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Abstract: Mechanical characterization of soft materials is a complicated inverse problem that includes
nonlinear constitutive behavior and large deformations. A further complication is introduced by the
structural inhomogeneity of tested specimens (for example, caused by thickness variations). Optical
methods are very useful in mechanical characterization of soft matter, as they provide accurate
full-field information on displacements, strains and stresses regardless of the magnitude and/or
gradients of those quantities. In view of this, the present study describes a novel hybrid framework
for mechanical characterization of soft membranes, combining (i) inflation tests and preliminary in-
plane equi-biaxial tests, (ii) a one-shot projection moiré optical setup with two symmetric projectors
that project cross-gratings onto the inflated membrane, (iii) a mathematical model to extract 3D
displacement information from moiré measurements, and (iv) metaheuristic optimization hybridizing
harmony search and JAYA algorithms. The use of cross-gratings allows us to determine the surface
curvature and precisely reconstruct the shape of the deformed object. Enriching metaheuristic
optimization with gradient information and elitist strategies significantly reduces the computational
cost of the identification process. The feasibility of the proposed approach wassuccessfully tested
on a 100 mm diameter natural rubber membrane that had some degree of anisotropy in mechanical
response because of its inhomogeneous thickness distribution. Remarkably, up to 324 hyperelastic
constants and thickness parameters can be precisely identified by the proposed framework, reducing
computational effort from 15% to 70% with respect to other inverse methods.

Keywords: materials characterization; projection moiré; metaheuristic optimization; soft matter

1. Introduction

In inverse engineering applications, causal factors that govern the response of a cur-
rently analyzed system must be determined. For example, one of the most common inverse
problems in mechanics is to identify material properties (e.g., Young’s modulus, viscoelastic
or hyperelastic constants, etc.) and/or stiffness properties (e.g., tension/bending/shear
terms in shells, fiber orientations and ply thicknesses in composite laminates, etc.) cor-
responding to the given displacements {u(x,y,z), v(x,y,z), w(x,y,z)}. The most popular ap-
proaches adopted in material identification are the finite element model updating method
(FEMU) [1–5] and the virtual fields method (VFM) [3–6]. FEMU has a higher computational
cost, while VFM can be easily implemented. Measured displacements are compared at
NCNT selected control points with the corresponding displacement values computed by
an FE model simulating the experiment. Measured and computed displacements match if
actual materials/structural properties are inputted to the FE model: the difference is the
error functional Ω, which depends on the NDV properties to be identified. The inverse
problem is hence stated as an optimization problem:
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Min
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∑
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)2
]

Gp(X1, X2, . . . , XNDV) ≥ 0

Xj
L ≤ Xj ≤ Xj

U

{
j = 1, . . . , NDV
p = 1, . . . , NC

(1)

In Equation (1), the design vector XPROP(X1, X2, . . . , XNDV) includes the NDV un-
known properties ranging between lower and upper bounds “L” and “U”, respectively;
δFEM

i and δi, respectively, denote computed and target measured displacements for the ith
control point; and constraint functions Gp(XPROP) in the unknown properties guarantee
the existence of a solution for the inverse problem.

The formulation of error functional Ω depends on the type of identification prob-
lem; for example, in indentation/nanoindentation problems, reaction forces at the inden-
ter/body interface also may be considered, while in dynamic problems, natural frequencies
and modal shapes can be utilized as target quantities; strains and stresses also may be
involved in the definition of Ω. Maier and his collaborators [7–21] carried out pioneering
work on mechanical identification of materials and structures, considering a variety of
cases such as, for example, elasto-plasticity (also accounting for material anisotropy, in-
homogeneity and functional grading), indentation, residual stresses, multiaxial fatigue,
damage and fracture, thin foil mechanics, etc.

The inverse problem defined by Equation (1) may be highly nonlinear and nonconvex
if there are many unknown material/structural parameters to be determined and each new
evaluation of error functional Ω requires a new FE analysis. Since the Ω functional may be
sensitive only to some of the unknown parameters, sensitivity analyses should be carried
out to select experimental data most related to these parameters. Such a strategy makes
the inverse problem well posed but increases the computational cost of the identification
process (see, for example, [10,15,18,22,23] for detailed discussions on this issue). However,
model reduction techniques may be used to speed up computations [24].

The non-smooth optimization problem (1) can be solved using metaheuristic optimiza-
tion algorithms (MOAs) that randomly generate trial designs according to some principles
inspired by physics, evolution, biology, social sciences, human activities, etc. MOAs explore
larger portions of design space than gradient-based optimizers (GBOs), thus increasing the
probability of finding a global optimum (i.e., the actual properties to be identified). For this
reason, MOAs have progressively replaced GBOs, such as sequential unconstrained mini-
mization techniques, with penalty functions (SUMT), sequential quadratic programming
(SQP), trust region algorithms (TRA), etc.

However, according to the no-free-lunch theorem, no metaheuristic algorithm inher-
ently outperforms all other metaheuristic optimizers in all optimization problems [25,26].
Another issue in metaheuristic optimization is the computational cost of the search pro-
cess. Hence, metaheuristic algorithms for material characterization should neither be
computationally expensive nor converge to “false” values of material/structural properties.
Furthermore, convergence behavior should be independent of the setting of the algorithm’s
internal parameters. The blooming of metaheuristic methods favored by their inherent
ability of finding global optima (or at least nearly global optimum solutions) as well as by
the exponentially increasing computational power has led many researchers to use these
algorithms in inverse problems. A comprehensive literature survey on applications of
metaheuristic algorithms to mechanical characterization of materials is given in [27]. The
interpretation of structural engineering from the perspective of inverse problems and the
role played by metaheuristic algorithms and artificial intelligence in such a context are
thoroughly reviewed in [28].

It should be noted that the mechanical identification process becomes even more com-
plicated in the case of soft matter, which is usually characterized by nonlinear constitutive
behavior and large deformations. Further complications derive from the presence of mate-
rial anisotropy and structural inhomogeneity. The selected material model (usually stated



Appl. Sci. 2023, 13, 7758 3 of 44

by one of the many hyperelastic laws available in the literature) should fully “exploit” the
features of the chosen experimental protocol for characterization. Furthermore, the inverse
FE procedure should focus on material models as well as on the choice of deformation
range. Although the latter aspect may sound obvious, it is often not properly taken into
account by analysts (see, for example, the discussion reported in [29]).

Optical methods (Oms) [30–33] are highly suited for mechanical characterization of
materials because they provide accurate full-field information on displacements, strains
and stresses (i.e., the basic entities that form the error functional Ω defined in inverse
mechanics problems) in real time. Oms may utilize visible light as well as X-rays and
infrared radiation. Any target measurement scale can be achieved by properly selecting
the illumination type and the experimental setup parameters. Nanoscale resolution can be
achieved by adopting non-conventional illumination and super-resolution techniques.

In Oms, light wave fronts are modulated by the deformed body’s surface [30–33].
This results in the formation of a system of fringes (isodisplacement loci) whose spatial
frequency relates with the strain field. Displacement information may be extracted from
a deterministic signal (e.g., moiré follows the spatial modulation of a regularly spaced
grating), a random signal (e.g., speckle exploits the modulation of surface roughness caused
by deformation) or image correlation (e.g., a random pattern printed on the specimen’s
surface is modulated by the applied load).

The multiscale capability of Oms isvery useful in the characterization process if the
measured displacement components are very different in magnitude. For example, the 3D
displacement field of a soft membrane may be determined by combining intrinsic moiré
and projection moiré, respectively, to measure in-plane and out-of-plane displacements [34].
However, displacement components measured optically should be expressed in the same
reference system set in the numerical simulation of the experiments. This becomes necessary
in the case of moiré, as measured displacement components are taken in the deformed
configuration of the object while displacements computed by finite element models are
referred to the undeformed configuration of the specimen. As is clear, the error functional
Ω is not correctly defined and the inverse problem is ill-posed if reference systems of
measured and computed displacements do not match. It is hence of paramount importance
to use an optical setup that can measure the 3D displacement vector by recording just one
image of the deformed object. This avoids the need for matching reference systems relative
to the different displacement components, an inherently complicated process especially
when one has to relate in-plane displacements with out-of-plane displacements.

Another critical issue in mechanical characterization of materials is the quantity of
data matched in the optimization problem, which may depend on the number of control
points as well as on the number of displacement components involved in the definition
of the error functional Ω. It would be good to compare all displacement components
{u(x,y,z), v(x,y,z), w(x,y,z)}, but optical setups may be sensitive only to some of them. Using
an optical setup able to perform a one-shot measurement of the 3D displacement vector
certainly improves the efficiency of the identification process because (i) the number of
experimental tests entailed by the characterization is reduced and the whole identification
process becomes faster, (ii) the displacement vector is determined with respect to just one
scale, and (iii) numerical noise and nonconvexity of the optimization process caused by
any difference in scale between displacement components are significantly reduced.

Projection moiré can provide information on the 3D displacement components of
a deformed body. In fact, displacement components are the difference of coordinates
between corresponding points of an object’s surface measured with respect to a reference
plane before and after the object itself deforms. Strains are determined by differentiating
displacements, and stresses are determined from a constitutive model. Measuring the
deformed shape of an object is equivalent to contouring the surface of the deformed
object. The contouring problem is a very complicated topic, and this explains the variety of
approaches proposed in the literature. Sciammarella et al. [35,36] pointed out that cross-
gratings must be projected onto the specimen to determine the local curvature of the object’s
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surface and consequently to precisely reconstruct the 3D shape of the object. Orthogonal
lines give information on the first and second derivatives of the function defining the
analyzed surface, which is treated as a tensor entity similar to a strain tensor.

In summary, the mechanical characterization of soft hyperelastic membranes brings
at least four major challenges: (i) dealing with the inherently nonlinear behavior of the
material, which may be amplified by structural inhomogeneity; (ii) measuring the whole
3D displacement field with just one optical setup and performing a single experiment;
(iii) making sure that the inverse problem is well posed; and (iv) solving the inverse problem
(1) with an efficient, robust and computationally cheap optimization algorithm.

