals caused by different time domains. Continuous wavelet transform (CWT) improves
the disadvantage of a set FFT sliding window regardless of frequency; it can simultaneously
extract the features of time domain and frequency, and the result is output as image data,
which is very suitable as the input feature of CNN. Gao et al. used Morlet wavelet CWT
to capture the spectrogram as the input of the CNN illustrating the effectiveness of the
time–frequency map as a feature [25]. According to Tang et al., the effective features of
hydraulic axial piston pumps are extracted by CWT, and an improved CNN performs fault
classification [26].

Traditional machine learning requires expertise, experience, and more manpower
to extract features, while in recent years, deep learning has been proven to have feature
learning capabilities. It can learn useful features from the hierarchical neural network
architecture and achieve feature fusion to improve model accuracy. CNN is an effective
method for deep learning image processing and classification and has been successfully
used in mechanical fault diagnosis [27,28] and the filter kernel of the CNN convolution
layer, with effective information and patterns to extract input features. The pooling layer
reduces the size of the feature map to reduce the training parameters and reduce the
phenomenon of overfitting. Research by Junior et al. has shown that utilizing a multi-head
1D CNN to diagnose motor faults is very accurate for multi-sensor detection of vibration
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time series [29]. Combining infrared thermal images and vibration signals, FDACNN is
used to achieve gearbox fault diagnosis in various environments, and the features extracted
by the model are mapped to two-dimensional space using PCA, proving that extracted
features derived from visualization can be separated [30].

Mechanical equipment production is often very loud due to its harsh environment,
varied working conditions, and multiple motors of varying sizes moving at different speeds.
If these noises superimpose the original data of the sensor, the accuracy of the model will be
reduced. Therefore, the de-noising process under various production conditions is crucial
for feature extraction. The adaptive method [31–41] can strengthen the system’s robustness
in actual production, and improve the utilization rate and yield of the process equipment.
Adaptive methods can be implemented differently depending on the nature of the target
object being predicted. The adaptive moment estimation (Adam) improves the inefficiency
of traditional fixed learning rate methods and the problem of finding the global minimum
effectively. It enhances the performance of sparse gradients by dynamically adjusting the
learning rate. Additionally, it uses exponential moving averages to maintain the average
magnitude of weight gradients, thereby adaptively reducing the impact of noise in non-
stationary signal classification models. The adaptive gradient optimizer is implemented
by adjusting the learning rate. It allows for smaller updates with a lower learning rate
for parameters associated with frequently occurring features, and larger updates with a
higher learning rate for parameters associated with infrequently occurring features. This
approach improves the self-extraction effectiveness of model features and reduces model
errors caused by manual feature extraction. VMD (variational mode decomposition) is
an adaptive, non-recursive method for mode decomposition and signal processing. It has
the following advantages: the ability to determine the number of mode decompositions,
adaptively determining the mode decomposition based on the actual situation, and ef-
fectively separating intrinsic mode components (IMF) in the signal domain. This allows
for obtaining the effective decomposition components of the given signal and the optimal
solution to the variation problem. Jing et al. used adaptive multi-sensor data fusion to
extract the best features and used CNN for planetary gearbox fault diagnosis [42]. Ainapure
et al. proposed a robust fault diagnosis method, introducing noise labels to improve the
generalizability of the model [43]. Wang et al. extracted fusion sequence features with an
adaptive convolution kernel of atrous convolution [44]. Wang et al. developed a new type
of adaptive normalized convolutional neural network, and a batch normalization algorithm
was used to eliminate differences in feature distribution [45]. Zhang et al., in order to
improve upon the diagnostic accuracy and robustness, integrated time series data, feature
extraction, and feature selection into the data fusion strategy. Comprehensive and represen-
tative fault features are obtained from multi-sensor signals to enhance the feature learning
capability of the network [46]. Chen et al. proposed an automatic speed adaptive neural
network (ASANN) model for instantaneous rotational speed, which detects malfunctions
of planetary gearboxes in different operating environments [47]. Gramian angular field
(GAF) converts one-dimensional time series data into two-dimensional image data. Using
the data as a CNN classifier input can improve the accuracy of model predictions [48–50].

