
Citation: Zhao, J.; Zhang, Y.; Jiang, J.

Blockchain-Based Distributed

Computing Consistency Verification

for IoT Mobile Applications. Appl.

Sci. 2023, 13, 7762. https://doi.org/

10.3390/app13137762

Academic Editors: Adnan Anwar,

Walayat Hussain, Mian Ahmad Jan

and Syed Rooh Ullah Jan

Received: 6 June 2023

Revised: 26 June 2023

Accepted: 29 June 2023

Published: 30 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Blockchain-Based Distributed Computing Consistency
Verification for IoT Mobile Applications
Jiahao Zhao , Yushu Zhang * and Jiajia Jiang

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China; jiahaozhao@nuaa.edu.cn (J.Z.); jiangjiajia@nuaa.edu.cn (J.J.)
* Correspondence: yushu@nuaa.edu.cn

Abstract: The maturation of wireless connectivity, blockchain (distributed ledger technologies), and
intelligent systems has fostered a comprehensive ecosystem for the Internet of Things (IoT). However,
the growing volume of data generated by IoT devices creates substantial pressure on blockchain
storage and computation capabilities, impeding the further development of the IoT ecosystem.
Decentralizing data storage across multiple chains and utilizing cross-chain technology for data
exchange eliminates the need for expensive centralized infrastructure, lowers data transfer costs,
and improves accessibility. Hence, the issue of computational and storage pressure in blockchain
can be improved. Nonetheless, the data of IoT devices are constantly updating, and ensuring
consistency for dynamic data across heterogeneous chains remains a significant challenge. To address
the aforementioned challenge, we propose a blockchain-based distributed and lightweight data
consistency verification model (BDCA), which leverages a batch verification dynamic Merkle hash
tree (BV-MHT) and an advanced gamma multi-signature scheme (AGMS) to enable consistent
verification of dynamic data while ensuring secure and private data transmission. The AGMS scheme
is reliable and robust based on security analysis while the dependability and consistency of BDCA are
verified through inductive reasoning. Experimental results indicate that BDCA outperforms CPVPA
and Fortress in communication and computation overhead for data preprocessing and auditing in a
similar condition, and the AGMS scheme exhibits superior performance when compared to other
widely adopted multi-signature schemes such as Cosi, BLS, and RSA. Furthermore, BDCA provides
up to 99% data consistency guarantees, demonstrating its practicality.

Keywords: IoT mobile applications; cross-chain; data consistency verification; data dynamism

1. Introduction

As a state-of-the-art technology, the Internet of Things (IoT) has garnered extensive
application in various facets of modern life, ranging from smart cities [1] and connected
vehicles [2] to intelligent healthcare [3–5]. The proliferation of IoT devices has resulted in
the generation of voluminous and dynamic data [6], which often contains sensitive user
information, including personal identification, health, physiological data, and transaction
records [7]. The exponential growth of data has placed significant pressure on the storage
and computing capabilities of IoT devices. Moreover, due to the problem of data silos [8],
secure and reliable data interaction among IoT devices remains a challenging issue, thereby
impeding the further development of IoT.

Currently, the prevalent approach to address the storage and computation pressure in
the IoT domain is to store data in cloud servers [9–13], which possess robust computational
and storage capabilities. Notwithstanding the potential benefits of cloud-based solutions
for IoT data storage, the adoption of this approach also introduces new challenges. Firstly,
the process of uploading data to cloud servers may result in delays or service disruptions
for IoT devices, particularly in the presence of external attacks that specifically target
cloud servers. Secondly, uploading data to cloud servers relinquishes the control of data

Appl. Sci. 2023, 13, 7762. https://doi.org/10.3390/app13137762 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137762
https://doi.org/10.3390/app13137762
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0109-6329
https://doi.org/10.3390/app13137762
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137762?type=check_update&version=2

Appl. Sci. 2023, 13, 7762 2 of 21

owner over their data, leading to potential data inconsistency and security breaches. As a
result, data may be subjected to various issues, such as theft, tampering, or forgery, thereby
compromising its integrity and confidentiality. Despite the best efforts of cloud service
providers to maintain data consistency, data loss events still occur frequently. For instance,
in 2015, a Google Cloud server data centre was attacked, resulting in the permanent loss of
a significant amount of user data. Similarly, in 2016, Uber experienced an external attack
that resulted in the leakage of around 57 million user records. These events underscore the
fact that data loss or leakage due to cloud service providers is a common occurrence [14].
Thus, ensuring secure and reliable data storage remains a critical research challenge.

The emergence of blockchain technology provides a promising alternative for ad-
dressing these challenges [15,16]. Blockchain possesses several essential characteristics,
including transparency, tampering, and decentralization, which enable distributed data
storage and consistency verification and ensure the security and privacy of data. Addition-
ally, cross-chain technologies can facilitate data exchange and interaction among different
IoT devices [17–19], thereby mitigating the problem of data silos and promoting further
development in the IoT domain. However, ensuring secure and reliable data storage as well
as achieving traceability and consistency verification of data interactions remain critical re-
search challenges. Currently, the focus of research on addressing data consistency auditing
primarily centres on traditional cloud storage. Provable data possession (PDP) [20] is a key
technique for verifying data consistency, which utilizes a third-party auditor to conduct
audits on the data. However, the reliability of third-party auditors cannot be guaranteed,
and this approach undermines the decentralized feature of blockchain technology.

To address the above-mentioned problems, in this paper, we propose a novel blockchain-
based distributed and lightweight data consistency verification model (BDCA), which
ensures the consistency of data transmission during cross-chain interactions. The BDCA
model comprises four entities: IoT device (DO), source chain (SC), target chain (TC),
and audit chain (AC). AC is a distinct chain that audits data consistency during cross-chain
interactions between SC and TC. The audit information is recorded in AC, which is trans-
parent, tamper-proof, and preserves the decentralized feature of blockchain technology.
To account for the possibility of data modification in the blockchain, we design a batch
verification dynamic Merkle hash tree (BV-MHT), which stores the position information
of the data to facilitate data location. Additionally, we utilize the auxiliary verification
information form (AVF) to implement data updating and auditing with minimal overhead.
Furthermore, in order to ensure the security and privacy of the transferred data, we intro-
duce an advanced gamma multi-signature scheme (AGMS) to encrypt the exchange data
between SC and TC. The main contributions of this paper are as follows:

• We propose a novel blockchain-based distributed and lightweight data consistency
verification model (BDCA), which provides robust data security and privacy guar-
antees. Furthermore, we demonstrate that BDCA can effectively achieve cross-chain
data interaction consistency verification with minimal overhead through experimen-
tal evaluations.

• We design a batch verification dynamic Merkle hash tree (BV-MHT), which supports
batch verification and dynamic data updates. Furthermore, we introduce the concept
of the auxiliary verification information form (AVF) to locate the position of the stored
data and improve batch validation efficiency.

• We construct random challenges and store the audit logs in the audit chain (AC) for
future checking, enabling efficient and reliable cross-chain data consistency verification
while preserving the transparency and tamper-proof feature of the blockchain.

The remainder of the paper is organized as follows. First, we summarize the related
work in Section 2 and introduce preliminaries of BDCA in Section 3. Second, we format
BDCA in Sections 4 and 6. Third, we provide the security analysis and theoretically and
experimentally analysis of BDCA in Sections 7 and 8, respectively. Lastly, we summarize
the paper in Section 9.

Appl. Sci. 2023, 13, 7762 3 of 21

2. Related Work
2.1. Cross-Chain Technologies and Applications

With the development of cutting-edge information technology, ensuring the secure
and private flow and storage of data has become an increasingly important concern. In this
context, the emergence of cross-chain technology has offered a promising alternative for
resolving these challenges. Currently, the mainstream cross-chain technologies include no-
tary mechanisms [17], side/relay chain technology [18], and hash locking [19]. Cross-chain
technologies have been utilized in many fields, which facilitates the further development
of blockchain.

In 2019, Jiang et al. [21] proposed a cross-chain framework, which integrated multi-
chains to implement efficient and secure IoT data management. In 2021, Tian et al. [22]
proposed a distributed cryptocurrency trading scheme, which can implement secure and
fair trading between different types of cryptocurrencies. In 2022, Xiong et al. [23] proposed
a notary group-based cross-chain interaction model, which can achieve efficient interoper-
ability between different blockchains. In 2022, Herlihy et al. [24] proposed a novel concept
“cross-chain deal”, a new approach to managing the complex distributed computations and
assets flow in an adversarial setting. In 2022, Li et al. [25] proposed a privacy-preserving
cross-chain solution based on sidechain, which can guarantee transaction unlinkability,
exchange fairness, and value confidentiality. Nevertheless, these studies mainly focused on
static data flow or asset transfer while dynamic data flow and data consistency verification
lack sufficient research.