The above challenges fully motivate the study documented in this article, which
presents a novel hybrid framework for mechanical characterization of soft membranes
combining biaxial tests, moiré measurements and metaheuristic optimization. A one-shot
projection moiré setup including two projectors that project cross-gratings onto the tested
specimen and one camera is utilized. The two projectors are symmetrically disposed with
respect to the optical axis of the camera, thus realizing double illumination with projection
from infinity. A novel mathematical model is developed to extract 3D displacement informa-
tion from the moiré measurements—the deformed shape of the membrane is approximated
by a set of curved surface segments for which the model determines the average curvature.

A fast, population-based metaheuristic optimization algorithm (HS–JAYA), combining
the harmony search (HS) and the JAYA optimization methods, is implemented in order
to solve the inverse problem entailed by mechanical characterization. The two methods
combined into HS–JAYA have been selected for two reasons: (i) HS is one of the most
common metaheuristic algorithms in engineering applications including also the solution
of inverse problems; and (ii) JAYA has the most straightforward and inherently efficient
formulation ever implemented in metaheuristic optimization. HS–JAYA always attempts to
generate trial solutions that may improve the current best record included in the population
of candidate solutions. For that purpose, gradient information and elitist strategies are
utilized. Furthermore, exploration and exploitation are properly integrated into HS–JAYA
and continuously alternated in the metaheuristic search process so as to minimize the
computational cost of the inverse problem (1).

Besides the novelty introduced by the proposed projection moiré model and the hybrid
HS–JAYA optimization formulation, the present identification framework also accounts
for structural inhomogeneity of tested specimens, an aspect not very often considered in
the literature on mechanical characterization of hyperelastic materials (see discussions
in [37,38] and references cited therein). For this purpose, the inverse problem variants
formulated in this study include up to 324 design variables, an unusually large number of
unknown parameters in the mechanical characterization of soft matter. In summary, the
contribution of this study to the field of mechanical characterization of soft materials is at
least three-fold:

• Development of a novel characterization framework for hyperelastic membranes,
which may account for structural inhomogeneity and induced anisotropic response to
symmetric loading;

• Development of a novel one-shot projection moiré model able to recover the whole 3D
displacement field of inflated membranes;

• Development of a fast, efficient and robust enhanced hybrid metaheuristic optimiza-
tion algorithm for solving large-scale variants of the inverse problem (1).

The feasibility of the proposed approach was successfully tested on a natural rubber
membrane, which exhibited some degree of anisotropy in mechanical response because
of its inhomogeneous thickness. The inflation test [39] was selected as the experimental
loading protocol in the characterization process of the rubber membrane and the corre-
sponding 3D displacement field was measured with the one-shot projection moiré setup.
The anisotropic response of the tested material was confirmed by planar equi-biaxial
tests [40] carried out on five specimens of different sizes, and the corresponding 2D dis-
placement fields were measured with intrinsic moiré. The inflation test and the planar
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equi-biaxial test were selected for this study because they are the most commonly used
experimental protocols for characterizing soft membranes made of hyperelastic material
(e.g., [41–46] and the studies cited therein).

The rest of the article is organized as follows. Section 2 describes the proposed one-
shot projection moiré model and the experimental setup used in the study; the use of
intrinsic moiré for the additional in-plane tests also is documented. Section 3 describes the
optimization algorithm used in the identification process. Section 4 presents and discusses
the results of the identification process including also the results of preliminary intrinsic
moiré experiments. Section 5 summarizes the study and outlines future research.

2. The One-Shot Projection Moiré: Model and Experimental Setup
2.1. Background

Cosola et al. [34] combined intrinsic moiré (IM) and projection moiré (PM) to simul-
taneously measure 3D displacements u,v,w(x,y,z) of inflated membranes. Their IMPM
experimental setup is shown in Figure 1a.
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The dot grating printed on the inflated membrane sensed in-plane deformation while
the grating projected onto the membrane sensed out-of-plane deformation of the specimen.
In-plane displacements were transformed in order to match reference systems of the two
moiré measurements. For example, Figure 1b refers to the XZ plane and the corresponding
in-plane (u) and out-of-plane (w) displacements. The point P of the object’s surface displaces
to the deformed position P′. For a moiré fringe passing through P′, the corresponding
order is numbered with respect to the deformed configuration. The deformed surface is
approximated by its tangent plane Π in the neighborhood of P′. The difference between
the displacement uloc measured with IM and the real displacement u experienced by the
membrane increases with the out-of-plane deformation. Since the w distance of P′ from the
reference plane is the actual out-of-plane deformation of P, the w-quantity evaluated at P′

must be combined with the u-displacement of P to correctly determine the total deformation
utot of P. However, moiré fringes actually are projections of spatial functions u, v and w
onto the image plane (i.e., the uimag segment of Figure 1b). Hence, in [34], projected in-plane
displacements measured by IM had to be “shifted” by an amount related to the surface
slope caused by inflation. The displacement corresponding to point P′ was transformed
into that of point P by simply considering projection uloc·(cosγ), where γ is the slope of the
deformed surface.

2.2. The Proposed Moiré Model for Inflated Membranes

The IMPM setup recalled in Section 2.1 brings three important questions: (i) How
many systems of lines should be projected onto a surface in order to determine the whole
3D deformation of that surface? (ii) Should those systems of lines have different directions?
(iii) Can in-plane displacements of a deformed object be measured without physically
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applying a grating onto the object surface? To answer these questions, the present study
proposed a one-shot projection moiré optical setup for reconstructing the 3D deformed
configuration of the loaded object. A simple analytical model that evaluates the deformed
object shape starting from the curvature information was developed and integrated with
the projection moiré data.

The topography of an object’s surface is fully defined if the coordinates of points
sampling the surface are known. The displacement vector of a given point P(x,y,z) of
the object’s surface that moves to the position P′(x′,y′,z′) in the deformed configuration
is defined by the differences of coordinates {(x′−x);(y′−y);(z′−z)} between P′ and P. Pro-
jection moiré can give information on the Z-coordinates of surface points as well as on
slopes and curvatures of the surface, provided that cross-gratings are projected onto the
specimen [31,35,36]. The modulation of vertical lines projected onto the specimen gives
information on the X–Z surface profiles defined by coordinates x and z, while the modula-
tion of projected horizontal lines provides information on the Y–Z surface profiles defined
by coordinates y and z. The X–Z and Y–Z profiles obviously share the same z at their
intersections. By combining such information, it is possible to determine the position of
each surface point with respect to the reference system selected in the measurements.

Each surface is a tensor entity with two curvatures that refer to orthogonal directions,
as well as a torsional curvature. This model resembles the deformation of a solid body: the
surface strain tensor includes stretching/compression/shear components (see [31,35,36]
for detailed explanations of the connections between moiré and differential geometry).
The surface can be reconstructed with respect to a properly selected reference system if
principal curvatures are known, similar to recovering a strain field from principal strains.

In order to prove the above statements, the schematic of Figure 2 can be considered. A
circular membrane is inflated by pressure, thus passing from the undeformed configuration
(Figure 2a) to the deformed configuration (Figure 2b). The simplest case regards an axi-
symmetrically deformed specimen (i.e., there are only two displacement components
u = v and w, respectively, in the X/Y- and Z-directions; see Figure 2b) and the reference
configuration is a flat surface (see Figure 2a). Figure 2c presents a X–Z diametrical section of
the deformed membrane. The undeformed state corresponds to the straight segment P1P2

while the deformed configuration corresponds to the arc P̂1
′P2′. Furthermore, if point P1

lies on the symmetry axis of the investigated object, it does not displace in the X/Ydirection.
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Figure 2. Determination of the 3D displacement field for an axiallysymmetric deformed membrane
subjected to inflation: (a) undeformed configuration; (b) deformed configuration; and (c) deformed
profile in the diametrical section X–Z of the inflated membrane.

Under the action of applied loads, point P1 in the reference (undeformed) state dis-
places to the deformed position of point P1

′, while point P2 displaces to point P2
′. The

length of the deformed arc P̂1
′P2′ is:
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∆`′ = Rc∆φ (2)

where Rc is the local curvature radius of the deformed membrane; the angle ∆φ is limited
by the arc P̂1’P2’, portraying the local surface’s deformation. If the deformed arc belongs to
a circumference, the curvature radius is constant. Otherwise, the average of the curvature
radii evaluated at points P1

′ and P2
′ has to be determined. For example, for the X–Z

deformed profile of Figure 2c, the values of curvature radii at P1
′ and P2

′ are obtained by
evaluating the 1/(∂2w/∂x2) function at xP1

′ and xP2
′. The same argument can be made for

the Y–Z deformed profile, considering the 1/(∂2w/∂y2) function and coordinates yP1
′ and

yP2
′. The w-displacements are determined with projection moiré.

Referring to the scheme of Figure 2, the initial length ∆` of the undeformed configura-
tion P1P2 is:

∆` = (Rc − z1) tan ∆φ (3)

The length ∆`′ of the deformed configuration P̂1
′P2′ can be determined because X

positions of points P1
′ and P2

′ are known from the image (for example, by multiplying the
pixel difference between the currently analyzed position and the origin of the reference
system by the pixel size), and the w-displacements z1 and z2 are known from projection
moiré measurements. By differentiating moiré patterns with respect to X, the radius of
curvature Rc of the deformed surface also can be determined. By combining Equations
(2) and (3), it is possible to compute ∆` and ∆φ. Finally, the u-displacement of point P2
(i.e., u2) is the difference between the X-coordinate of point P2

′ and the length ∆`. The same
arguments can be made for the Y–Z profiles.