Although the existing mechanical fault diagnosis methods have high accuracy in
model prediction, there are still two problems encountered in actual field production. One
is that the accuracy drop caused by different manufacturing situations and the noise in
terrible environments is too huge for general application. The other is that the variation of
fault features in precision machining is usually subtle so it is difficult to use a single physical
signal to obtain all the characteristic changes. Thus, it is difficult to improve the accuracy of
the model. This paper proposes a method based on an adaptive deep convolutional neural
network (ADCNN) to target the aforementioned issues that cause declines in accuracy.
Experiments will be conducted using dental milling cutter malfunction classifications as an
example in order to verify that the method has an adaptive function and is more robust
than other popular fault diagnosis models. This method differs from the traditional method
in that it combines multi-sensor data fusion and feature fusion mechanisms with deep
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CNN. The fusion features can strengthen adaptively, which improves the noise interference
that affected the accuracy of the prediction model.

The remainder of this paper is as follows. Section 2 briefly introduces the theories of
CWT, Gaussian filter, GAF, and CNN. Section 3 discusses the procedure and model design
approach of the proposed method. In Section 4, the experimental setup, data, and planning
of the case experiments are described, the effectiveness of the proposed method is verified,
and the test results are discussed. Section 5 discusses the conclusions.

2. Basic Theory
2.1. Continuous Wavelet Transform (CWT)

CWT is a time–frequency analysis method, using wavelets to decipher the signal in the
time–frequency domain. It can quantify the time change in non-stationary signal frequency;
the scale and translation parameters can adjust the size of the sliding window without
losing time and frequency resolution. The fundamental theory of continuous wavelet
transform (CWT) can refer to the relative investigations [24–26]. For signal x(t), CWT is
defined as follows [24]:

wt(α, τ) =
1√
α

∫ ∞

−∞
f(t)·ϕ( t− τ

α
)dt (1)

1√
α
ϕ( t−τ

α

)
is the wavelet’s basic function, known as the mother wavelet. The mother

wavelet’s choice has a big effect on the time–frequency analysis. τ is the shift factor that has
to do with time. α is the scale factor that has to do with frequency. The time and frequency
resolution ratio can be adjusted, and the formula for proportional conversion frequency is:

F =
Fc×fs

α
(2)

The wavelet transform coefficient reflects the correlation between the function and the
wavelet on the selected scale, and the one-dimensional signal is converted into the wavelet
coefficient through the CWT to project the two-dimensional time–frequency image.

2.2. Gaussian Filter

The Gaussian filter is derived from the filter of the Gaussian function with the average
value of µ = 0. By adjusting the standard deviation and filter size, excess noise can be
effectively removed. The fundamental theory of the Gaussian filter can refer to the relative
investigations [51]. It is defined as:

g[n] = e−n2/2σ2
(3)

n is the filter index. σ is the standard deviation. When designing a filter, the ideal coefficient
of the impulse response sum is 1, to match the input range of the input signal and the
output signal, as follows:

∑
n

g[n] = 1 (4)

2.3. Gramian Angular Field (GAF)

GAF converts one-dimensional time series data into two-dimensional images and
converts polar coordinate system data while preserving the correlation between each time
point. This is suitable for analyzing data over brief lengths of time. The fundamental theory
of Gramian angular field (GAF) can refer to the relative investigations [48–50]. If the time
series data X = {x1, x2, x3, . . . , xn}, and then using the normalization method to scale all x
values to the range of [−1, 1], the formula would be as follows [48]:

˜
xi =

(x i −max(X)) + (x i −min(X))
max(X)−min(X)