2.2. Dynamic Data Integrity Auditing Scheme

Currently, dynamic data integrity auditing schemes are primarily focused on cloud
scenarios. In 2007, Ateniese et al. [20] firstly proposed a provable data possession (PDP)
scheme, which can implement the integrity auditing of data with high probability. In 2008,
Ateniese et al. [26] improved the traditional PDP scheme and proposed a partially dynamic
PDP scheme, which can implement the insertion, deletion, and modification of file blocks
with a restricted limit. From then on, many kinds of research implementing dynamic
data integrity auditing as well as supporting various properties in different fields have
been proposed. In 2015, Tian et al. [27] proposed a privacy preservation data integrity
auditing scheme, which enables efficient data updating. In 2017, Rao et al. [28] proposed
a data integrity auditing scheme, which supports fully dynamic data updating and can
detect malicious data owners or dishonest behaviours. In 2017, Shen et al. [29] proposed
an efficient public auditing protocol, which can implement global and sampling blockless
verification as well as batch auditing, utilizing a doubly linked info table and a location
array. However, these studies introduce a third-party auditor (TPA), which may disrupt
the decentralized feature of the blockchain and the reliability of the TPA is also not assured.

2.3. Gamma Signature Scheme

Gamma signature, originally proposed by Yao et al. [30] in 2013 as a modification of
Schnorr signature [31], is characterized by a two-phase implementation: an offline phase
that pre-computes partial values without any knowledge of the message to be signed and
an online phase that generates the aggregated signature upon receiving the message. Com-
pared to Schnorr signature, Gamma signature offers several advantages, including superior
online performance, greater flexibility in interactive protocols, and enhanced unforgeabil-
ity against concurrent interactive attacks. The advanced gamma multi-signature scheme
(AGMS) is a novel multi-signature scheme based on Gamma signature, improving the effi-
ciency and security of Gamma signature and making its application in blockchain feasible.

2.4. Merkle Hash Tree

Merkle hash tree (MHT), introduced by Merkle [32] in 1989, is a popular technique
for verification and integrity checking in various applications, such as Git and Bitcoin,
where it serves as an authentication scheme [33]. MHT is a binary tree composed of hash

Appl. Sci. 2023, 13, 7762 4 of 21

values, with leaf nodes being arbitrary hash values or those generated from pseudorandom
numbers, and intermediate nodes being the hashes of their immediate children. The root
of the MHT is a unique value due to the collision resistance property of the hash function,
which ensures that no two hash values differing by at least one bit should be the same.
To adapt MHT to the IoT environment, traditional designs have been modified. BV-MHT is
a variation of the traditional MHT, where the data stored in each node is adjusted to enable
efficient data updates as well as batch verification.

3. Preliminaries
3.1. Advanced Gamma Multi-Signature Scheme

The advanced gamma multi-signature scheme (AGMS) is a novel variant of the gamma
signature scheme, which leverages the discrete logarithmic puzzle [34] and the efficient
Schnorr signature scheme [35] to enable multiple entities to collaboratively generate an
aggregated signature based on an aggregated public key. The concrete procedures of the
scheme entail a rigorous and well-defined process, which are shown as follows:

• Setup(1n): take a security parameter n as the input, output a public parameter
pp = (q,G, g), where G is a group of prime order q andg is a generator of G.

• KenGen(pp): take a public parameter pp as the input, randomly choose {skij}i∈[1,n],j∈Ui

∈ ZN , compute {pkij = gskij}i∈[1,n],j∈Ui
, and output {(pkij, skij)}i∈[1,n],j∈Ui

.
• KeyAgg({pkij}i∈[1,n],j∈Ui

): take the public key ({pkij}i∈[1,n],j∈Ui
) as the input, compute

the aggregated public key PK = ∏
i∈[1,k]

(∏
j∈Ui

pkij), and output PK.

• Sign(msg, V∗, PK): take the message m, an aggregation commitment V∗, and an
aggregation public key PK as the input, and output a signature (c, Sig).

• Verify(pp, V∗, V∗
′
): take the message m, aggregated commitment V∗, and V∗

′
as the

input, and output 0/1 to indicate whether the message msg is invalid or valid.

3.2. Bilinear Map

Let G1, G2, and GT be a multiplicative cyclic additive group with the same order q.
The map e : G1 × G2 → GT is a bilinear pairing only if the following properties are satisfied:

• Bilinearity: For any a, b ∈ Z∗q , x ∈ G1, and y ∈ G2, e(xa, yb) = e(x, y)ab.
• Non-degeneracy: For any x ∈ G1 and y ∈ G2, if e(x, y) = 1 only if x = 1 or y = 1.
• Computability: There exists an efficiently computable homomorphism between G1

and G2.

3.3. Mathematical Assumptions

Let G be an additive cyclic group of prime order q and a, b be random elements of ZN .

• Discrete logarithm (DL) assumption. Given g, ga ∈ G as the input, it is computationally
infeasible to compute a. That is, for any PPT adversary A, the probability of solving
the DL problem is negligible in G.

• Computational Diffie–Hellman (CDH) assumption. Given g, ga, gb ∈ G as the input,
it is computationally infeasible to compute gab. That is, for any PPT adversary A,
the probability of solving the CDH problem is negligible in G.

4. Models

In this section, we describe the architecture of BDCA in Section 5.1 and then lay out its
threat model in Section 5.2. Finally, we introduce the design goals of BDCA in Section 5.3.
Furthermore, some additional notations and descriptions are defined in Table 1.

Appl. Sci. 2023, 13, 7762 5 of 21

Table 1. Notations and descriptions.

Notations Descriptions

M The original data
M∗ The blinded data
M∗

′
The updated data

d A public key of DOi
{e, u} A private key of DOi

n System security parameter
Tx1 Data uploading transaction
Tx2 Data updating request transaction

DOs0 The leader of all the signers in blockchain
DOS The IoT device of SC
DOT The IoT device of TC

v The threshold number of signers

5. The Proposed BDCA
5.1. System Model

The architectural diagram depicted in Figure 1 illustrates the configuration of BDCA,
comprising three distinct consortium blockchains based on Hyperledger Fabric technology:
the source chain (SC), the target chain (TC), and the audit chain (AC). The innovative
model BDCA enables the secure and seamless exchange of data between the two different
chains while ensuring data integrity through the implementation of an audit chain (AC) for
data consistency verification as well as maintaining the decentralized feature of BDCA [36].
To further enhance the reliability and functionality of BDCA, three smart contracts are
deployed within the system, each specifically allocated to SC, TC, and AC, respectively.
The four principal entities comprising BDCA are IoT devices (DO), source chain (SC),
target chain (TC), and audit chain (AC) with each entity bearing unique responsibilities
and obligations as follows:

• IoT device (DO): DO is an entity that is responsible for processing and storing the original
data M, and initiating data update requests to the source chain (SC). To ensure the security
and privacy of the data, DO preprocesses M into blinded data M∗ before generating
authentication tags for M∗. Once DO has generated the authentication tags for M∗, it
transfers the blinded data and corresponding tags to the audit chain (AC) for secure
storage. Within the BDCA model, there are two distinct DO entities, namely DOS and
DOT, which are deployed within the source chain (SC) and target chain (TC), respectively.

• Source chain (SC): SC is an entity that serves as the primary repository for data received
from DO and facilitates the exchange of data with the target chain (TC). Upon receiving
data update requests from DOS, SC is responsible for updating the data accordingly and
synchronizing the data updates with TC to ensure consistency across the two chains.
In addition, SC is programmed to respond to audit challenges issued by the audit chain
(AC) by generating an audit proof that verifies the consistency and accuracy of the data
stored within the system. Once the audit proof is generated, SC sends it to AC for data
consistency verification, ensuring that the data remains secure and reliable.

• Target chain (TC): TC is an entity that is responsible for receiving data from the source
chain (SC) and facilitates data exchange between the two chains. Upon receiving data
update requests from SC, TC updates the data as required, ensuring that the data remains
consistent across both chains. Like SC, TC also responds to audit challenges from the
audit chain (AC) by generating storage proofs that verify the integrity and accuracy of
the data stored within the system. Once the storage proof is generated, TC sends it to
AC for data consistency verification, ensuring that the data remains secure and reliable.