It can be seen from Figure 3 that it holds:

u2 = z2 tan ∆φ (4)

Figure 3 also shows that the ∆φ angle corresponds to the slope of the deformed arc
P̂1
′P2′ at point P2

′ because the local curvature radius CP2′ is normal to P̂1
′P2′. Hence, from

geometrical considerations, Equation (4) can be rewritten as:

u2 = z2
∂w
∂x

∣∣∣∣
x=x2

′
(5)
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Figure 3. Determination of 3D displacement field for a generically deformed membrane subjected to
inflation: (a) deformed configuration vs. undeformed configuration; and (b) components of displace-
ment vector for a generic point of the membrane with indication of azimuthal and parallax angles.

In summary, the u-displacement of point P2 can be directly determined from the moiré
fringe pattern relative to w-displacements and the corresponding derivative ∂w/∂x if the
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deformed configuration coordinate x2
′ is known. A similar relationship can be found for

the Y–Z profiles. This property may be very useful for estimating in-plane displacements
from the available w-displacement moiré pattern.

It should be noted that Equation (3) loses its validity if the undeformed specimen is
curved. In fact, the curvature radius of element P1P2 changes from Rc

o (initial configuration)
to Rc (deformed configuration P̂1

′P2′). The length variation from ∆` to ∆`′ has to be
determined with shells theory [47,48]. Curvature information is still extracted from moiré
data [35,36].

The simple derivation described above may be generalized to the 3D case (Figure 3).
An elementary segment of the deformed surface is defined in the XYZ global coordi-
nate system by the “displaced” points P1

′(x1
′,y1
′,z1
′), P2

′(x2
′,y2
′,z2
′), P3

′(x3
′,y3
′,z3
′) and

P4
′(x4
′,y4
′,z4
′). The corresponding undeformed positions are defined by points P1(x1,y1,z1),

P2(x2,y2,z2), P3(x3,y3,z3) and P4(x4,y4,z4). Let us assume that the tested membrane has a
planar undeformed configuration, that is zi = 0, consistent with the inflation test protocol:
the undeformed membrane lies in the reference plane π of moiré measurements.

Figure 3a shows how the P1P2P3P4 surface portion deforms into the corresponding
P1
′P2
′P3
′P4
′ surface portion. Let Rc be the average curvature radius of the deformed surface

segment, defined as the average distance of points P1
′, P2

′, P3
′ and P4

′ from the center of
curvature C(xc,yc,zc) of the segment itself. If the P1

′P2
′P3
′P4
′ surface is locally approximated

by a spherical segment (as it may occur for an inflated membrane), it holds:

(x1
′ − xC)

2 + (y1
′ − yC)

2 + (z1
′ − zC)

2 = R2
C

(x2
′ − xC)

2 + (y2
′ − yC)

2 + (z2
′ − zC)

2 = R2
C

(x3
′ − xC)

2 + (y3
′ − yC)

2 + (z3
′ − zC)

2 = R2
C

(x4
′ − xC)

2 + (y4
′ − yC)

2 + (z4
′ − zC)

2 = R2
C

(6)

Equation (6) corresponds to four relationships containing in total 16 unknown param-
eters: 12 coordinates of “displaced” points P1

′, P2
′, P3

′ and P4
′ (i.e., x1

′, y1
′, z1

′, x2
′, y2

′, z2
′,

x3
′, y3

′, z3
′, x4

′, y4
′, z4

′), 3 coordinates of curvature center C (i.e., xc,yc,zc) and the curvature
radius Rc of the deformed surface segment.

Figure 3b refers to a generic vertex Pi (i = 1, 2, 3, 4) of the surface element under
analysis, which displaces to the deformed position Pi

′ (i = 1, 2, 3, 4): the 3D displacement
vector (Pi

′ − Pi) comprises the total in-plane displacement UTi and the distance zi of Pi
′

from the reference plane π. The following relationships hold true for each vertex of the
selected portion of the membrane:

ui = UTicosϕ

vi = UTisinϕ

UTi = zitanθ

(i = 1, 2, 3, 4) (7)

where ϕ and θ, respectively, are the azimuthal angle and the parallax angle for the generic
point Pi‘ of the deformed surface. The θ angle of Figure 3b hence corresponds in turn to
one of the parallax angles α, β, γ and δ indicated in Figure 3a.

The in-plane displacements ui and vi (respectively, in the X and Y directions) and the
total in-plane displacement UTi of each vertex may be determined as:

ui = x′i − xi

vi = y′i − yi

UTi =
√

ui
2 + vi

2

(i = 1, 2, 3, 4) (8)
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Substituting the first two relationships of Equation (8) into the third relationship of
the same equation, and recalling the last relationship of Equation (7), it can be written:

UT1 =
√
(x1
′ − x1)

2 + (y1
′ − y1)

2 = z1
′ tan α

UT2 =
√
(x2′ − x2)

2 + (y2′ − y2)
2 = z2

′ tan β

UT3 =
√
(x3′ − x3)

2 + (y3′ − y3)
2 = z3

′ tan γ

UT4 =
√
(x4
′ − x4)

2 + (y4
′ − y4)

2 = z4
′ tan δ

(9)

where α, β, γ and δ are the parallax angles defined in projection moiré [31,35,36].
As mentioned before, Equation (6) contains 16 unknown parameters: 12 coordinates

of “displaced” points P1
′, P2

′, P3
′ and P4

′, 3 coordinates of curvature center C and the
curvature radius of the deformed surface segment. Coordinates x1

′, y1
′, x2

′, y2
′, x3

′, y3
′,

x4
′, and y4

′ of deformed points can be obtained from Equation (8) once moiré fringes
are processed and displacements u and v are determined; hence, the total number of
unknowns reduces to 8, i.e., z1

′, z2
′, z3

′, z4
′, xc, yc, zc and Rc. Alternatively, one can use

an approximated 2D version of Equation (5) to estimate in-plane displacements ui and vi
(i = 1, 2, 3, 4), respectively, as (zi

′′∂w/∂x) and (zi
′′∂w/∂y), where zi

′′ are the deformed surface
heights (i.e., the red etched lines in Figure 3a limited by P1 and Z1

′′, P2 and Z2
′′, P3 and Z3

′′,
P4 and Z4

′′) obtained from the moiré pattern for “undeformed” points P1, P2, P3 and P4.
However, the determination of surface heights z1

′, z2
′, z3

′, z4
′ is not straightforward

even if u- and v-displacements are known/estimated. In fact, since any location (xi,yi) of
the undeformed configuration displaces to the corresponding location (xi

′,yi
′), each height

zi
′ (i.e., the w-displacement of the Pi point that becomes the Pi‘ point of the deformed

surface) has to be referred to the corresponding deformed coordinates (xi
′, yi

′), not to
the original coordinates (xi,yi). Equation (9) relates the total in-plane displacements with
the out-of-plane displacements of the membrane segment vertices P1

′, P2
′, P3

′ and P4
′

but introduces four additional unknowns, the parallax angles α (between CP1′ and z1
′),

β (between CP2′ and z2
′), γ (between CP3′ and z3

′) and δ (between CP4′ and z4
′). In

this way, the number of unknowns rises to 12 (i.e., z1
′, z2

′, z3
′, z4

′; α, β, γ and δ; and xc,
yc, zc and Rc) but Equations (8) and (9) provide only eight relationships. However, the
curvature radii CP1′, CP2′, CP3′ and CP4′ also pass through points P1, P2, P3 and P4 of the
undeformed surface. This leads us to write four other relationships (it obviously holds that
z1 = z2 = z3 = z4 = 0):

√
(x1 − xC)

2 + (y1 − yC)
2 + (0− zC)

2 = RC − z1
′

cos α√
(x2 − xC)

2 + (y2 − yC)
2 + (0− zC)

2 = RC − z2
′

cos β√
(x3 − xC)

2 + (y3 − yC)
2 + (0− zC)

2 = RC − z3
′

cos γ√
(x4 − xC)

2 + (y4 − yC)
2 + (0− zC)

2 = RC − z4
′

cos δ

(10)

By combining Equations (6), (9) and (10), it is hence possible to determine the remain-
ing 12 unknowns z1

′, z2
′, z3

′, z4
′; α, β, γ, δ; and xc, yc, zc, Rc and fully define the deformed

surface. Overall, this method deals with 20 unknowns (i.e., x1
′, y1

′, z1
′, x2

′, y2
′, z2

′, x3
′, y3

′,
z3
′, x4

′, y4
′, z4

′; α, β, γ, δ; and xc, yc, zc, Rc) and utilizes Equation (6) (four relationships),
Equation (8) (eight relationships, that is, two relationships for each point Pi), Equation (9)
(four relationships) and Equation (10) (four relationships). This process is repeated for
all surface segments. In order to speed up computations, the surface can be sampled in
elements whose size is equal to an integer multiple Nps of the pixel size; computation time
is reduced by the factor 1/Nps

2.
Coordinates x1

′, y1
′, x2

′, y2
′, x3

′, y3
′, x4

′, y4
′ of some deformed points may be initially

estimated. For example, points belonging to any diameter of the inflated membrane should
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not displace in the transverse direction to the selected diameter. Boundary conditions taking
into account the fixture applied to the membrane boundary also may be considered. For
example, the displacements of the circular ring corresponding to the constrained boundary
of the membrane can be set equal to 0: the conditions x′ = x, y′ = y and z′ = z hold true for
the points of surface elements that include some constrained edges.