(5)
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By calculating the arccosine using the time point as the radius and scale value, the
polar coordinate system is generated [48]:{

θi= cos−1( ˜
xi
)
−1 ≤ ˜

xi ≤ 1
ri =

i
n i ∈ n

(6)

θi is the opposite value of the cosine function. ri is the radius of xi on the polar
coordinate system. The data of [−1, 1] corresponds to the cosine angle which varies
between [0, π]. The time correlation can be observed from the angle. The Gramian angular
summation field (GASF) and Gramian angular difference field (GADF) can be obtained by
calculating the sum/difference of the trigonometric function. This paper uses GASF, which
is defined as follows [48]:

GASF =


cos(θ1+θ1)
cos(θ2+θ1)

· · · cos(θ1+θn)
cos(θ2+θn)

...
. . .

...
cos(θn+θ1) · · · cos(θn+θn)

 (7)

2.4. Convolutional Neural Network (CNN)

CNN is a deep feedforward neural network, which consists of convolutional layers,
pooling layers, and fully connected layers. It processes 1D time series and 2D image
data through convolution operations and can learn features from nonlinear and non-
stationary signals. Image and pattern recognition works well. The fundamental theory of
convolutional neural networks (CNN) can refer to the relative investigations [24,26,28,29,40].

2.4.1. Convolution Layer

The core of CNN is the convolutional layer. Adjusting the padding of the convolution
kernel avoids image distortion and controls the stride size, reducing the number of input
parameters and calculations. Different features are extracted through the sliding window
of the convolution kernel to obtain a feature map, which can be expressed as the following
equation [24]:

XL
j = S

∑
iεMj

XL−1
i ·wL

ij+bj

 (8)

S is an activation function and uses the ReLU function as an activation function to
enhance the nonlinear characteristics of the neural network and improve training speed.
Mj is the input feature set. wL

ij is the weight matrix. bj is the bias value of the convolutional
layer.

2.4.2. Pooling Layer

The pooling layer processes the input features in the following sampling methods,
including average pooling, maximum pooling, and random pooling. This paper utilizes the
maximum pooling method to divide the input image into rectangular areas and output the
maximum value for each sub-area, which can reduce the size of data space and the number
of parameters. Overfitting can be improved and training time reduced. Max pooling is
defined as [28]:

xa,b
i = max(x á,b́

i : a ≤ á < a + p, b ≤ b́ < b + p) (9)

xa,b
i is the (a,b) pixel in the “i” feature map after processing. xá,b́

i is after processing. p
is the pooling window step size.
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2.4.3. Fully Connected Layer

After the final maximum pooling layer, all neurons are activated through the fully
connected layer. The regression function of this layer uses the Softmax normalized expo-
nential function to map the output value to the (0, 1) interval and obtains it in the form of a
probability distribution classification result. Softmax can be expressed as follows:

σ(z)i =
ezi

∑K
k=1 ezk

for i = 1, 2, . . . , K (10)

Softmax compresses the K-dimensional vector of any real number to a K-dimensional
real vector σ(z), so that each element is mapped between (0,1).

3. Adaptive Data Fusion Method Based on ADCNN for Fault Diagnosis

In this section, the fault diagnosis and classification method of ADCNN is introduced.
The architecture is shown in Figure 1. There are six blocks in total. (1) Multi-sensor
information: captures the raw data of mechanical equipment multi-sensors, including
vibration X, vibration Y, vibration Z, temperature, sound, and six-dimensional data of
electric currents. (2) Data preprocessing: uses a sliding window to divide data. (3) Data
fusion: integrates the five-dimensional vibration X, vibration Y, vibration Z, sound, and
non-stationary time-varying signals of the electric currents for array data structure fusion.
Performs Gaussian filtering and de-noising processing for temperature-stationary signals.
(4) Feature extraction: uses CWT to convert the data of vibration X, vibration Y, vibration Z,
sound, and electric current channels to adaptive time–frequency map features of different
frequency bands. Uses GAF to convert temperature data into GASF two-dimensional
image features, and then fuses the six image channels to extract the features as the input of
CNN. (5) Feature fusion: the convolutional layer processes the input features into feature
maps, and the pooling layer performs adaptive feature fusion for downsampling. (6) Fault
classification: uses the Softmax function to output the model prediction results.