• Audit chain (AC): AC is an entity that is established and overseen by national regulatory
authorities. AC is responsible for conducting data consistency verification between
the source chain (SC) and the target chain (TC) based on the audit proof and storage

Appl. Sci. 2023, 13, 7762 6 of 21

proof received from SC and TC, respectively. Through its advanced data consistency
verification protocols, AC ensures that the data exchanged between SC and TC remains
accurate and consistent, preventing any unauthorized modifications or tampering.

Phone Sensor Pad Phone Sensor Pad

...

Source Chain Target Chain

Audit Chain

Data Flow Data Flow

Data Blocks &
Auth. Tags

Data Update
 RequestsIoT Devices IoT Devices

Challenge ChallengeStorage ProofAudit Proof

Figure 1. The architecture of BDCA.

5.2. Threat Model

In BDCA, the auditing mechanism is facilitated by AC and its associated smart contract,
which are deployed by national regulatory authorities. The audit process is transparent and
tamper-proof, thereby instilling trust in the reliability of AC. Furthermore, it is worth noting
that the introduction of the auditing mechanism facilitated by AC does not compromise
the decentralized feature of the blockchain owing to the openness and transparency of the
audit process, ensuring that the regulatory oversight is conducted in a fair and impartial
manner. The introduction of AC can be viewed as a complementary measure that enhances
the security and reliability of cross-chain transactions. Furthermore, DO is entrusted with
the responsibility of processing the original data and transmitting it to SC for storage.
However, SC is considered semi-honest, which implies that it may have a vested interest in
the content of the received data. Similarly, TC is also semi-honest and may resort to forging
storage proof to bypass the consistency verification process of AC. In conclusion, there are
mainly the following types of cross-chain attacks:

• Tampering attacks: The transferred data F
′
, corresponding tags, and data update requests

may be tampered with or forged by an adversary in the process of cross-chain interaction.
• Privacy leakage attacks: The content of the transferred data F

′
, corresponding tags,

and data update requests may be leaked and expose the private information of DO in
the process of cross-chain interaction.

• Audit inconsistency attacks: The TC may pretend to forge a storage proof to pass the
data consistency verification of AC to conceal its incomplete data storage or updates.

5.3. Design Goals

Based on the above analysis of BDCA, in order to ensure the security and privacy of
the transferred data and guarantee the consistency of data interactions between SC and
TC, we propose the following design goals:

• Consistency: BDCA can ensure the consistency of the data interaction between SC and
TC and when TC modifies or does not update the data as requested, it cannot pass
the consistency verification by AC.

• Privacy: BDCA can ensure the privacy of the transferred data. SC and TC cannot gain
any private information of DO in the process of cross-chain data interaction.

Appl. Sci. 2023, 13, 7762 7 of 21

• Dynamic operations: BDCA can allow DO to perform data update operations at will
with low overhead, including insertions, deletions, and modifications.

• Security: BDCA can ensure that the data updates operations, including insertions,
deletions, and modifications, are conducted only by the owner of the data.

6. The Proposed BDCA

In this section, we present a detailed description of the proposed BDCA, highlighting
how dynamic data consistency audits can be implemented in the process of cross-chain
interaction. In general, BDCA comprises five essential procedures, which include: system
initialization, data processing, data uploading, data updating, and data auditing.

6.1. System Initialization

In this phase, DO in BDCA generates its public and private key pair and outputs the
public parameters of BDCA as follows:

• Upon receiving a security parameter 1n, each DO in BDCA selects four random large
prime p, q, p

′
, and q

′
. Meanwhile, DO computes RSA modulus N = pq and selects

a generator g of QRN , where p = 2p
′
+ 1, q = 2q

′
+ 1, and QRN is a multiplicative

cyclic group of quadratic residues modulo N.
• BDCA then selects a hash function H1 : {0, 1}∗ → ZN , a pseudo-random permutation

F : {0, 1}k1 × {0, 1}logn
2 → {0, 1}logn

2 , and a pseudo-random function (PRF) A :
{0, 1}k2 × {0, 1}logn

2 → ZN .
• BDCA then selects a security random large prime e as the public key and computes

the private key d, where e · d ≡ 1(mod(p
′
q
′
)), u is a security random large prime,

and u 6= d.
• BDCA then generates a public key and private key pair {pk = e, sk = (d, u)} and

outputs the public parameters par = {g, e, N, H1, F , A ,QRN}.

6.2. Data Processing

In this phase, DOS first preprocesses the original data M and constructs the BV-MHT
and auxiliary verification information form (AVF). Then, DOS uploads the processed
datasets to SC for storage, the specific steps are shown as follows:

• Given a original data file M ∈ {0, 1}∗, DOS splits M into k blocks, represented as
mi i∈[1,k]. Note that if the last block is not the same size as the other blocks, DOS pads
0 at the end of the last block. In order to protect the security and privacy of M, DOS
applies a blind signature technique by creating a blinded version of M, denoted as
M∗, with {m∗i }i∈[1,k] = {mi}i∈[1,k] + H1(md||ad), where md ∈ {0, 1}∗ is the unique
identification of M, ad ∈ ZN is a random number, and H1 is a one-way hash function.
Additionally, DOS calculates a verification value Ad = gad , where g is a generator of a
cyclic group G, and N is the order of G.

• DOS constructs the batch verification Merkle hash tree (BV-MHT) based on the pro-
cessed data to facilitate efficient and secure data auditing. In BV-MHT, each node ν
stores a tuple (lν, rν, hν), which represents the position information of the node ν in BV-
MHT. Specifically, if the node ν is the i-th leaf node τi, rν is set to 1 and hν = H1(m∗i).
If the node ν is a non-leaf node χ, rν stores the number of the leaf nodes that χ can
reach from the left to right and hν = H1(rν||hle f tχ

||hrightχ
), where hle f tχ

and hrightχ

denote the left and right child nodes of χ [37]. If the node ν is the left child node of its
parent node, lν is set to 0; the node ν is the right child node of its parent node, lν is set
to 1; the node ν is the root of the BV-MHT, lν is set to 2. The process of constructing
BV-MHT is shown in Figure 2 and the nodes {τ2, τ4, τ7} are verified simultaneously.

• DOS constructs the auxiliary verification information form (AVF) to implement the
batch verification and accelerate the process of batch verification. In traditional MHT,
the i-th leaf node can only be verified one by one with its siblings on the path from
the i-th leaf node to the root. For instance, if the nodes {τ2, τ4, τ7} want to be ver-

Appl. Sci. 2023, 13, 7762 8 of 21

ified simultaneously, they need to generate the auxiliary verification information
ωτ2 = {τ1, χ10, χ14}, ωτ4 = {τ3, χ9, χ14}, and ωτ7 = {τ8, χ11, χ13}, respectively.
The node χ14 will be retrieved twice, which will cause more overhead. Furthermore,
as the number of verified nodes simultaneously increases, the number of duplicate
retrieval nodes increase. From the perspective of saving verification overhead, we
introduce a concept auxiliary verification information form (AVF) in BV-MHT, as an
example is shown in Table 2, the nodes {τ2, τ4, τ7} can be verified simultaneously by
retrieving the AVFr×t, where r is the number of the nodes verified simultaneously, t
is the max layer of the leaf nodes in BV-MHT, and Point is a point that points to the
different line in AVFr×t. The specific procedures of constructing AVFr×t are shown in
Algorithm 1. Finally, DOS invokes Algorithm 1 to generate an AVF1×t(νk) for the last
leaf node νk.

• DOS generates the authenticated tags of the transferred data {m∗i }i∈[1,k] with Equa-
tion (1) and uploads the datasets DS1 = {(m∗i , ζi)}i∈[1,k], {k, hroot}, {vk, AVF1×t(νk)}}
to SC for storage.

ζ = (ghνi · gm∗i)d
i∈[1,k]. (1)

• After receiving the datasets DS1 from DOS, SC generates a data-uploading transaction
Tx1 and sends Tx1 to TC:

Tx1 = [“Upload”, pkDOS , DS1].

Algorithm 1 Constructing the auxiliary verification information form (AVFr×t).

Input: BV-MHT, index sets {d1, d2, ..., dr}(d1 < d2 < ... < dr) of the verified leaf nodes.
Output: AVFr×t.