An alternative strategy for estimating coordinates may regard points close to the pole
of the inflated membrane: the distance ∆ξi = (ξi − ξo) between a generic point Pi of the
currently selected diameter and the membrane pole Po (i.e., the center point of inflated
membrane, which should displace only in thez-direction but not in the x/ydirections) is
multiplied by the nominal strain εp generated by the applied pressure. Nominal strain
may even be corrected to εp

corr to account for the local variations of membrane thickness,
for example, by using in first approximation the εp

corr/εp = to/tloc relationship taken from
linear elasticity where tloc and to, respectively, are the local and nominal thickness values.
The displaced position ξi

′ of point Pi
′ is determined from the ∆ξi

′ = (1 + εp)ξi equation,
where the distance ∆ξi

′ = (ξi
′ − ξo) is referred to the deformed configuration. The local

ξ′-coordinates are finally transformed into x′- and y′-coordinates of deformed points based
on the orientation of the selected diameter, and the corresponding in-plane displacements
are determined from Equation (6). Interestingly, [49] analyzed the strain distributions in
the radial (longitude) and circumferential (latitude) directions that develop in an inflated
natural rubber membrane of diameter 120 mm and thickness 0.9 mm, very similar to the
test case documented in the present article. Surface elements located within a circular area
with a radius up to 20% of the membrane’s radius can be considered in an equi-biaxial
state. Furthermore, radial strain remains nearly constant over the whole membrane. This
information may bevery useful in the above-mentioned alternative strategy for determining
the x1

′, y1
′, x2

′, y2
′, x3

′, y3
′, x4

′, y4
′ coordinates of the displaced points.

Although the process described above may appear complicated, it should be noted
that points of adjacent surface segments obviously share the same coordinates and the
same displacements. This reduces significantly the number of unknowns and speeds up the
contouring process. However, continuity conditions on curvature radii and surface slopes
at the interface points between adjacent elements also have to be considered. Information
on local slopes and curvatures at each point of the deformed surface can be obtained by dif-
ferentiating the moiré patterns relative to the two systems of orthogonal lines projected onto
the surface. Slopes of X–Z profiles are proportional to first-order spatial derivatives ∂w/∂x
of moiré patterns, while slopes of Y–Z profiles are proportional to first-order spatial deriva-
tives ∂w/∂y. Curvature terms are proportional to second-order spatial derivatives ∂2w/∂x2,
∂2w/∂y2 and ∂2w/∂x∂y of moiré patterns. Values of coordinates x and y at which first-
and second-order derivatives are evaluated obviously are those relative to the deformed
configuration. Displacement derivatives are given in input to vector and tensor expressions
of local slopes/curvatures of the deformed surface to satisfy continuity conditions. The use
of cross-gratings allows surface slopes and curvatures to be computed regardless of the fact
that surface elements are arbitrarily located in the space and no simplifying assumption is
made on displacement distributions. Since the system of orthogonal lines gives information
on the first- and second-order derivatives of the function defining the deformed surface,
slope information is embedded in curvature information.

In this study, moiré patterns were differentiated as indicated in [31,35,36], which
illustrate relationships between differential geometry of surfaces and projection moiré
measurements. The iterative process described below was implemented here to properly
account for variations of local slopes/curvatures over the deformed surface:

(1) The inverse of curvature radius Rc
(k) determined with Equations (6) and (8)–(10) for

the kth element of the deformed surface is computed. The 1/Rc
(k) term represents the

average curvature of the kth surface element.
(2) Local curvatures of deformed surface (κi)(k) are computed at each point (Pi

′)(k) of
the kth element by differentiating moiré fringes. Since fringes do not necessarily



Appl. Sci. 2023, 13, 7758 11 of 44

pass through (Pi
′)(k) points, the phase map relative to w-displacements must be

differentiated with respect to x and y coordinates.
(3) The average of (κi)(k) curvatures—indicated as <κ>(k) in the rest of article—is

computed.
(4) The <κ>(k) curvature is compared to 1/Rc

(k), and the % curvature difference κ is de-
fined as ∆κ = 100·||<κ>(k)–1/Rc

(k)||/Min{<κ>(k);1/Rc
(k)}. The minimum curvature

in the denominator of the ∆κ expression makes it harder to verify the validity of the
assumption that the deformed membrane segment is spherical.

(5) If ∆κ ≤ 0.01%, then the solution provided by Equations (6) and (8)–(10) is retained. A
new surface element is considered and steps 1–4 are repeated.

(6) If ∆κ > 0.01%, then in Equations (6) and (10), Rc
(k) is replaced by the (Rc

(k) + 1/<κ>(k))/2
average. Equations (6) and (8)–(10) are solved again and steps 1–5 are reiterated for
the kth surface element.

The above-described correction process was found to satisfy the ∆κ ≤ 0.01% con-
vergence condition for the whole surface within 3–5 iterations. Hence, the model for
reconstructing the 3D deformed shape of the inflated membrane developed in this study is
fully consistent with projection moiré data. This confirmed that curvature information is
the basic start point to be considered in the 3D contouring of objects.

2.3. One-Shot Projection Moiré Measurements and IMPM Variant

According to [31,35,36], the 3D shape of a surface (and hence the 3D deformed configu-
ration of a loaded body) can be fully reconstructed using a projection moiré setup with four
projectors and one camera whose optical axis coincides with the axis of symmetry of each
pair of projectors in the corresponding epipolar planes. Two projectors limit the horizontal
direction (i.e., the X-axis of the global reference system) and project vertical lines while the
other two projectors limit the vertical direction (i.e., the Y-axis of the global reference system)
and project horizontal lines. Each system of lines forms vertical or horizontal fringes that
are modulated by the deformed surface, thus providing the X–Z and Y–Z surface profiles,
respectively. However, only two projectors are needed if cross-gratings are projected onto
the surface to be contoured. In view of this, a two-projectors, one-camera arrangement
where cross-gratings are projected onto the specimen was adopted in this study.

Figure 4a shows the one-shot projection moiré optical setup used here. The moiré
setup is schematically represented in Figure 4b. The gratings were projected by standard
LTPR3W/R led projectors (λ = 630 nm), symmetrically placed with respect to the direction
of observation; each projector projected a glass slide containing a 254 µm pitch cross-grating
(i.e., po = 100 lines/in), and the projection cone had an aperture of 18◦. The two symmetrical
projectors realize the condition of projection from infinity. The distance of the CCD camera
from the analyzed object and the camera’s objective are selected so as also to have viewing
from infinity. The distance between the baseline limited by the exit pupils of the two
projectors and the reference plane was d = 675 mm, while baseline length was t = 930 mm;
distance between camera and reference plane was r = 475 mm; illumination angle made
by each projection direction and viewing direction was θ = 34.6◦ (see nomenclature in
Figure 4b). The selected angle of illumination allowed fringe quality to be optimized.

Symmetry of projectors with respect to the optical axis of the camera was checked with
the following method: We first place two small mirrors in correspondence with the centers
of the membrane and camera inlet lens. The light beams coming from the two projectors are
reflected from the mirror placed on the membrane towards the mirror placed on the camera
inlet lens which in turn reflects back two spots towards the membrane mirror. When the
four spots coincide, the projectors–camera system is lined up and the one-shot projection
moiré optical setup is ready for use.

Magnification of optical setup used for membrane inflation experiments was 11.974,
representing the ratio between the pitch of projected lines by each single projector and
the corresponding nominal projected pitch po/cosθ. The sensitivity of the moiré setup to
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out-of-plane displacements ∆sw was 2.678 mm, while sensitivity to in-plane displacements
∆su-v was 1.888 mm.
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Figure 4. Optical setup of the one-shot projection moiré technique used in the mechanical characteri-
zation process of the natural rubber membrane: (a) 3D assembly view; (b) Schematic.

The natural rubber membrane was inflated by a pneumatic loading system, which
progressively increased pressure from 1.07 to 2.33 kPa with the intermediate pressure loads
of 1.33, 1.60 and 1.87 kPa. The specimen was clamped onto the pressurization chamber
by an O-ring seal. The images relative to reference state (i.e., undeformed) and deformed
configurations relative to each pressure level were recorded by a standard CCD camera
(Nikon Coolpix 990) with a 2048 × 1536 pixel matrix. The camera objective was equipped
with a Nikkor 8–24 mm optical zoom (3×) or a 4× digital zoom. The calibrated pixel size
was 78.1 µm. A ruler was placed on the reference plane coinciding with the undeformed
membrane, and numbers of pixels between pairs of adjacent dots werecounted. This
operation was repeated over the whole field of view. The 78.1 µm pixel size was judged a
precise calibration value because the standard deviation of calibrated pixel sizes computed
over 10 different positions of the image was only 0.1 µm.

In order to have an independent measure of in-plane displacements, a variant of
the one-projector IMPM setup of [34] (also recalled in Section 2.1) was developed. For
that purpose, a reference pattern of dots with pitch 2 mm (practically the same in-plane
sensitivity achieved by the projected cross-grating patterns) was also printed on the tested
100 mm diameter rubber membrane. The optical setup of Figure 4 was modified so as to
reproduce the projection from infinity condition realized by the one-projector moiré setup
of [34], where a grating of vertical lines was projected onto the specimen by a collimated
light beam. Since the specimen analyzed in this study was 2.5 times larger than the one
analyzed in [34] (i.e., 100 mm vs. 40 mm), the single projection optical setup could not be
realized with the available equipment. Hence, projection from infinity was realized here
by using symmetric double illumination and gratings with only vertical lines: the setup
hence sensed the same parallax vector as in [34]. The layout of the two-projectors IMPM
optical setup (including characteristic distances and illumination angles) and the pitch
of the two gratings were obviously the same as those selected for the one-shot projection
moiré. Figure 5 shows typical images recorded by this setup.