3.1. Multi-Sensor Information

Data-driven and feature fusion data sources. Jing et al. verified the effectiveness of
multi-sensing data for fault prediction classification [42]. Real-time capturing of vibration
X, vibration Y, vibration Z, temperature, sound, and electric current sensor-related data of
rotating equipment with a plug-in device. Assuming that the sensing data sets X1 to Xn are
multi-sensor data vectors, the equation can be expressed as follows:

X1 = [x1, x2, · · · , xm] (11)

Xn = [x1, x2, · · · , xm] (12)

In the experimental case of the dental processing machine, n is set to 6, represent-
ing 6 sensing data dimensions. Starting from 1 is vibration X, vibration Y, vibration Z,
temperature, sound, and electric current sensing data.

3.2. Data Preprocessing

Since the data range of each sensor is very different, when the multi-sensor data
are fused it is easy to cause the gradient descent for finding the best solution. It takes
many iterations to converge and improve the accuracy of the model. Therefore, data
standardization must be normalized. The normalization method is min–max scaling, which
is defined as:

xnormalization =
x−min(x)

max(x)−min(x)
(13)
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In order to improve the generalization ability of the model and avoid overfitting,
ADCNN needs a large number of samples for training and testing. The sliding window
sampling of the original time series data of each sensor achieves the effect of data enhance-
ment [7]. Suppose that the time window length of the sample is n milliseconds, and the
time step is 50% of the time window length, as shown in Figure 2.
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3.3. Data Fusion and Feature Extraction

Multi-sensing data fusion can preserve and complement the fault characteristics of
different sensing signals at the same time, and its effectiveness has been verified in the
literature and improved model prediction performance [14,15]. In order to preserve and
strengthen the two-dimensional feature image input by CNN, the signals are divided into
non-stationary, time-varying signals, and stationary signals. Vibration X, vibration Y, vibra-
tion Z, sound and electric current belong to the former, and data fusion of non-stationary
time-varying signals is performed. The latter performs Gaussian filtering. The Gaussian
filter has a good denoising and signal smoothing effect on time-stationary sequence signals,
but it will ruin the signal structure weakening characteristics for non-stationary time-
varying signals. The Gaussian filter of the experimental case is designed with a standard
deviation of 3 and a filter size of 19. Assuming that the sensing data set X has n-dimensional
sensing data and m samples, the non-stationary, time-varying signal data fusion matrix
equation can be expressed as follows:

X =


x(1)1 x(1)2 · · · x(1)n

x(2)1 x(2)2 · · · x(2)n
...

...
. . .

...
x(m)

1 x(m)
2 · · · x(m)

n

 (14)

Among them, the case n in this article is five channels, starting from one to correspond
to vibration X, vibration Y, vibration Z, sound, and electric current sensing data. Figure 3
shows the process.

The feature extractor uses data multi-signal fusion matrix equation and the tem-
perature vector data channels and converts them into multi-time–frequency images and
two-dimensional images for feature extraction, fusing them into multi-channel image
features. Figure 4 displays the flow chart.
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Figure 4. Feature extraction flow chart.