1: i = 1;
2: while i <= r do
3: LN[i] = νdi

;
4: i = i + 1;
5: end while
6: j = 1, Q = t;
7: while Q > 0 do
8: for i = 1, 2, ..., r do
9: $ = LN[i];

10: if $ 6= NULL then
11: if the layer number of $ == Q then
12: if $ exists sibling node κ in current LN[] then
13: AVF[i][j] = “Pointι” (ι ∈ (1, r]);
14: LN[ι] = NULL;
15: else $ does not exist sibling node κ in current LN[]
16: AVF[i][j] = κ;
17: end if
18: LN[i] = the parent node of $;
19: else the layer number of $ 6= Q
20: AVF[i][j] = NULL;
21: end if
22: else $ == NULL
23: AVF[i][j] = NULL;
24: end if
25: end for
26: j = j + 1, Q = Q − 1;
27: end while
28: return AVFr×t;

Appl. Sci. 2023, 13, 7762 9 of 21

1 2 3 4 5 6 7 8

9 10 11 12

14

root

1(0,1,)h 2(1,1,)h
3(0,1,)h 4(1,1,)h

5(0,1,)h 6(1,1,)h
7(0,1,)h

8(1,1,)h

9(0,2,)h
10(1,2,)h 11(0,2,)h 12(1,2,)h

13
13(0,4,)h

14(1,4,)h

(2,8,)rooth

3

2

1

0

layer of the node

Figure 2. The process of constructing BV-MHT.

Table 2. Auxiliary verification information form (AVF).

AVIi,j j = 1 j = 2 j = 3

i = 1(Point1) τ1 Point2 Point3
i = 2(Point2) τ3 NULL NULL
i = 3(Point3) τ8 χ11 NULL

6.3. Data Uploading

In this phase, SC encrypts the uploaded transaction Tx1 with advanced gamma multi-
signature scheme (AGMS) to ensure its security and privacy in the process of cross-chain
interaction and any unauthorized access or tampering can be detected. The detailed process
of AGMS is expounded in Algorithm 2 and the specific process of uploading data is shown
as follows:

• SC invokes Algorithm 2 to encrypt Tx1 and obtain the signature (c, sig). Then, SC
sends the signature (c, sig), Tx1, and PKleader to TC.

Algorithm 2 Advanced gamma multi-signature scheme.

Input: The message msg to be signed, the public key sets of the signers keys =
{pki}i∈[1,v], the threshold number v of signers, and the public key of the leader pkleader.
Output: The multi-signature (c, sig).

1: Randomly select a random value vi, compute Vi = gvi ;
2: Compute the partial aggregated public key PKsigners = ∏i∈[1,v] pki and the partial

aggregated commitment Vsigners = ∏i∈[1,v] Vi;
3: Compute the complete aggregated public key PKleader = PKsigners · pkleader and the

complete aggregated commitment Vleader = Vsigner ·Vleader;
4: Compute the collective challenge c = H1(g, Vleader, PKleader);
5: Compute the hash of the signed message hv = H1(msg) and the partial aggregated

signature sigsigner = ∑i∈[1,v] sigi = ∑i∈[1,v] vi · c− hv · di;
6: Compute the signature sig = sigleader + sigsigner;
7: Output the signature (c, sig)

Upon receiving the signed transaction Tx1 from SC, TC proceeds to invoke the desig-
nated smart contract St to conduct a rigorous verification process to ensure the authenticity
and validity of Tx1 before it is stored on the blockchain.

• TC computes hv = H1(msg) and Ṽ = (gsigPKhv
leader)

c−1
.

Appl. Sci. 2023, 13, 7762 10 of 21

• TC verifies the correctness of the signature (c, sig) with Equation (2). If the equation
holds, the signature is valid and TC continues to conduct the following verification;
otherwise the signature is invalid, and TC rejects to store Tx1.

c ?
= H1(g, Ṽ, PKleader). (2)

• TC verifies the correctness of {k, hroot} by checking whether the hash value H1(m∗k)
based on the datasets {m∗i }i∈[1,k] is equal to hνk of the node νk. If the verification passes,
TC continues to conduct the following verification; otherwise, Tx1 is invalid, and TC
rejects to store Tx1.

• TC invokes Algorithm 3 to verify the correctness of AVF1×t(vk). If the algorithm out-
puts 0, TC rejects to storage of Tx1; otherwise, TC stores Tx1 and returns its acceptance
and signature of DOT . It is worth noting that we assume that
PI := {(αi, βi)|αi, βi ∈ ZN , i ∈ [1, ϑ]} is a ϑ size set. For any element y ∈ ZN ,
the set operations ’±’ of PI are described as follows:

{PI ± y} = {(PI(α)± y), (PI(β)± y)},

where PI(α) ± y := {(αi ± y, βi))}i∈[1,ϑ], PI(β) ± y := {(αi, βi ± y)}i∈[1,ϑ]. Further-
more, the operation Union(PIi, PIj) is described as follows:

Union(PIi, PIj) = {(αi, βi), (α
′
j, β

′
j)}i∈[1,ϑ1],j∈[1,ϑ2]

,

where PIi = {(αi, βi)}i∈[1,ϑ1]
and PIj = {(αj, β j)}j∈[1,ϑ2]

.

6.4. Data Updating

In this phase, when DOS wants to update the data stored in SC at will, DOS generates
a data updating request req and sends it to SC. SC updates the data as the request req
and sends a data update request transaction Tx2 to TC. TC updates the data as the
transaction Tx2. In general, data update operations include Insertion(I), Modi f ication(M),
and Deletion(D). It is imperative to highlight that the process of updating data in this
paper is instigated by the user node that initially generated the data. Each data update
request is accompanied by a public key signature from the data update user node and
the execution of the data update operation is contingent upon its successful verification
by a majority of nodes in the blockchain. Specifically, the data update operation must
be approved by more than 50% of the user nodes in blockchain. The robust approach of
this paper provides a high level of security against potential security threats, such as the
malicious random or chosen node or link to a blockchain node deletion and the integrity
and security of the blockchain are safeguarded. The specific process is shown as follows:

Modification: Assume that DOS wants to modify the i-th leaf node into m∗
′

i at ts2

(e.g., modify m∗4 into m∗
′

4 in Figure 3b).

• DOS calculates H1(m∗
′

i) = h∗i and ζ∗i = (gh∗i · gm∗
′

i)d.
• DOS invokes Algorithm 1 to generate an auxiliary verification information form AVF1×t.
• DOS modifies the original node into ν∗i = {lν∗i , rν∗i

, h∗i } and updates the BV-MHT by
recalculating all the nodes on the path from the node ν∗i to the root, generating a new
hash root h∗root.

• DOS generates a data update request req = {ts2, Modi f y, i, h∗i , AVF1×t, h∗root, m∗i ,
pkDOS} and sends it to SC.

• SC verifies the request req with Algorithm 3 and updates the data as the request req,
generating a new transaction linked to the original blockchain network. Then, SC
generates a data update transaction Tx2 and encrypts Tx2 with AGMS in a similar
process in Section 6.3 and uploads Tx2 to TC.

Tx2 = [“Update”, req]

Appl. Sci. 2023, 13, 7762 11 of 21

• After receiving the transaction Tx2, TC first verifies the correctness and validity of
the received transaction in a similar way in Section 6.3. If the verification is valid, TC
updates the BV-MHT as requested; otherwise, TC rejects to update the transaction.

Algorithm 3 Batch verification.

Input: Index sets {d1, d2, ..., dr}(d1 < d2 < ... < dr) of the verified leaf nodes, the num-
ber of all blocks k, the corresponding hash root of BV-MHT based on the batch verified
nodes hroot, and AVFr×t.
Output: 0/1.

1: i = 1;
2: while i <= r do
3: PIi= {(k, γνdi

− 1)};
4: Γi = γνdi

;
5: Υi = hνdi

;
6: i = i + 1;
7: end while
8: Point_Sets = {1, 2, ..., r};
9: for i = 1, 2, ..., t do

10: for j = 1, 2, ..., r do
11: if AVF[i][j] == NULL then
12: continue;
13: else if AVF[i][j] is a leaf or non-leaf node νx then
14: Γi = Γi + rνx ;
15: if lνx == 1 then
16: Υi = H1(Γi||Υi||hνx);
17: PIi = PIi(α)− rνx ;
18: else if lνx == 0 then
19: Υi = H1(Γi||hνx ||Υi);
20: PIi = PIi(β) + rνx ;
21: else lνx == 2
22: return 0;
23: end if
24: else AVF[i][j] is a point Pointδ, δ ∈ (1, r]
25: PIδ = PIδ(β) + Γi;
26: Γi = Γi + Γδ;
27: Υi = H1(Γi||Υi||Υδ);
28: PIi = PIi(α)− Γδ;
29: PIi = Union(PIi, PIδ);
30: remove δ from Point_Sets;
31: end if
32: end for
33: end for
34: if PI1 6= {(d1, d1 − 1), (d2, d2 − 1), ..., (dr, dr − 1)} then
35: return 0;
36: else if Γ1 6= k or Υ1 6= hroot then
37: return 0;
38: else
39: return 0;
40: end if