The moiré data were processed as described in [34], and the corresponding displace-
ment fields were taken as the target for evaluating the performance of the one-shot projec-
tion moiré setup utilized in this study. The images in Figure 5 recorded by the two-projectors
IMPM setup for the inflated membrane refer to the following: the printed dot grating
(Figure 5a); the projected gratings by left and right projectors (Figure 5c,d); and the central
region of the projected line patterns (Figure 5b). In Figure 5b, the high-frequency lines
correspond to projected vertical lines by the two projectors, while the low-frequency fringes
are produced by the interfering wave fronts originating from the two projectors.
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Since the one-shot projection moiré developed in this study utilized cross-gratings, it
was projected onto the natural rubber membrane in a dot pattern similar to that printed
on the specimen in the case of the two-projectors IMPM setup described above. The dot
structure of the projected pattern onto the tested specimen originated from the combination
of vertical and horizontal lines included in the two gratings. However, the present setup
can inherently retrieve curvature information because it utilizes cross-gratings [31,35,36],
while the two-projectors IMPM setup is insensitive to curvature changes in the Y-direction
unless the deformed shape is fully axi-symmetric. Such a requirement may not be satisfied
in the case of a variable thickness membrane like the one analyzed in this study.
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Figure 5. Typical images recorded by the two-projectors,one-camera IMPM setup conceptually similar
to the one-projector, one-camera IMPM setup of [34]: (a) spatial modulation of printed dot grating on
inflated membrane; (b) central region of the multifrequency vertical lines pattern generated by the
two projectors; (c) modulation of vertical lines projected on inflated membrane by the right projector;
and (d) modulation of vertical lines projected on inflated membrane by the left projector.

Moiré fringes are obtained by mutually subtracting the recorded images of reference
and modulated gratings. However, moiré patterns must be transformed into full-field
continuous displacement maps by computing the phase difference ∆φ between unloaded
and loaded configurations [31]. Displacements are hence determined for each selected
pressure level as:

u,v = (∆φu,v/2π)·∆su,v (11)

w = (∆φw/2π)·∆sw (12)

where subscripts u, v and w refer to the different displacement components and ∆φ/2π is
the fractional fringe order for the corresponding unwrapped phase distribution ∆φ.

3. The Optimization Algorithm Used in the Identification Process

The displacement field measured with projection moiré was compared to its coun-
terpart computed by an FE model simulating experiments. The error functional Ω thus
defined was minimized in order to identify material/structural parameters. The opti-



Appl. Sci. 2023, 13, 7758 14 of 44

mization problem defined by Equation (1) was hence solved with the hybrid HS–JAYA
metaheuristic algorithm combining the two well-established metaheuristic methods of
harmony search optimization (HS) and JAYA. The new algorithm was formulated so as to
minimize the computational cost entailed by the solution of the inverse problem (1). For
that purpose, exploration and exploitation phases were properly mixed in the formulation
of HS–JAYA and continuously alternated in the metaheuristic search process.

3.1. Background

Harmony search optimization is a population-based metaheuristic algorithm that
mimics the search of a perfect harmony state made by jazz players. Three improvisation
options can be selected by a skilled musician: (1) play any famous music (i.e., a series of
pitches in HS) from his/her memory; (2) play something similar to known music (i.e., pitch
adjusting in HS); and (3) compose new or random notes. Geem et al. [50,51] formalized
these options into the formulation of an HS algorithm. NPOP randomly generated solutions
are stored in the harmony memory [HM] matrix. New trial designs are extracted from [HM]
or randomly selected based on harmony memory considering rate (HMCR) parameter
values. Design variables may be modified based on pitch adjustment rate (PAR) parameter
values; the bandwidth parameter (bw) defines the range of variation of a given variable in
the pitch adjustment phase. Here, the basic HS formulation was adapted to the implicit
formulation of the error functional Ω, and approximate line searches were performed in
order to quickly approach the global optimum.

The JAYA method is another population-based metaheuristic algorithm developed
by Rao [52]. It implements the simplest search strategy of metaheuristic optimization:
trial solutions are always defined approaching the best design and moving away from the
worst design of population. JAYA includes only two very standard control parameters:
population size and limit number of iterations. Its straightforward formulation as well as
its inherently efficient search strategy made JAYA become one of the most exploited and
studied metaheuristic algorithms. JAYA’s formulation was modified in this study to reduce
the computational cost of the identification process.

As mentioned before, JAYA’s implementation is very simple because there is only one
equation to perturb design. Let Xj,k,it be the value of the jth material/structural property
(j = 1, . . . , NDV) for the kth candidate solution included in the population (k = 1, . . . , NPOP)
in the present itth iteration. The Xj,k,it value is perturbed as:

Xnew
j,k,it = Xj,k,it + r1,j,it

(
Xj,best,it −

∣∣∣Xj,k,it

∣∣∣)− r2,j,it

(
Xj,worst,it −

∣∣∣Xj,k,it

∣∣∣) (13)

In Equation (13), Xnew
j,k,it denotes the perturbed material/structural property with respect

to the Xj,k,it current value; r1,j,it and r2,j,it are two random numbers extracted from the [0, 1]
interval for the jth material/structural property; and Xj,best,it and Xj,worst,it, respectively,
denote the jth material/structural property values stored in the best and worst elements
Xbest,it and Xworst,it of current population.

Term r1,j,it

(
Xj,best,it −

∣∣∣Xj,k,it

∣∣∣) represents JAYA’s tendency to approach best design

Xbest,it, while term −r2,j,it

(
Xj,worst,it −

∣∣∣Xj,k,it

∣∣∣) portrays JAYA’s tendency to move away
from worst design Xworst,it. Random factors r1 and r2 guarantee good exploration of search

space. The absolute value
∣∣∣Xj,k,it

∣∣∣ enhances JAYA’s exploration capability [52].
The new trial design Xk

new defined by Equation (13) is compared with the correspond-
ing element Xk

pre of population. If Xk
new improves Xk

pre, it replaces Xk
pre in the updated

population. The JAYA search stops when the limit number of iterations/analyses is reached.

3.2. Description of the HS–JAYA Algorithm

The hybrid HS–JAYA optimization algorithm used here for solving the inverse problem
stated for the mechanical characterization of 100 mm diameter natural rubber membrane
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is now described in detail. The flowchart of HS–JAYA is shown in Figure 6. The steps of
HS–JAYA are denoted by red boxes; green boxes highlight JAYA operators.

3.2.1. Step 1: Initialization of Optimization Algorithm and Formation of Initial Population

A population of NPOP candidate solutions for the inverse problem is randomly gener-
ated as follows:

xk
j = xL

j + ρj
k (xU

j − xL
j )

{
j = 1, . . . , NDV
k = 1, . . . , NPOP

(14)

where j
k is a random number in the (0, 1) interval. The error functional is computed for

each of the NPOP solutions stored in the initial population.
HMCR and PAR adaptively change in the optimization process, while bw is not neces-

sary because new trial solutions have to lie on descent directions. Hence, the HS branch of
HS–JAYA becomes inherently similar to enhanced JAYA formulations in the sense that it
requires only population size to be specified by the user.

Different from most of the currently available HS and JAYA formulations, it is no
longer necessary to define a limit number of iterations or function evaluations for HS–JAYA.
In fact, HS–JAYA always forms trial designs trying to improve current best record and the
rest of population by moving along descent directions. This is performed by simultaneously
perturbing as many variables as possible as well as suboptimal designs.

3.2.2. Step 2: Generation of New Trial Solutions

Let XOPT = {xOPT,1, xOPT,2, . . . , xOPT,NDV} be the best element of population and
∇Ω(XOPT) the gradient vector of the error functional Ω evaluated at XOPT. A random
number NRND,j is extracted from the (0, 1) interval for each design variable. A recursive
cycle is completed for each unknown material/structural property from 1 to NDV.

If NRND,j > HMCR, the new value xTR,j randomly defined for the jth material/structural
property (j = 1, 2, . . . , NDV) currently perturbed is:

∂Ω
∂xj

< 0 &
(

xOPT,j − xj
L) > (xj

U − xOPT,j
)
⇒ xTR,j = xOPT,j + NRND,j·

(
xOPT,j − xj

L)·|µj|
∂Ω
∂xj

< 0 &
(

xOPT,j − xj
L) < (xj

U − xOPT,j
)
⇒ xTR,j = xOPT,j + NRND,j·

(
xj

U − xOPT,j
)
·|µj|

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∂Ω
∂xj

> 0 &
(

xOPT,j − xj
L) > (xj

U − xOPT,j
)
⇒ xTR,j = xOPT,j − NRND,j·

(
xOPT,j − xj

L)·µj

∂Ω
∂xj

> 0 &
(

xOPT,j − xj
L) < (xj

U − xOPT,j
)
⇒ xTR,j = xOPT,j − NRND,j·

(
xj

U − xOPT,j
)
·µj

(15)

where ∂Ω/∂xj defines error functional sensitivity with respect to currently perturbed jth
material/structural property, while µj = (∂Ω/∂xj)/||∇Ω(XOPT)|| defines normalized
sensitivity. Sensitivities ∂Ω/∂xj are not explicitly available for mechanical characterization
problems. The four relationships in Equation (15) generate trial points on descent directions
where the error functional Ω is most likely to decrease.