Traditional signal analysis focuses on the time domain and frequency domain. Fourier
transform has been applied to various analytical instruments; however, Fourier transform
has the disadvantage of fixed time length and resolution and cannot effectively extract
features for time-varying signals whose waveform cycles vary. The wavelet transform
can dynamically and adaptively adjust the time resolution. When the high-frequency
component has a short resolution, and the low-frequency component has a short resolution,
the time–frequency domain features can be effectively extracted by adaptively adjusting the
time length, increasing the robustness of the model prediction. The experimental case uses
Morlet as the mother wavelet function. Morlet has been verified to effectively extract fault
features from non-stationary signals and obtain good resolution in the time and frequency
domains [28]. Morlet wavelet is defined as:

ϕ(x) = e−x2
cos(π

√
2

ln 2
x

)
(15)

Adjust the scale factor α of Formula (1) to obtain the scale factor of different signals in
time. By stretching or shrinking the wavelet, slow or sudden changes in the signal can be
recorded. In theory, the time step of the signal is multiplied by the scale factor to obtain
the product. The wavelet coefficients of all the wavelet coefficients can be converted into
images by converting the absolute values of all wavelet coefficients to obtain a scalogram
in the time–frequency domain, as shown in Figure 5.
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The Gaussian filter is used for denoising in order to prevent different noise interference
in the production environment from affecting the GASF-converted image. Then GASF
converts the temperature vector data into an image and calculates the polar coordinate
system with Formula (6) to obtain the converted cosine angle of the temperature series
data, switching between [0, π] in order to preserve the data correlation of time points. The
case experiment uses Formula (7) to calculate the trigonometric function of GASF and
then obtains a two-dimensional image of temperature time series for fault classification, as
shown in Figure 6.
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3.4. Feature Fusion

The core architecture of feature fusion is a deep convolutional neural network (DCNN),
performing a feature-level fusion of input multi-channel image features, further optimizing
the data structure, and then using adaptive learning rate Adam to perform gradient descent
optimization training. Lastly, the normalized Softmax function is used for fault diagnosis
and classification.
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The DCNN architecture diagram is shown in Figure 7. The feature fusion includes
three layers of convolution layers and pooling layers. The convolution layer uses con-
volution kernels to extract high-level features of multi-source input. ReLu enhances the
nonlinear capability of the model. The pooling layer uses 2× 2 maximum pooling to extract
the important features of the feature map to enhance the model’s anti-noise ability, and at
the same time compresses the feature dimension to reduce the computational complexity,
so that the training speed can be accelerated and converged. In order to avoid overfitting,
the model adds a Dropout between the convolutional layer and the pooling layer and
randomly discards 30% of the neurons during each training. The gradient of the discarded
neurons is 0, so each training reduces dependencies between random neurons. After the
three-level convolution and pooling layers for feature fusion, the fused feature map is
flattened into one-dimensional vector data and input to the fully connected layer classifier
for fault prediction and classification. For the loss function, categorical cross-entropy is
selected with the activation function Softmax to re-adjust the model output, which has
a good effect on multi-classification problems. Categorical cross-entropy can effectively
measure the distinguishability between discrete probability distributions. The loss of the
sample can be calculated by the following formula:

Loss =−

output
size

∑
i=1

yi·log ŷi (16)
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Output size is the number of scalar values in the model output. yi is the corresponding
target value, ŷi is the i-th scalar value.

The Softmax function maps the probability distribution of each classification result
and compresses the K-dimensional vector containing any real number into another K-
dimensional vector, so that the range of the classification results is between (0, 1), and the
sample vector X belongs to the “j”. The probability of classification is:

P(y = j|X) = eXTWj

∑K
k=1 eXTWk

(17)

The stochastic gradient descent optimization method of the model is adaptive moment
estimation (Adam). Traditionally, the network weights use a fixed learning rate to update
the weights and biases during training, which is prone to low computational efficiency and
the inability to effectively find the global minimum. For the global minimum value issue,
Adam combines the advantages of the adaptive gradient algorithm (AdaGrad) and root
mean square propagation (RMSProp) to dynamically adjust the learning rate according
to the gradient to improve sparse gradients and uses an exponential moving average to
maintain the average value of the weight gradient magnitudes, which can adaptively
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reduce the effect of noise in non-stationary signal classification models. Adam’s formula
for updating weights and biases is:{

w′= w− η ∂J(w,b)
∂w

b′= b− η ∂J(w,b)
∂b

(18)

3.5. Fault Classification

The fault classification displays the results of the prediction and diagnosis of rotating
machinery. The experimental case in this paper predicts the fault classification of the dental
cutter. ADCNN outputs the malfunction probability distribution of the four classifications
through Softmax. There are four classification results: (1) normal, (2) breaking, (3) wear,
and (4) tipping.