Appl. Sci. 2023, 13, 7762 12 of 21

1 2 3 4 5 6 7 8

9 10 11 12

14

root

1(0,1,)h 2(1,1,)h
3(0,1,)h 4(1,1,)h

5(0,1,)h 6(1,1,)h
7(0,1,)h

8(1,1,)h

9(0,2,)h
10(1,2,)h 11(0,2,)h 12(1,2,)h

13
13(0,4,)h

14(1,4,)h

(2,8,)rooth

3

2

1

0

layer of the node

(a) Original BV-MHT

1 2 3 4 5 6 7 8

9 10 11 12

14

root

1(0,1,)h 2(1,1,)h
3(0,1,)h *

4(1,1,)h
5(0,1,)h 6(1,1,)h

7(0,1,)h
8(1,1,)h

9(0,2,)h *
10(1,2,)h 11(0,2,)h 12(1,2,)h

13
*

13(0,4,)h
14(1,4,)h

*(2,8,)rooth

3

2

1

0

layer of the node

(b) Modification operation

1 2 3 5 6 7 8

9 10 11 12

14

root

1(0,1,)h 2(1,1,)h 3(0,1,)h
5(0,1,)h 6(1,1,)h

7(0,1,)h
8(1,1,)h

9(0,2,)h
3(1,1,)h 11(0,2,)h 12(1,2,)h

13
*

13(0,3,)h
14(1,4,)h

*(2,7,)rooth

3

2

1

0

layer of the node

(c) Deletion operation

9 10 11 12

14

root

4(0,1,)h

9(0,2,)h *
10(1,3,)h 11(0,2,)h 12(1,2,)h

13
*

13(0,5,)h
14(1,4,)h

*(2,9,)rooth

3

2

1

0

layer of the node

1 2 3

4 '
4

5 6 7 8
1(0,1,)h 2(1,1,)h

3(0,1,)h
5(0,1,)h 6(1,1,)h

7(0,1,)h
8(1,1,)h

'
4(1,1,)h

*
4

*
4(1,2,)h

(d) Insertion operation

Figure 3. The updating operations of the BV-MHT in BDCA.

Deletion: Assume that DOS wants to delete the i-th leaf node at ts2 (e.g., delete m∗4
in Figure 3c).

• DOS generates the data updates request req = {ts2, delete, i, AFV1×t, h∗root, pkDOS} and
updates the BV-MHT on the path from the node νi to the root. Then, DOS sends it
to SC.

• SC verifies and updates the BV-MHT in a similar way as above, and generates a
data update transaction Tx2 encrypted with AGMS. Then, Tx2 is sent to TC for data
updating.

Tx2 = [“Update”, req]

• TC updates the data in a similar way as above.

Insertion: Assume that DOS wants to insert a new node after the i-th leaf node at ts2
(e.g., insert m

′
4 after m4 in Figure 3d).

• DOS generates the data updates request req = {ts2, insert, i, h
′
i, m

′
i, AFV1×t, h∗root, pkDOS}

and updates the BV-MHT on the path from the node νi to the root, where
ν
′
i = {li, ri + 1, H1(ri + 1||hi||h

′
i)}. Then, DOS sends it to SC.

• SC verifies and updates the BV-MHT in a similar way as above, and generates a
data update transaction Tx2 encrypted with AGMS. Then, Tx2 is sent to TC for data
updating.

Tx2 = [“Update”, req]

• TC updates the data in a similar way as above.

6.5. Data Auditing

In this phase, AC periodically constructs a random challenge to verify the consistency
between SC and TC in order to ensure the integrity and reliability of BDCA. It is important
to note that all entities involved, including SC, TC, and AC, should utilize a uniform time
standard and the time interval for the audit should be fixed. The detailed process is shown
as follows:

Appl. Sci. 2023, 13, 7762 13 of 21

• AC constructs a random challenge:

chal(ts1) = {ts1, λ
(ts1)
ϕ , Λ(ts1)

ϕ }ϕ∈[1,c], λ
(ts1)
ϕ ∈ [1, k], Λ(ts1)

ϕ ∈ ZN (3)

where {F
k
(ts1)
1

(ϕ) = λ
(ts1)
ϕ }ϕ∈[1,c] represents the index set of the c challenged block,

{A
k
(ts1)
2

(ϕ) = Λ(ts1)
ϕ }ϕ∈[1,c] denotes the corresponding coefficient set of the challenged

block, k(ts1)
1 = H2(ts1||val(ts1)), k(ts1)

2 = H3(ts1||non(ts1)), H2 is a hash function that
transforms the set {0, 1}∗ to the space of F , H3 is a hash function that transforms
the set {0, 1}∗ to the space of A [38], val(ts1) is the number of blocks in TC and
non(ts1) is the random value closest to the nearest the timestamp ts1. Due to the
unpredictability and non-repudiation of val(ts1) and non(ts1), the challenge chal(ts1),
which is undeniable, can be constructed by AC.

• AC sends the challenge chal(ts1) to SC and TC.
• Upon receiving the challenge chal from AC, TC selects a secret random value

r(ts1) ∈ ZN and generates a storage proof:

proo fTC = {ζ(ts1), µ(ts1), g(ts1), u(ts1)},

where ζ(ts1) = ∏ϕ∈[1,c] ζ
Λ
(ts1)
ϕ

λ
(ts1)
ϕ

(modN), µ(ts1) = r(ts1) + ∑ϕ∈[1,c] Λ(ts1)
ϕ · m

λ
(ts1)
ϕ

,

g(ts1) = gr(ts1) , u(ts1) = gu ∑ϕ∈[1,c] Λ(ts1)
ϕ ·m(ts1)

λϕ
modN, and gu = gu.

• TC sends the proof proo fTC and its signature pkDOT used to provide non-repudiation
to AC for consistency verification.

• SC generates an audit proof and sends the proof proo fSC with its signature pkDOS to
AC for consistency verification.

proo fSC = {AVFc×t, h(ts1)
root , {h(ts1)

λϕ
}ϕ∈[1,c]}

• Upon receiving the proof from SC and TC. AC calculates the verification information
Ω(ts1) based on the proo fSC:

Ω(ts1) = ∏
ϕ∈[1,c]

g
Λ
(ts1)
ϕ ·h(ts1)

λϕ modN.

• AC checks the signature of pkDOS and pkDOT , then verifies the correctness of proo fTC
with Equation (4). If the equation verification fails, TC may not store the data as
required and AC notifies SC about the exceptional situation; otherwise, AC generates
an audit log rod(ts1) =

{
chal (ts1), Ω(ts1), proofTC, proofAC, pDOS , pkDOT

}
and stores

rod(ts1) on the blockchain for further checking logs.

(ζ(ts1))e · g(ts1)(mod N)
?
= Ω(ts1) · gµ(ts1)

(mod N). (4)

7. Security Analysis

In this section, we conduct a series of theoretical analyses to prove the security of
BDCA. We first provide a security proof of the advanced gamma multi-signature scheme
(AGMS) and then prove that BDCA can achieve the design goals defined in Section 5.3.
The detailed security proofs are shown as follows:

Appl. Sci. 2023, 13, 7762 14 of 21

Theorem 1. The security of AGMS can be assured under the assumption that the computation of
discrete logarithms is a computationally infeasible problem.

Proof. The idea behind the proof lies in the notion that if it were computationally feasible
to fabricate the signature of AGMS, it would imply that adversary A has the ability to
circumvent the discrete logarithm (DL) assumption [39]. Otherwise, if the DL assumption
holds, then the security of AGMS can be ensured, thereby preventing potential cross-chain
tampering attacks and privacy leakage attacks. We assume that adversary A has the ability
to resolve the DL assumption in G, which can forge a signature (c∗, sig∗, hv∗) to pass the
verification. Thus, we can deduce Equation (5):

gsig = Vc
leader · PK−hv

leader = Vc
leader ∏

i∈[1,ω]

pk−hv
i

gsig = Vc∗
leader · PK−hv∗

leader = Vc∗
leader ∏

i∈[1,ω]

pk∗−hv∗
i ,

(5)

where {pki}i∈[1,ω] and
{

pk∗i
}

i∈[1,ω] are two public key sets aiming to forge the signature.

We can conclude that the signature can be forged successfully only if Vc
leader = Vc∗

leader ,

c−1hv = c∗−1hv∗, and
{

pk−hv
i

}
i∈[1,ω]

=
{

pk∗−hv∗
i

}
i∈[1,ω]

. Hence, we can deduce Equation (6).

Vleader = gsigc −1 ∏
i∈[1,ω]

pkc−1

i hvs.