Equation (15) is used more often if HMCR is small. The material/structural prop-
erties perturbations (xTR,j − xOPT,j) are weighted with corresponding sensitivities ∂Ω/∂xj
and summed over to compute the ∆ΩTR variation of error functional for the new har-
mony XTR. If ∆ΩTR < 0, the STR

T = (XTR − XOPT) perturbation vector defines a descent
direction improving Ω. The following strategy retains or adjusts perturbations of each
material/structural property (j = 1, 2, . . . , NDV):{ (

∂Ω/∂xj
)
·
(

xTR,j − xOPT,j
)
< 0 ⇒ Leave xTR,j unchanged(

∂Ω/∂xj
)
·
(

xTR,j − xOPT,j
)
> 0 ⇒ Reset xTR,j as xTR,j

′ =
(
1 + NRND,j

)
·xOPT,j −NRND,j·xTR,j

(16)

The mirroring strategy expressed by the second inequality transforms any non-descent
direction STR into its opposite descent direction –STR, which may improve the Ω functional.
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If NRND,j < HMCR, for any PAR values, HS–JAYA defines the interval limited by

x̂HM,less
TR,j and x̂HM,more

TR,j , adjacent to xOPT,j coordinate of XOPT, sorting values as x̂HM,less
TR,j

< xOPT,j < x̂HM,more
TR,j . The jth material/structural property is updated as (j = 1, 2, . . . , NDV):

xTR,j = xOPT,j + (NRND,j − 0.5)·Max [(xOPT,j − x̂HM,less
TR,j ) ; (x̂HM,more

TR,j − xOPT,j)] (17)

If (xTR,j − xOPT,j)·∂Ω/∂xj < 0, the xTR,j trial value of Equation (17) is checked for pitch
adjustment. Otherwise, if (xTR,j − xOPT,j)·∂Ω/∂xj > 0, JAYA’s characteristic Equation (13)
becomes:

xTR,j
′ = xOPT,j + β1,j

(
x̂best

TR,j − xOPT,j

)
− β2,j

(
x̂worst

TR,j − xOPT,j

)
(18)

In Equation (18), β1,j and β2,j are random numbers in the [0, 1] interval;

x̂worst
TR,j = Min

[
x̂HM,more

TR,j ; xTR,j

]
; x̂best

TR,j = Min
[

x̂HM,less
TR,j ;

(
2xTR,j − xOPT,j

)]
. The JAYA-based

strategy implemented here limits search in the [x̂best
TR,j;x̂

worst
TR,j ] neighborhood of current best

value xOPT,j for the jth material/structural property, thus exploring descent directions
(x̂best

TR,j − xOPT,j) and −(x̂worst
TR,j − xOPT,j). HS–JAYA always searches good trial designs in the

neighborhood of current best design. This elitist strategy is implemented in Equation (17)
and further in Equation (18), defining descent directions for the JAYA operator.

Interestingly, HS–JAYA mixes exploration and exploitation to define the new trial
design XTR. Such a combination is made at single variable level. For example, Equation (15)
is an exploration scheme because perturbations of each design variable of XTR depend
on the distance between XOPT and variable space boundaries. Conversely, Equations (16)
through (18) are exploitation schemes because they perturb single optimization variables
within a neighborhood of XOPT, either selecting a “mirror” direction of a non-descent
direction (i.e., Equation (16)), or using an interval of adjacent values x̂HM,less

TR,j and x̂HM,more
TR,j

to the currently optimum value xOPT,j of the jth perturbed variable (i.e., Equation (17)), or
using descent directions defined by xOPT,j and values x̂best

TR,j and x̂worst
TR,j close to x̂HM,less

TR,j and

x̂HM,more
TR,j (i.e., Equation (18)).

If NRND,j < HMCR and NRND,j < PAR, xTR,j (or xTR,j
′) is pitch-adjusted as:

(
xpitch,adj

TR,j

)
′ = xTR,j ± NRND,j·

∣∣xTR,j − xOPT,j
∣∣

NGtot
·NGpitch,adj (j = 1, 2, . . . , NDV) (19)

where NGpitch,adj and NGtot are the numbers of pitch-adjusted solutions and generated trial
solutions, respectively. The latter counter is reset to (NGpitch,adj + 1) if the new harmony has
more pitch-adjusted variables than those perturbed with gradient information. The band-
width parameter bw of classical HS hence becomes unnecessary. Equation (19) accounts for
optimization history as it evaluates the ratio of pitch-adjusted trial solutions to the total
number of trial solutions currently generated. In Equation (19), the “+” sign is used if

∂Ω/∂xj < 0 to maximize reduction of error functional
[(

xpitch,adj
TR,j

)′
− xOPT,j

]
·∂Ω/∂xj with

respect to the jth material/structural property, while the “–” sign is used if ∂Ω/∂xj > 0.
HMCR and PAR are automatically adapted by HS–JAYA in each iteration as:

HMCRq = HMCRextracted
q·Ωaver,end

q−1

Ωaver,init
q−1 ·

NGpitch,adj
NGgradient

PARq = PARextracted
q·Ωaver,end

q−1

Ωaver,init
q−1 ·
||XOPT,end−XWORST,end||q−1

||XOPT,init−XWORST,init||q−1 ·
NGpitch,adj
NGgradient

(20)

In Equation (20), q refers to current iteration; Ωaver,init
q−1 and Ωaver,end

q−1, respectively,
are the average error functional values of solutions stored in [HM] at the beginning and the
end of the previous iteration (rated successful if Ωaver,end

q−1/Ωaver,init
q−1 < 1); XOPT,init and

XWORST,init, XOPT,end and XWORST,end, respectively, denote the best and worst solutions
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at the beginning and end of the previous iteration; NGgradient (defined as number of trial
solutions generated using gradient information) is reset to (NGgradient + 1) if there are more
than NDV/2 material/structural properties perturbed including gradient information via
Equation (15) without applying the mirroring strategy in Equation (16).

Random values HMCRextracted
q and PARextracted

q are defined as:{
HMCRextracted

q = 0.01 + ξHMCR·(0.99− 0.01)
PARextracted

q = 0.01 + ξPAR·(0.99− 0.01)
(21)

In Equation (21), ξHMCR and ξPAR are random numbers in the (0, 1) interval; bounds
0.01 and 0.99 allow us to cover all combinations of HS parameters [53]. For q = 1, it holds
that HMCRq = HMCRextracted

q and PARq = PARextracted
q.

HMCR and PAR decrease more sharply if error functional is significantly reduced. This
is very likely to occur in the exploration phase of the optimization process when the defini-
tions of new trial solutions rely on gradient information and the condition NRND,j > HMCR
is easier to be satisfied. Such a scenario is consistent with small (NGpitch,adj/NGgradient)
values. Pitch adjusting is less effective in the exploitation phase when population presents
a small value of ||XOPT,end − XWORST,end||/||XOPT,init − XWORST,init||.

Derivatives of Error Functional Ω

Since definition of Ω is implicit, HS–JAYA uses approximate line search for evaluating
derivatives, thus reducing the number of FE analyses entailed by the inverse problem (1).
The variation ∆Ωk = [Ω(Xk) − Ω(XOPT)] of error functional defined by moving from the
best solution XOPT to the kth solution Xk of population is computed for all solutions
together with corresponding distance ∆Sk = ||Xk − XOPT||. HS–JAYA computes the
approximate (i.e., “average”) gradient ∆Ωk/∆Sk along any Sk = (Xk − XOPT) direction.
Since candidate solutions must improve the Ω functional, the Sk vectors are turned into
descent directions Sdesc

k = (XOPT − Xk); hence, Sdesc
k = −∆Sk. HS–JAYA then selects

three descent directions: (i) best direction SBEST (opposite to (XWORST − XOPT)) yielding
the largest variation of Ω between candidate solutions; (ii) steepest descent direction
SFAST for which gradient ∆Ωk/∆Sk is largest; and (iii) second best direction S2ndBEST
(opposite to (X2ndWORST − XOPT)) yielding the second largest variation of Ω between
candidate solutions.

Any descent direction defined for perturbing XOPT should lie in the region limited
by SBEST, S2ndBEST and SFAST. Scale factors βBEST, β2ndBEST and βFAST, respectively, turn
SBEST

unit, S2ndBEST
unit and SFAST

unit into unit vectors. If
||SBEST|| < 1 or||S2ndBEST|| < 1 or||SFAST|| < 1, they are not modified. Three new
trial solutions, XGR

(1), XGR
(2) and XGR

(3), are defined to check whether unit directions are
descent or not: 

XGR
(1) = XOPT + SBEST

unit

XGR
(2) = XOPT + S2ndBEST

unit

XGR
(3) = XOPT + SFAST

unit

(22)

The unit vectors SBEST
unit, S2ndBEST

unit and SFAST
unit are descent directions if:

Ω
(

XGR
(1)
)
−ΩOPT < 0⇒ SBEST

unit descent

Ω
(

XGR
(2)
)
−ΩOPT < 0⇒ S2ndBEST

unit descent

Ω
(

XGR
(3)
)
−ΩOPT < 0⇒ SFAST

unit descent

(23)
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In all likelihood, there will be between one and three unit descent directions in the
neighborhood of XOPT. Derivatives of error functional are evaluated as (j = 1, 2, . . . , NDV):

∂Ω
∂xj

= Min


[Ω(XGR

(1))−ΩOPT]
‖SBEST

unit‖
(xGR,j

(1)−xOPT,j)
‖SBEST

unit‖ ; [
Ω(XGR

(2))−ΩOPT]
‖S2ndBEST

unit‖
(xGR,j

(2)−xOPT,j)
‖S2ndBEST

unit‖ ;

[Ω(XGR
(3))−ΩOPT]

‖SFAST
unit‖

(xGR,j
(3)−xOPT,j)

‖SFAST
unit‖

 (24)

In Equation (24), sensitivity corresponds to the minimum value amongst the three
terms defined for SBEST

unit, S2ndBEST
unit and SFAST

unit. This allows us to minimize the
increment or maximize the reduction of Ω functional in the neighborhood of XOPT. The
approximate gradient evaluation strategy of HS–JAYA limits computational cost of the
identification process to a great extent.