4. Experiment and Discussion
4.1. Experiment Setup

This experiment’s data were collected at the Certified Dental Institute. The dental
milling machine’s serial number was: DW-5XP. To evaluate the effectiveness of the proposed
method, a 2 mm diameter tungsten steel drill was used to process zirconia dentures.
Figure 8 shows the experimental platform, and Figure 9 shows the materials and dental
mold products. The experimental environment utilizes the Tensorflow architecture and
keras API; the development language uses Python and related packages for development;
the testing hardware is a notebook computer whose configuration is i7-11800H, 64 G RAM,
and RTX3070 with built-in GPU computing.
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Figure 8. Dental milling experiment platform.

The sensor installation is shown in Figure 10. A total of three-axis vibration accelerome-
ters, namely temperature, sound, and current sensors are set up. At the same time, different
physical characteristics data of tool faults are captured. The sampling frequency is 10 KHz,
and the sampling time of the data set is 5 s, for a total of 200,000 points of data.

During the experiment, dental mold cutting tests were performed with various cutters,
including normal, breaking, worn, and tipping. The cutters are shown in Figure 11. Machine
speed was 20,000 rpm, and the data were collected by cutting the same dental mold from
the same patient. The processing status and dataset labels are shown in Table 1.
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Table 1. Processing status and labeling table.

Type Label Health
Condition Description Processing

Speed (rpm)

0 Normal Normal processing 20,000
1 Breaking Overheated or too dull and resulted in breaking 20,000

2 Wear Poor quality of dentures due to wear that is
visually undetectable 20,000

3 Tipping Overheating or too dull and resulted in tipping 20,000

4.2. Dataset

The experiment data dimensions are 7-dimensional columns: the 6-dimensional input
and the 1-dimensional output. The four fault classifications have a total of 200,000 sampling
points, and the input sample length is 20 milliseconds. In order to ensure that the sampling
points of the signal feature samples can be completely preserved, it is set to 200 points. After
data enhancement, there are 1988 data samples, and the fault classification samples are all
the same at 497. During model training, 80% of the data samples are randomly selected
as the training set, 80% are the test set, and 20% of the data samples in the training set are
used as the validation set for model training and verification. Lastly, fault classification
model tests are performed.

4.3. Parameter Selection for the DCNN Model

The DCNN model architecture and parameters used in this paper are shown in Table 2.
The convolutional kernel of the first three convolutional layers is designed with a large con-
volutional kernel size of 5 × 5 to extract the main features of the image. Dropout randomly
discards 30%, 30%, and 20% of neurons in sequence to reduce over-fitting during training,
and the subsequent max pooling layer is designed in the following sampling method. The
size of the max pooling kernel is 2× 2, integrating subtle and important features to enhance
the model’s anti-noise ability while reducing the computational complexity and improving
the training convergence rate. The latter two-layer fully connected neurons are designed
to be 1000 or 4, which improves the training effect, output prediction, and classification
results.

Table 2. DCNN table of model structures.