Vleader = gsig ∗c∗−1
∏

i∈[1,ω]

pkc∗−1hv∗
i

(6)

Based on Equation (6), we can obtain Equation (7) and it can be asserted that A has
the capability to generate all possible private keys with the exception of its own if c∗ = c
and e∗ = e from Equation (7). According to [40], it can be concluded that the likelihood of
the adversary A succeeding in generating two distinct outputs that satisfy the verification
criteria is exceedingly small. As a consequence, the robustness of the AGMS scheme
can effectively mitigate the potential risks of cross-chain tampering attacks and privacy
leakage attacks.

gsigc−1 −sig∗c∗−1
= ∏

i∈[1,ω]

pkc∗−1hv∗−c−1hv
i (7)

Theorem 2. If all entities of the BDCA have duly complied with the prescribed procedures, it can
be asserted that the consistency of dynamic cross-chain data can be reliably ensured.

Proof. The idea behind the proof lies in the notion that if all entities involved in the BDCA
abide by the prescribed procedures in an honest and diligent manner, certain associated
parameters can be computed with integrity and accuracy. Under such circumstances, AC is
able to ensure the auditing consistency between the source chain (SC) and target chain (TC),
thereby promoting the reliability and trustworthiness of cross-chain transactions. In the
process of data auditing, AC generates verification information Ω(ts1) based on the proo fSC

Appl. Sci. 2023, 13, 7762 15 of 21

and checks the validity of proo fTC based on Equation (4). The correctness and soundness
of Equation (4) can be deduced as follows:

LHS = (Ω(ts1))e · g(ts1)(modN)

= (∏
ϕ∈[1,c]

(((g
h
(ts1)
λϕ · gm

(ts1)
λϕ)d)Λ

(ts1)
ϕ)e) · gr(ts1)(modN)

= (∏
ϕ∈[1,c]

(g
h
(ts1)
λϕ
·Λ(ts1)

ϕ · gm
(ts1)
λϕ
·Λ(ts1)

ϕ)) · gr(ts1)(modN)

= (∏
ϕ∈[1,c]

(g
h
(ts1)
λϕ
·Λ(ts1)

ϕ)) · (g∑ϕ∈[1,c] m
(ts1)
λϕ
·Λ(ts1)

ϕ · gr(ts1))(modN)

= Ω(ts1) · gµ(ts1)(modN)

= RHS

(8)

It can be ascertained that the correctness of Equation (4) can be demonstrated with
Equation (8) and the assurance of dynamic cross-chain data consistency primarily hinges
on establishing the accuracy of Equation (4). Hence, the consistency of dynamic cross-chain
data auditing can be guaranteed.

8. Performance Analysis

We have developed a prototype of the BDCA, utilizing Hyperledger Fabric v1.4 on
Ubuntu18.04 with a system memory of 32GB. The implementation leverages the PBC library
[41] and simulates the entire experimental procedure by executing three distinct smart
contracts, namely Sa, Ss and St, which have been developed using the Go programming
language [42]. Firstly, we evaluate the efficiency of AGMS, compared with commonly used
multi-signature algorithms in the blockchain. Then, we evaluate the computation time and
communication overhead of BDCA.

8.1. AGMS Execution Overhead Evaluation

Currently, mainstream multi-signature schemes [43] applied to the blockchain can
be divided into RSA-based multi-signature schemes [44], Schnorr-based multi-signature
schemes (e.g., Cosi [45], and AGMS), and BLS-based multi-signature schemes [46]. The
results are illustrated in Figure 4. The BLS-based multi-signature scheme exhibits signifi-
cantly longer processing times for both signing and verification operations compared to the
other two categories of signature schemes, attributed to the highly time-consuming bilinear
pairing operation involved in the BLS-based multi-signature. Despite the fact that the RSA-
based multi-signature scheme exhibits the lowest execution time during the verification
process, its total time overhead is comparable to that of Cosi and AGMS. The signature
length of the RSA-based multi-signature scheme is 2048 bit, while the signature length
of the Schnorr-based multi-signature is only 448 bit, also indicating the advantage of the
Schnorr-based multi-signature scheme. Moreover, we have taken into account the variation
of execution time with the number of signers, as illustrated in Figure 5, while the AGMS
signature scheme incurs a higher cost than Cosi, it offers a higher level of security than
Cosi, particularly in terms of mitigating the risks of rogue-key attacks and k-sum problem
attacks [47], making it a justifiable choice in BDCA where security is of utmost importance.

Appl. Sci. 2023, 13, 7762 16 of 21

Signing Verification
Algorithm

0

1

2

3

4

5

6

7

8

Th
e

ex
ec

ut
io

n
tim

e
(m

s)

RSA based mutli-signature
Schnorr based mutli-signature:Cosi
Schnorr based mutli-signature:AGMS
BLS based mutli-signature

Figure 4. The execution time of typical multi-signature schemes.

128 256 512 1024 2048
Number of signers

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Th
e

ex
ec

ut
io

n
tim

e
(m

s)

Cosi
AGMS

Figure 5. The execution time of Cosi and AGMS in different numbers of signers.

8.2. Computation Overhead Evaluation

We conduct experiments to evaluate the computation overhead of BDCA with a
similar scenario as in previous studies using Fortress [48] and CPVPA [38]. As shown in
Figure 6, our experimental results indicate that the computation overhead of the BDCA in
preprocessing data is lower compared to the Fortress and CPVPA schemes. This is attributed
to the fact that the Fortress scheme requires the utilization of zero-knowledge proofs (ZKPs)
in preprocessing data while the CPVPA scheme involves multiple costly exponentiation and
multiplication operations, resulting in a significantly larger computation overhead. Figure 7
reveals that when the number of challenged blocks is fixed at 300 blocks, irrespective of
block size, the computation cost of BDCA in auditing data is marginally superior to that of
Fortress. This is due to the fact that the Fortress scheme requires doubling the computations
for combined blocks with two different authentication tags, whereas BDCA exhibits a more
efficient performance in this regard. Moreover, the computational efficiency of BDCA is
significantly higher than that of the CPVPA scheme, which involves multiple computations
for combined blocks with different authentication tags. In general, BDCA is efficient
in computation.

Appl. Sci. 2023, 13, 7762 17 of 21

0 2 4 8 16 32 64 128 256
Block size (KB)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

C
om

pu
ta

tio
n

tim
e(

s)

10.32

5.42

4.18

3.98

3.76

3.28
3.18

3.09
2.98

8.68

7.42

6.18

5.98

5.76

5.28
5.18

5.09
4.98

20.32

10.42

8.18

6.98

6.76

6.28
6.18

6.09

5.88

BDCA
Fortress
CPVPA

Figure 6. The computation overhead of BDCA in preprocessing data vs. CPVPA and Fortress.

0 2 4 8 16 32 64 128 256
Block size (KB)

400

500

600

700

800

900

1000

1100

1200

D
at

a
pr

ep
ro

ce
ss

in
g

tim
e(

m
s)

400.3
406.5 408.9

413.9 412.2

420.3

465.2

580.3

800.2

400.5

408.5
412.8

417.9
422.9

440.2

510.3

670.2

924.6

420.3

480.5

550.9

620.9

700.2

790.3

900.2

1010.3

1180.2BDCA
Fortress
CPVPA

Figure 7. The computation overhead of BDCA in auditing data vs. CPVPA and Fortress.

8.3. Communication Overhead Evaluation

We conduct similar experiments to evaluate the communication overhead of BDCA
with Fortress and CPVPA. Figure 8 demonstrates that the communication overhead of the
BDCA in preprocessing data is lower compared to the Fortress scheme. This is attributed
to the fact that the Fortress scheme requires the generation of various commitments of
zero-knowledge proofs (ZKPs), which results in a significant communication burden.
In contrast, BDCA only requires transferring the BV-MHT, which incurs a considerably
lower communication overhead. Additionally, the communication overhead of the CPVPA
scheme grows linearly with the number of blocks, resulting in a higher communication
overhead compared to BDCA. Figure 9 highlights that both the Fortress and CPVPA
schemes require transferring more combined blocks against each challenge in auditing
data, resulting in a higher communication overhead compared to BDCA. This is due to the
fact that BDCA employs a more efficient method for generating and transmitting combined
blocks. Specifically, BDCA generates and transmits only the necessary combined blocks
for each challenge, resulting in a significantly lower communication overhead. In general,
BDCA is efficient in communication.