The approximate gradient evaluation strategy defined by Equations (22) through (24)
substantially resembles that adopted in [27] for identification problems including at most 17
unknown parameters. Since the inverse problems solved in the present study included up
to 324 optimization variables, the error functional Ω may be characterized by the presence
of a significantly higher amount of nonlinearity. In view of this, gradient evaluation process
changed as follows. HS–JAYA resorts directions SBEST

unit, S2ndBEST
unit and SFAST

unit as
(SBEST

unit)′, (S2ndBEST
unit)′ and (SFAST

unit)′ according to the scheme of Equation (25):



SBEST
unit, S2ndBEST

unit, SFAST
unit descent & ‖Ω

(
XGR

(1)
)
−ΩOPT‖ > ‖Ω

(
XGR

(2)
)
−ΩOPT‖ > ‖Ω

(
XGR

(3)
)
−ΩOPT‖ ⇒(

SBEST
unit)′ = (SBEST

unit) ;
(
S2ndBEST

unit)′ = (S2ndBEST
unit) ;

(
SFAST

unit)′ = (SFAST
unit)

SBEST
unit, S2ndBEST

unit, SFAST
unit descent & ‖Ω

(
XGR

(1)
)
−ΩOPT‖ > ‖Ω

(
XGR

(3)
)
−ΩOPT‖ > ‖Ω

(
XGR

(2)
)
−ΩOPT‖ ⇒(

SBEST
unit)′ = (SBEST

unit) ;
(
S2ndBEST

unit)′ = (SFAST
unit) ;

(
SFAST

unit)′ = (S2ndBEST
unit)

SBEST
unit, S2ndBEST

unit, SFAST
unit descent & ‖Ω

(
XGR

(2)
)
−ΩOPT‖ > ‖Ω

(
XGR

(1)
)
−ΩOPT‖ > ‖Ω

(
XGR

(3)
)
−ΩOPT‖ ⇒(

SBEST
unit)′ = (S2ndBEST

unit) ;
(
S2ndBEST

unit)′ = (SBEST
unit) ;

(
SFAST

unit)′ = (SFAST
unit)

SBEST
unit, S2ndBEST

unit, SFAST
unit descent & ‖Ω

(
XGR

(2)
)
−ΩOPT‖ > ‖Ω

(
XGR

(3)
)
−ΩOPT‖ > ‖Ω

(
XGR

(1)
)
−ΩOPT‖ ⇒(

SBEST
unit)′ = (S2ndBEST

unit) ;
(
S2ndBEST

unit)′ = (SFAST
unit) ;

(
SFAST

unit)′ = (SBEST
unit)

SBEST
unit, S2ndBEST

unit, SFAST
unit descent & ‖Ω

(
XGR

(3)
)
−ΩOPT‖ > ‖Ω

(
XGR

(1)
)
−ΩOPT‖ > ‖Ω

(
XGR

(2)
)
−ΩOPT‖ ⇒(

SBEST
unit)′ = (SFAST

unit) ;
(
S2ndBEST

unit)′ = (SBEST
unit) ;

(
SFAST

unit)′ = (S2ndBEST
unit)

SBEST
unit, S2ndBEST

unit, SFAST
unit descent & ‖Ω

(
XGR

(3)
)
−ΩOPT‖ > ‖Ω

(
XGR

(2)
)
−ΩOPT‖ > ‖Ω

(
XGR

(1)
)
−ΩOPT‖ ⇒(

SBEST
unit)′ = (SFAST

unit) ;
(
S2ndBEST

unit)′ = (S2ndBEST
unit) ;

(
SFAST

unit)′ = (SBEST
unit)

(25)

Equation (25) relies on the following rationale. The unit directions SBEST
unit,

S2ndBEST
unit and SFAST

unit define a neighborhood of XOPT where approximate gradients
of error functional are evaluated. If approximation is accurate, the sorting of these di-
rections in terms of ∆Ω variations should not change over the whole neighborhood of
XOPT. However, such a condition may not be satisfied when error functional Ω is highly
nonlinear. In this case, trial solutions XGR

(1), XGR
(2) and XGR

(3) rank differently from their
corresponding directions SBEST

unit, S2ndBEST
unit and SFAST

unit from which they originated
via Equation (22). Therefore, SBEST

unit, S2ndBEST
unit and SFAST

unit must be re-sorted con-
sistently with the relative ranking of XGR

(1), XGR
(2) and XGR

(3). The re-sorted directions
(SBEST

unit)′, (S2ndBEST
unit)′ and (SFAST

unit)′ are then given in input to Equation (24) to
compute sensitivities of cost error functional.

Interestingly, the quality of gradient approximation improves as the optimization
progresses and population concentrates about the current best record XOPT. In fact, dis-
tances ∆Sk = ||Xk − XOPT|| become smaller and the ∆Ωk/∆Sk definition tends to the
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real gradient of error functional Ω. This ability makes HS–JAYA’s exploitation phase inher-
ently superior with respect to the classical local search schemes employed by many hybrid
metaheuristic algorithms, which perturb high quality designs without guaranteeing that
cost function can always improve.

3.2.3. Step 3: Evaluation of XTR Trial Design and Population Update

HS–JAYA evaluates the new trial solution XTR defined in step 2 according to two cases:
(1) Ω(XTR) < ΩOPT; and (2) Ω(XTR) > ΩOPT. This approach is far more effective than only
replacing the worst design Xworst of [HM] as it is conducted by classical HS.

Case 1: Ω(XTR) < WOPT

The new trial solution XTR is reset as XOPT. Xworst is removed from [HM]. The former
optimum is downgraded as the second best solution X2ndBEST of population, while the
second worst solution of the previous population becomes the worst design Xworst of
the new population. The other (NPOP − 2) solutions of the population are updated by
HS–JAYA as:

(XNPOP−2)
r,new = (XNPOP−2)

r + ω1
(
XOPT − (XNPOP−2)

r)
−ω2

(
Xworst − (XNPOP−2)

r) (26)

In Equation (26), r ∈ (NPOP − 2); ω1 and ω2 define two vectors of NDV random
numbers in the [0, 1] interval: in particular, ω1,j and ω2,j are defined for the jth variable
of processed harmony. Since the (XNPOP-2)r harmony has to be improved, HS–JAYA ex-
plores the descent direction (XOPT − (XNPOP-2)r) defined with respect to (XNPOP-2)r and
attempts to move away from the worst design Xworst of [HM], which certainly would never
improve (XNPOP2)r.

If Ω((XNPOP-2)r,new) < Ω((XNPOP-2)r), the new harmony (XNPOP-2)r,new should obvi-
ously replace the old harmony (XNPOP-2)r in [HM]. However, since evaluating the error
functional Ω always entails a new structural analysis, HS–JAYA adopts an alternative
strategy to limit the computational cost of metaheuristic optimization. The variations
(i.e., increments) of error functional (∆Ω(NPOP-2),r)appr and (∆Ω(NPOP-2),r-new)appr that would
occur if the solution is perturbed from XOPT to the harmony (XNPOP-2)r or (XNPOP-2)r,new

may be estimated by two scalar products as:
(

∆Ω(NPOP−2),r

)appr
= ∇Ω(XOPT)·

[
(XNPOP−2)

r −XOPT
]

(
∆Ω(NPOP−2),r−new

)appr
= ∇Ω(XOPT)·

[
(XNPOP−2)

r,new −XOPT
] (27)

The (∆ΩΩ(NPOP-2),r−new)apprand (∆Ω(NPOP−2),r)appr terms in Equation (27) express the
approximate variations of the error functional Ω that would be obtained if Ω is linearized.
The real variation ∆Ω(NPOP−2),r of error functional for (XNPOP−2)r is known, as this can-
didate solution is stored in the current population: ∆Ω(NPOP−2),r = [Ω((XNPOP−2)r) −
Ω(XOPT)]. The real variation ∆Ω(NPOP−2),r is obviously positive because (XNPOP−2)r is
worse than XOPT. In all likelihood, the approximate variation (∆Ω(NPOP−2),r)appr also may
be positive.

If (XNPOP−2)r,new is better than (XNPOP−2)r, it holds that
Ω((XNPOP−2)r,new) < Ω((XNPOP−2)r). By subtracting the current optimum value of Ω to
both terms of this inequality, it holds that Ω((XNPOP−2)r,new)−Ω(XOPT) < Ω((XNPOP−2)r)−
Ω(XOPT). Since the RHS of the inequality is equal to ∆Ω(NPOP−2),r, the previous expression
can be written as Ω((XNPOP−2)r,new) − Ω(XOPT) < ∆Ω(NPOP−2),r. The [Ω((XNPOP−2)r,new) −
Ω(XOPT)] variation is approximated by the (∆Ω(NPOP−2),r−new)appr term defined in Equation
(27). The inequality can finally be rewritten as (∆Ω(NPOP−2),r−new)appr < ∆Ω(NPOP−2),r.

HS−JAYA adopts the following strategy to decide whether or not (XNPOP−2)r,new

should replace (XNPOP−2)r in the updated population:
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(
∆Ω(NPOP−2),r

)threshold
= Min

{(
∆Ω(NPOP−2),r

)appr
;
(

∆Ω(NPOP−2),r

)}
(

∆Ω(NPOP−2),r−new

)appr
<
(

∆Ω(NPOP−2),r

)threshold
⇒ Replace (XNPOP−2)

r with (XNPOP−2)
r,new(

∆Ω(NPOP−2),r−new

)appr
>
(

∆Ω(NPOP−2),r

)threshold
⇒ Leave (XNPOP−2)

r in the population

(28)

Using the threshold variation (Ω(NPOP−2),r)threshold defined in Equation (28) is a con-
servative way to minimize the variation ∆Ω(NPOP−2),r−new of the error functional. In fact,
HS–JAYA is forced to include in the updated population only candidate solutions that
effectively yield a low error functional penalty with respect to XOPT. In summary, the
population is updated only if strictly necessary and the number of structural analyses per
optimization cycle performed by HS–JAYA becomes significantly smaller than the NPOP
analyses required by the vast majority of currently available HS and JAYA methods.

The population is reordered with respect to Ω values of the updated solutions and the
next harmony is processed. HS–JAYA finally checks for convergence in step 4.

The population updating process performed by HS–JAYA may be classified as an
exploration phase because it operates on (NPOP–2) candidate solutions distributed over
the whole design space. The JAYA-based strategy stated by Equation (26) inherently
realizes exploration, as defining any new candidate solutions (XNPOP−2)r,new involves
the best and worst designs of the population. Equations (27) and (28) are somehow
based on exploitation because they operate on local variations of error functional Ω with
respect to ΩOPT. However, as optimization progresses, the population becomes more
and more concentrated near the current best record XOPT, and even the JAYA-based
Equation (26) actually generates designs in the neighborhood of XOPT turning towards the
exploitation phase.