Layer Parameter Name Parameter Size Output Size

Input / / 127 × 127 × 3
Conv1 Convolutional kernel 5 × 5 123 × 123 × 32

Dropout Dropout neuron ratio 30% /
Max-p1 Max pooling kernel 2 × 2 61 × 61 × 32
Conv2 Convolutional kernel 5 × 5 57 × 57 × 64

Dropout Dropout neuron ratio 30% /
Max-p2 Max pooling kernel 2 × 2 28 × 28 × 64
Conv3 Convolutional kernel 5 × 5 24 × 24 × 64

Dropout Dropout neuron ratio 20% /
Max-p3 Max pooling kernel 2 × 2 12 × 12 × 64

FC1 Fully connected neuron 1000 9216 × 1000 + 1000
FC2 Fully connected neuron 4 1000 × 4 + 4

Output Weight matrix 4004 × 4 4 × 1

4.4. Experimental Results
4.4.1. Performance Validation of the ADCNN Model

The fault diagnosis experiment was carried out on the dental milling machine using
ADCNN, and the weights and deviations were optimized by the training of the model.
Figure 12 shows the accuracy and loss of the experiment results. Figure 12a shows that
the model training’s accuracy is close to 100%, and the epoch quickly converges after
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40 training cycles. The loss curve indicates a rapid decline and steady convergence after
45 training epochs. Simultaneous observation of Figure 12a,b show that the model has
almost no overfitting, indicating that the learning and prediction of the model are robust.
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To verify the superiority of the proposed method, it was compared with four popular
models, namely 1DCNN, LSTM, CNN-LSTM, and ConvLSTM. The same six data sets were
tested with 1600 training samples and 400 test samples. The parameters were set with the
same epoch and batch size. A dropout layer was also added to reduce overfitting. For this
experiment, the epoch was set to 200 times, and the batch size was set to 128. The results
of the accuracy of the four models are shown in Figure 13. The 1D-CNN’s verification
accuracy (the orange line) was the highest, but it may not converge. Although the results of
LSTM and CNN-LSTM show convergence, there was also some overfitting. ConvLSTM
results were the worst; not only was the accuracy of the verification fairly low, but it also
had issues with vibration and the inability to converge.
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Figure 14 shows the experimental results of the loss of the four models. The results
show that the verification loss (orange line) of 1DCNN is the lowest and close to 0, but
there was some vibration. Overfitting occurs for both LSTM and CNN-LSTM, and the
ConvLSTM results were the worst, with obvious vibrations and an inability to converge.
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In order to observe the performance of all comparison methods in classifying dental
milling machine tool failures, the confusion matrix is used. As shown in Figure 15, the
ADCNN did not classify incorrectly during testing. Figure 16a is the confusion matrix of
1DCNN, which shows that there were two prediction errors that the tool was normal, but it
was actually worn. Figure 16b is the confusion matrix of LSTM, which shows that there
were three errors in predicting that the tool was normal but was actually worn. Figure 16c
is the confusion matrix of CNN-LSTM, showing seven errors in predicting that the tool is
normal but was actually worn. Figure 16d is the confusion matrix of ConvLSTM, showing
73 errors in predicting that the tool is normal but was actually worn, as well as three
other errors. The confusion matrix results show that the most errors were when they were
actually worn yet predicted as normal tools. It shows that the differences between the
characteristics of the normal processing tools and the worn tools are minuscule, making it
difficult to correctly predict the classification. All other classification items have significant
features and classifications can be accurately predicted. The results show that the proposed
ADCNN method can strengthen the classification of subtle features and also has excellent
prediction performance.
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The experiment of predicting classification accuracy uses the test set for model predic-
tion. All methods are averaged after ten tests to draw a bar graph. The results are shown in
Figure 17. The figure shows that ADCNN has the highest prediction accuracy at 100%, and
ConvLSTM has the worst accuracy at 77.32%.
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4.4.2. Performance Validation with Noise

In order to verify that the proposed method has adaptive anti-noise abilities in harsh
production environments, white noise is added to the experiment to simulate the influence
of noise on the prediction ability of the model. White noise is uniformly distributed noise
and is defined as:

p(z) =

{
1/2 if − 1 ≤ z ≤ 1
0 otherwise

(19)

z is between −1 and 1.
The signal-to-noise ratio (SNR) of the original signal and the noise is calculated by the

following equation:

SNR = 10 log10

[Asignal

Anoise

]2

(dB) (20)

Asignal is the signal amplitude, Anoise is the noise amplitude, and the experiment
design is 5 to 1, so the SNR is about 7 dB, indicating that the added white noise is a strong
interference signal. Taking the X-axis vibration signal as an example, adding white noise
results in Figure 18, showing that the original signal has been disturbed by noise, which
slightly damages the original signal waveform.