Appl. Sci. 2023, 13, 7762 18 of 21

0 2 4 8 16 32 64 128 256
Block size (KB)

50

100

150

200

250

300

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (K
B

)

108.2

102.98

94.65

82.25

70.84

56.6

42.56

28.32

16.3

298.68

280.2

250.3

210.3

160.76

100.28

82.18

68.09

59.98

250.3

238.3

208.3

165.2

118.2

62.3

45.3

29.2

19.2

BDCA
Fortress
CPVPA

Figure 8. The communication overhead of BDCA in preprocessing data vs. CPVPA and Fortress.

0 2 4 8 16 32 64 128 256
Block size (KB)

0

50

100

150

200

250

300

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (K
B

)

1

9

19

30

42

53

72

110

205

5

15

30

45

72

90

130

210

310

2

14

27

40

52

68

90

123

220

BDCA
Fortress
CPVPA

Figure 9. The communication overhead of BDCA in auditing data vs. CPVPA and Fortress.

8.4. The Probability of Data Consistency Guarantees

In Figure 10, our evaluation of the proof generation time under different standards
(from the number of challenged blocks equals 240 to 460) of tampered data detection reveals
that the number of challenged blocks is the primary determinant of the time required for
proof generation. Specifically, increasing the confidence level (from 90 to 99%) [20] of data
consistency guarantees leads to a substantial increase in the proof generation time for a
fixed data tampering rate of 1%, emphasizing the importance of optimizing consistency
guarantees to balance performance and security considerations.

Appl. Sci. 2023, 13, 7762 19 of 21

90% 92% 94% 96% 98% 99%
The probability of consistency guarantees

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
oo

f g
en

er
at

io
n

tim
e

(m
s)

0.08

0.09

0.11

0.14

0.18

0.25

0.32

0.36

0.42

0.5

0.61

0.73SC
TC

Figure 10. Proof generation time.

9. Conclusions

In this paper, we present a novel blockchain-based distributed model BDCA, that
leverages the BV-MHT and AGMS to implement a lightweight and secure data consistency
verification process. By incorporating the auditing capabilities of AC and the privacy-
preserving features of AGMS, BDCA provides a robust and efficient means of ensuring the
integrity and confidentiality of cross-chain transactions. Additionally, we introduce BV-
MHT and AFV to enable data updates and batch verification with minimal overheads. We
also conduct a comprehensive security analysis to demonstrate the security and reliability
of BDCA in practice. Experimental results reveal that the average execution time of AGMS
scheme is 5.3 ms, which exceeds that of RSA and BLS, and rivals that of Cosi, while the
security of AGMS outperforms that of Cosi. Furthermore, BDCA is practical and highly
efficient for data preprocessing and auditing in terms of computation and communication,
outpacing both CPVPA and Fortress. BDCA can also provide data consistency guarantees
of up to 99%. Our future work involves deploying BDCA on a public blockchain platform,
e.g., Ethereum, to evaluate its scalability and efficiency in real-world applications. The
potential decline in interoperability, scalability, and security of BDCA with the increasing
user nodes underscores the need for ongoing research and optimization of BDCA. Some
new approaches to improve these metrics will be explored in order to ensure that BDCA
can scale effectively and maintain high levels of security and performance.

Author Contributions: Conceptualization, J.Z., Y.Z. and J.J.; methodology, J.Z., Y.Z. and J.J.; valida-
tion, J.Z.; formal analysis, J.Z.; investigation, J.Z.; resources, J.Z.; data curation, J.Z.; writing—original
draft preparation, J.Z.; writing—review and editing, Y.Z. and J.J.; visualization, J.Z.; supervision, Y.Z.;
All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the Postgraduate Research & Practice Innovation Program of
NUAA xcxjh20221616.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Thanks to reviewers for their valuable time. Thanks to Yushu Zhang for
their invaluable contribution to improving our written English, which enhanced the quality of
our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 7762 20 of 21

References
1. Arasteh , H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-khah, M.; Siano, P. Iot-based smart cities: A survey. In

Proceedings of the IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10
June 2016; pp. 1–6.

2. Devi, Y.U.; Rukmini, M. IoT in connected vehicles: Challenges and issues—A review. In Proceedings of the International
Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, India, 3–5 October
2016; pp. 1864–1867.

3. Gandhi, D.A.; Ghosal, M. Intelligent healthcare using IoT: A extensive survey. In Proceedings of the 2018 Second International
Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018;
pp. 800–802.

4. Taherdoost, H. Blockchain-Based Internet of Medical Things. Appl. Sci. 2023, 13, 1287. [CrossRef]
5. Sadeq, N.; Hamzeh, Z.; Nassreddine, G.; ElHassan, T. The impact of Blockchain technique on trustworthy healthcare sector.

Mesopotamian J. CyberSecurity 2023, 2023, 105–115.
6. Qiao, R.; Zhu, S.; Wang, Q.; Qin, J. Optimization of dynamic data traceability mechanism in Internet of Things based on

consortium blockchain. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718819072. [CrossRef]
7. Cheng, J.; Li, Y.; Yuan, Y.; Zhang, B.; Xu, X. A Blockchain-Based Trust Model for Uploading Illegal Data Identification. Appl. Sci.

2022, 12, 9657. [CrossRef]
8. Shafagh, H.; Burkhalter, L.; Hithnawi, A.; Duquennoy, S. Towards blockchain-based auditable storage and sharing of IoT data. In

Proceedings of the 2017 on Cloud Computing Security Workshop, Dallas, TX, USA, 3 November 2017; pp. 45–50.
9. Wang, C.; Bi, Z.; Da Xu, L. IoT and cloud computing in automation of assembly modeling systems. IEEE Trans. Ind. Inform. 2014,

10, 1426–1434. [CrossRef]
10. Aazam, M.; Khan, I.; Alsaffar, A.A.; Huh, E.N. Cloud of Things: Integrating Internet of Things and cloud computing and the

issues involved. In Proceedings of the 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST),
Islamabad, Pakistan, 14–18 January 2014; pp. 414–419.

11. Mekala, M.S.; Viswanathan, P. A Survey: Smart agriculture IoT with cloud computing. In Proceedings of the 2017 International
Conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Vellore, India, 10–12 August 2017; pp. 1–7.

12. AlShamsi, M.; Al-Emran, M.; Shaalan, K. A systematic review on blockchain adoption. Appl. Sci. 2022, 12, 4245. [CrossRef]
13. Johar, S.; Ahmad, N.; Asher, W.; Cruickshank, H.; Durrani, A. Research and applied perspective to blockchain technology: A

comprehensive survey. Appl. Sci. 2021, 11, 6252. [CrossRef]
14. Chen, R.; Li, Y.; Yu, Y.; Li, H.; Chen, X.; Susilo, W. Blockchain-based dynamic provable data possession for smart cities. IEEE

Internet Things J. 2020, 7, 4143–4154. [CrossRef]
15. Hashim, A.N. Blockchain technology, methodology behind it, and its most extensively used encryption techniques. Al-Salam J.

Eng. Technol. 2023, 2, 140–151.
16. Vaigandla, K.K.; Karne, R.; Siluveru, M.; Kesoju, M. Review on Blockchain Technology: Architecture, Characteristics, Benefits,

Algorithms, Challenges and Applications. Mesopotamian J. CyberSecurity 2023, 2023, 73–85.
17. Hope-Bailie, A.; Thomas, S. Interledger: Creating a standard for payments. In Proceedings of the 25th International Conference

Companion on World Wide Web, Montreal, QC, Canada, 11–15 May 2016; pp. 281–282.
18. Back, A.; Corallo, M.; Dashjr, L.; Friedenbach, M.; Maxwell, G.; Miller, A.; Poelstra, A.; Timón, J.; Wuille, P. Enabling

Blockchain Innovations with Pegged Sidechains. 2014. Available online: http://www.cpensciencereview.com/papers/12
3/enablingblockchain-innov (accessed on 18 May 2023).

19. Poon, J.; Dryja, T. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments. 2016. Available online: https:
//www.bitcoinlightning.com (accessed on 18 May 2023).

20. Ateniese, G.; Burns, R.; Curtmola, R.; Herring, J.; Kissner, L.; Peterson, Z.; Song, D. Provable data possession at untrusted stores.
In Proceedings of the 14th ACM Conference on Computer and Communications Security, Alexandria, VA, USA, 31 October–2
November 2007; pp. 598–609.

21. Jiang, Y.; Wang, C.; Wang, Y.; Gao, L. A cross-chain solution to integrating multiple blockchains for IoT data management. Sensors
2019, 19, 2042. [CrossRef]

22. Tian, H.; Xue, K.; Luo, X.; Li, S.; Xu, J.; Liu, J.; Zhao, J.; Wei, D.S. Enabling cross-chain transactions: A decentralized cryptocurrency
exchange protocol. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3928–3941. [CrossRef]

23. Xiong, A.; Liu, G.; Zhu, Q.; Jing, A.; Loke, S.W. A notary group-based cross-chain mechanism. Dig. Commun. Netw. 2022, 8,
1059–1067. [CrossRef]

24. Herlihy, M.; Liskov, B.; Shrira, L. Cross-chain deals and adversarial commerce. arXiv 2019, arXiv:1905.09743.
25. Li, Y.; Weng, J.; Li, M.; Wu, W.; Weng, J.; Liu, J.N.; Hu, S. ZeroCross: A sidechain-based privacy-preserving Cross-chain solution

for Monero. J. Parallel Distrib. Comput. 2022, 169, 301–316. [CrossRef]
26. Ateniese, G.; Di Pietro, R.; Mancini, L.V.; Tsudik, G. Scalable and efficient provable data possession. In Proceedings of the 4th

International Conference on Security and Privacy in Communication Netowrks, Istanbul, Turkey, 22–25 September 2008; pp. 1–10.
27. Tian, H.; Chen, Y.; Chang, C.C.; Jiang, H.; Huang, Y.; Chen, Y.; Liu, J. Dynamic-hash-table based public auditing for secure cloud

storage. IEEE Trans. Serv. Comput. 2015, 10, 701–714. [CrossRef]

http://doi.org/10.3390/app13031287
http://dx.doi.org/10.1177/1550147718819072
http://dx.doi.org/10.3390/app12199657
http://dx.doi.org/10.1109/TII.2014.2300346
http://dx.doi.org/10.3390/app12094245
http://dx.doi.org/10.3390/app11146252
http://dx.doi.org/10.1109/JIOT.2019.2963789
http://www.cpensciencereview.com/papers/123/enablingblockchain-innov
http://www.cpensciencereview.com/papers/123/enablingblockchain-innov
https://www.bitcoinlightning.com
https://www.bitcoinlightning.com
http://dx.doi.org/10.3390/s19092042
http://dx.doi.org/10.1109/TIFS.2021.3096124
http://dx.doi.org/10.1016/j.dcan.2022.04.012
http://dx.doi.org/10.1016/j.jpdc.2022.07.008
http://dx.doi.org/10.1109/TSC.2015.2512589

Appl. Sci. 2023, 13, 7762 21 of 21

28. Rao, L.; Zhang, H.; Tu, T. Dynamic outsourced auditing services for cloud storage based on batch-leaves-authenticated Merkle
hash tree. IEEE Trans. Serv. Comput. 2017, 13, 451–463. [CrossRef]

29. Shen, J.; Shen, J.; Chen, X.; Huang, X.; Susilo, W. An efficient public auditing protocol with novel dynamic structure for cloud
data. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2402–2415. [CrossRef]

30. Yao, A.C.C.; Zhao, Y. Online/offline signatures for low-power devices. IEEE Trans. Inf. Forensics Secur. 2012, 8, 283–294.
[CrossRef]

31. Schnorr, C.P. Efficient signature generation by smart cards. J. Cryptol. 1991, 4, 161–174. [CrossRef]
32. Merkle, R.C. A certified digital signature. In Proceedings of the Conference on the Theory and Application of Cryptology; Springer:

Berlin/Heidelberg, Germany, 1989; pp. 218–238.
33. Li, H.; Lu, R.; Zhou, L.; Yang, B.; Shen, X. An efficient merkle-tree-based authentication scheme for smart grid. IEEE Syst. J. 2013,

8, 655–663. [CrossRef]
34. Xiao, Y.; Zhang, P.; Liu, Y. Secure and efficient multi-signature schemes for fabric: An enterprise blockchain platform. IEEE Trans.

Inf. Forensics Secur. 2020, 16, 1782–1794. [CrossRef]
35. Schnorr, C.P. Efficient identification and signatures for smart cards. In Proceedings of the Advances in Cryptology—CRYPTO’89;

Proceedings 9; Springer: Berlin/Heidelberg, Germany, 1990; pp. 239–252.
36. Wang, W.; Zhang, Z.; Wang, G.; Yuan, Y. Efficient cross-chain transaction processing on blockchains. Appl. Sci. 2022, 12, 4434.

[CrossRef]
37. Erway, C.C.; Küpçü, A.; Papamanthou, C.; Tamassia, R. Dynamic provable data possession. ACM Trans. Inf. Syst. Secur. (TISSEC)

2015, 17, 1–29. [CrossRef]
38. Zhang, Y.; Xu, C.; Lin, X.; Shen, X. Blockchain-based public integrity verification for cloud storage against procrastinating

auditors. IEEE Trans. Cloud Comput. 2019, 9, 923–937. [CrossRef]
39. Diffie, W.; Hellman, M.E. New directions in cryptography. In Democratizing Cryptography: The Work of Whitfield Diffie and Martin

Hellman; Association for Computing Machinery: New York, NY, USA, 2022; pp. 365–390.
40. Bellare, M.; Neven, G. Multi-signatures in the plain public-key model and a general forking lemma. In Proceedings of the 13th

ACM conference on Computer and Communications Security, Alexandria, VA, USA, 30 October–3 November 2006; pp. 390–399.
41. Lynn, B. The Pairing-Based Cryptography (PBC) Library. 2013. Available online: http://crypto.stanford.edu/pbc (accessed on 18

May 2023).
42. Xiong, H.; Jin, C.; Alazab, M.; Yeh, K.H.; Wang, H.; Gadekallu, T.R.; Wang, W.; Su, C. On the design of blockchain-based ECDSA

with fault-tolerant batch verification protocol for blockchain-enabled IoMT. IEEE J. Biomed. Health Inform. 2021, 26, 1977–1986.
[CrossRef]

43. Abdul-Sada, H.H.; Rabee, F. The Genetic Algorithm Implementation in Smart Contract for the Blockchain Technology. Al-Salam J.
Eng. Technol. 2023, 2, 37–47.

44. Hohenberger, S.; Waters, B. Synchronized aggregate signatures from the RSA assumption. In Proceedings of the Advances
in Cryptology–EUROCRYPT 2018: 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, 29 April–3 May 2018; Proceedings, Part II; Springer: Berlin/Heidelberg, Germany, 2018; pp. 197–229.

45. Syta, E.; Tamas, I.; Visher, D.; Wolinsky, D.I.; Jovanovic, P.; Gasser, L.; Gailly, N.; Khoffi, I.; Ford, B. Keeping authorities “honest or
bust” with decentralized witness cosigning. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose,
CA, USA, 22–26 May 2016; pp. 526–545.

46. Boneh, D.; Drijvers, M.; Neven, G. Compact multi-signatures for smaller blockchains. In Proceedings of the Advances in
Cryptology–ASIACRYPT 2018: 24th International Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, 2–6 December 2018; pp. 435–464.

47. Drijvers, M.; Edalatnejad, K.; Ford, B.; Kiltz, E.; Loss, J.; Neven, G.; Stepanovs, I. On the security of two-round multi-signatures. In
Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–22 May 2019; pp. 1084–1101.

48. Armknecht, F.; Bohli, J.M.; Karame, G.O.; Liu, Z.; Reuter, C.A. Outsourced proofs of retrievability. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA, 3–7 November 2014; pp. 831–843.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSC.2017.2708116
http://dx.doi.org/10.1109/TIFS.2017.2705620
http://dx.doi.org/10.1109/TIFS.2012.2232653
http://dx.doi.org/10.1007/BF00196725
http://dx.doi.org/10.1109/JSYST.2013.2271537
http://dx.doi.org/10.1109/TIFS.2020.3042070
http://dx.doi.org/10.3390/app12094434
http://dx.doi.org/10.1145/2699909
http://dx.doi.org/10.1109/TCC.2019.2908400
http://crypto.stanford.edu/pbc
http://dx.doi.org/10.1109/JBHI.2021.3112693

	Introduction
	Related Work
	Cross-Chain Technologies and Applications
	Dynamic Data Integrity Auditing Scheme
	Gamma Signature Scheme
	Merkle Hash Tree

	Preliminaries
	Advanced Gamma Multi-Signature Scheme
	Bilinear Map
	Mathematical Assumptions

	Models
	The Proposed BDCA
	System Model
	Threat Model
	Design Goals

	The Proposed BDCA
	System Initialization
	Data Processing
	Data Uploading
	Data Updating
	Data Auditing

	Security Analysis
	Performance Analysis
	AGMS Execution Overhead Evaluation
	Computation Overhead Evaluation
	Communication Overhead Evaluation
	The Probability of Data Consistency Guarantees

	Conclusions
	References