The confusion matrices of the results of adding white noise are shown in Figures 19 and 20,
and the bar graph in Figure 21 shows the test accuracy of all comparison methods with
added white noise. After ten experiments, the average of each method is calculated to
create the bar graph. Figures 19 and 21 show that ADCNN had four errors when predicting
a normal machining tool. This indicates that there is a certain degree of adaptive anti-noise
ability towards white noise, which can suppress the interference of the noise and reduce
the decline of the model prediction accuracy. Figures 20 and 21 show that the prediction
accuracy of other comparative methods after adding noise had a larger decline than the
method proposed in this paper, while CNN-LSTM had a smaller decline but lower accuracy.
The results show that the proposed method is robust in a high-noise environment.
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4.5. Discussion

This experimental design is a comparison between our proposed ADCNN method
and four currently popular methods. The differences between an excessively worn dental
milling cutter and a normal cutter are not very noticeable. Because of this, classification
errors often occur; the prediction is that the cutter is normal when in fact it is worn.
Our results show that ADCNN can accurately predict the difference between the normal
cutter and the excessively worn cutter, whereas the other methods predict incorrectly. The
addition of white noise reduced the accuracy of the proposed method from 100% to 99%,
1DCNN from 99.33% to 96.2%, LSTM from 99.05% to 94.1%, CNN-LSTM from 97.85%
to 96.2%, and ConvLSTM from 77.32% down to 72.75%. The results show that, with or
without noise interference, the proposed method has the highest prediction accuracy and
adaptive anti-noise ability compared with the other methods.

Experiments show that fusion architecture and multi-sensing data’s feature extraction
mechanism not only obtains subtler features but model classification accuracy is also
improved through different physical signal characteristics. A white noise simulation model
with an SNR of 7 dB is added to the adaptive ability of noise in the interference field
of this experiment. The final classification accuracy is higher than other models, and it
can also effectively classify normal tools and worn tools with minuscule characteristic
differences. The traditional method requiring experts to de-noise the signal first and then
extract features can also be bypassed, as some useful features may be lost during the
de-noising process.

Furthermore, for model prediction robustness, Figures 12–14 show that overfitting
can be avoided with the proposed method. In comparison with other methods, the feature
learning ability also has significant improvement. Feature fusion methods can improve the
robustness and reliability of fault diagnosis.

5. Conclusions

This paper proposes a fault diagnosis method for rotating machinery based on adap-
tive multi-level input features, which can enhance the robustness of model prediction in
complex noise environments. A dental milling machine is used to carry out the experiment
of predicting tool classifications. The results show that, without the addition of white
noise, the proposed ADCNN model can accurately predict the classification of four tools
in the experiment. In comparison with the other four methods, ADCNN has the highest
classification accuracy. The prediction error mostly misjudged tools as normal when they
were in fact worn; this shows us that the feature differences between the normal and wear of
the tools of the dental milling machine are subtle. This is also one of the key issues currently
encountered in the dental milling process. The proposed method can accurately classify
the normal and wear of the tool. In order to verify the robustness of the model, white noise
was added to conduct experiments. The classification accuracy of the proposed method is
as high as 99%, and it has a higher anti-noise ability than other control methods. It is able to
realize adaptive multi-level fusion enhancement features and achieve robustness, making
up for the shortcomings of traditional predictive fault classification and diagnosis methods.
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