Case 2: Ω(XTR) > ΩOPT

A mirroring strategy is attempted by HS–JAYA to turn the non-descent direction
(XTR − XOPT) into a descent one. Hence, the trial solution XTR

mirr is defined as:

XTR
mirr = (1 + ηmirr)XOPT − ηmirrXTR (29)

where ηMIRR is a random number in the (0, 1) interval. If Ω
(
XTR

mirr) > Ω(XTR), XTR
mirr is

discharged and XTR is compared to candidate solutions of [HM]. Conversely, if
Ω
(
XTR

mirr) < Ω(XTR), XTR is discharged and XTR
mirr is compared with the candidate

solutions stored in [HM]. Although unlikely, XTR
mirr might even improve XOPT. Should

this occur, XTR
mirr is set as the new best record XOPT of [HM].

Similar to case (1), HS–JAYA utilizes Equation (26) to update the (NPOP − p) harmonies
ranking below XTR or XTR

mirr. Each new harmony is then evaluated as explained for
case (1). Convergence is checked in step 4.

3.2.4. Step 4: Convergence Check

Standard deviations on identified values of material/structural properties and error
cost functional values of the candidate solutions stored in [HM] decrease as optimization
progresses and HS–JAYA approaches the solution of the inverse problem. HS–JAYA normal-
izes standard deviations with respect to the average solution Xaver =

(
∑NPOP

k=1 Xk

)
/NPOP

(component for jth variable is xaver,j =
(

∑NPOP
k=1 xj

k
)

/NPOP) and the average cost functional

Ωaver =
(

∑NPOP
k=1 Ω(Xk)

)
/NPOP. The termination criterion is:
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Max


STD{‖X1−Xaver‖,‖X2−Xaver‖,...,‖XNPOP−Xaver‖}

||Xaver|| ;
STD{Ω1, Ω2,..., ΩNPOP}

Ωaver

 ≤ εCONV (30)

where εCONV is the selected convergence limit—usually between 10−15 (below the double
precision limit) and 10−4 (to save computation time). Equation (30) must be verified over
the last three optimization iterations. Steps 2 through 4 are repeated until the HS–JAYA
algorithm converges to the global optimum.

3.2.5. Step 5: Termination of Optimization Process

HS–JAYA terminates the optimization process. The identified material/structural
properties and residual errors on displacement components are written in the results file.

3.3. Summary of HS–JAYA Algorithm and Discussion on Local Search Schemes in Metaheuristic
Optimization

The main features of HS–JAYA may be summarized as follows. All stages of the
proposed algorithm aim to reduce the FE analyses of the identification process. For that
purpose, material/structural parameters to be identified are always perturbed by moving
along descent directions that can minimize the error functional Ω stated in the inverse
problem. Candidate solutions are directly generated in the HS phase by using gradient in-
formation or approximate line search (also including mirroring), and then corrected/refined
by JA-based operators that push optimization search towards the best solution of the popu-
lation or the best design within a local neighborhood of the currently analyzed trial solution.
Gradient information is obtained at low computational cost by properly combining the
directions of (i) the largest variation of Ω, (ii) the second largest variation of Ω, and (iii) the
fastest reduction of Ω. The elitist mechanisms implemented in HS–JAYA allow the number
of analyses per optimization cycle to be significantly reduced with respect to the typically re-
quired NPOP analyses by the most common implementations of HS and JAYA. Exploration
and exploitation mechanisms are continuously alternated in HS–JAYA’s metaheuristic
search process and integrated by the optimizer even at the single variable level when a
new trial design has to be generated. Furthermore, HS–JAYA is a parameter-free algorithm
as it requires only population size to be specified by the user. Typical parameters defined
in HS, such as pitch adjusting rate, harmony memory considering rate and bandwidth,
become unnecessary or they are adaptively changed in HS–JAYA based on the trend of
optimization history. Finally, HS–JAYA has a robust convergence criterion that avoids
premature termination of the optimization process and convergence to false optima.

The HS–JAYA formulation significantly enhances the LSSO–HHSJA algorithm [54] pre-
viously applied to sizing optimization of truss structures. However, while for
LSSO–HHSJA, the cost function gradients were explicitly available and constant over
the whole design space, HS–JAYA has to deal with an implicit cost function, the error
functional Ω of the identification problem. Renewal of suboptimal designs of population
(this task entails the use of JAYA operators) cannot be performed by simply evaluating
a cost function defined explicitly as it occurred for LSSO–HHSJA because evaluating the
error functional for a new trial design always entails finite element analysis.

An interesting issue is how the formulation of HS–JAYA relates to the local search
schemes usually adopted in metaheuristic optimization. The concept of “global” and
“local” search depends on the algorithm’s nature. Metaheuristic optimizers very often
work with a population of candidate solutions, and global search means to explore the
whole design space by considering a large number of candidate solutions or assigning
large perturbations to optimization variables. However, for single-point algorithms such as
simulated annealing, global search means simultaneous perturbation of all optimization
variables while local search perturbs variables one by one.
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Figure 6. Flow chart of the HS-JAYA algorithm developed in this study.

A common approach in metaheuristic optimization is to use hybrid algorithms where
a metaheuristic search engine globally explores the design space and identifies a set of
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designs later refined by local search. The local search process may employ gradient-based
optimizers or specific operators taken from other metaheuristic algorithms. The former
approach was utilized by Fesanghary et al. [55], who selected HS as main search engine and
sequential quadratic programming (SQP) to perform local search in the neighborhood of
the best designs included in the harmony memory. However, a drawback of this approach
may be the computational cost of gradient-based local optimization, which should be less
expensive than a metaheuristic search. In this regard, it should be noted that gradient-
based algorithms require at least (NDV+1) analyses to evaluate sensitivities plus additional
analyses to solve the approximate subproblem and minimize the cost function along the
search direction found by solving the approximate subproblem. This cost soon becomes
unaffordable if the number of optimization variables is comparable with population size.

The use of specific operators from other metaheuristic methods also is well-documented
in the optimization literature. For example, Hwang et al. [56] used GA for global search
and SA for local searches in the neighborhood of best individuals stored in the population.
SA inherently has hill-climbing capability, which allows local minima to be bypassed.
However, the cooling schedule of SA should be carefully chosen.

Memetic algorithms (MA) represent an important category of hybrid algorithms,
which combine a metaheuristic technique with one or more problem-specific local searchers.
For example, Bao et al. [57] used a particle swarm optimization algorithm (PSO) to explore
the design space, and a pattern search (PS) to perform exploitation of the best designs
identified by PSO; the algorithm was successfully applied to optimize parameters of
support vector machine space. More recently, Abbasi-khazaei and Rezvani [58] developed
a very efficient MA architecture for joint minimization of energy costs and scheduling in
distributed computing; their MA formulation used GA for exploration, host-based hill-
climbing and first-fit decreasing without placement for local search, properly selecting
neighbors to limit computational effort.

HS–JAYA relies on a completely different rationale with respect to the aforementioned
hybrid optimization schemes [55–58]. In fact, whilst those algorithms employed well-
distinct methods for global search (exploitation) and local search (exploitation) and each
method was utilized only for exploration or only for exploitation, the present algorithm
dynamically mixes HS and JAYA operators regardless of being in the exploration or ex-
ploitation phases. Remarkably, exploration and exploitation can be mixed even in the
formation of a new trial design. HS–JAYA always attempts to generate better trial designs
than the current best record XOPT. For that purpose, HS–JAYA adopts only elitist strategies
such as, for example, descent directions originating from XOPT, mirroring and elaboration
of adjacent values to the optimum value of the currently perturbed variable. The basic JAYA
equation is modified into several forms to permanently steer HS–JAYA’s search towards
the global optimum based on the specific scenario encountered in the optimization history.
Consequently, HS–JAYA requires just a few analyses for improving population, while
hybrid metaheuristic algorithms with local search such as those applied in [55–58] may
even fail to improve selected designs for the exploitation phase. Such an ability inherently
allow HS–JAYA to significantly limit the total energy consumption related to computations.

4. Results and Discussion
4.1. Outline of Experimental Measurements

The experiments carried out in this study regarded the mechanical characterization
of a natural rubber membrane (diameter 100 mm, nominal thickness 1 mm). The material
of the tested specimen is nominally isotropic as reported in [34]. In that study, natural
rubber was modeled as a homogeneous, isotropic, hyperelastic material following the
two-parameter Mooney–Rivlin (MR) constitutive law [59–62]; the corresponding values of
hyperelastic constants identified in [34] were a10 = 201.021 kPa and a01 = 13.201 kPa.

The diameter of the natural rubber specimen characterized in [34] was only 40 mm
vs. 100 mm considered in this study. Furthermore, the thickness of the tested membrane
was found here not to be constant over the whole specimen. Since this may introduce
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anisotropy in mechanical response, preliminary planar biaxial tests were carried out on
circularly shaped natural rubber membranes of diameter 25, 50, 75, 100 and 125 mm.
Loads were selected so as to have a stretch ratio of 1.3 in all experiments: hence, the
material works in the constant slope segment of typical two-parameter MR stress–strain
curve relative to natural elastomeric materials. Intrinsic moiré (IM) was used to measure
deformations occurring in the planar biaxial tests. The degree of anisotropy in mechanical
response deriving from thickness variations was also evaluated for each selected specimen
diameter. This information was later utilized in the mechanical characterization of the
100 mm diameter circular membrane with the one-shot projection moiré model.

4.2. IM Measurements and Preliminary Mechanical Characterization (Anisotropic Response)

The same intrinsic moiré setup of Ref. [63] was used in this study for the preliminary
planar biaxial tests. An assembly view of optical set is presented in Figure 7 together with
the schematic diagram of the load distribution.
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Figure 7. Intrinsic moiré setup used for preliminary in-plane biaxial tests (similar to the setup used
in [63]): (a) 3D assembly view; (b) details of loading apparatus; and (c) schematic representation of the
load distribution showing the 12 loading directions that correspond to six diameters (etched lines).

Each specimen was placed in the center of a dodecagonal aluminum plate and cir-
cumferentially hooked by 12 nylon wires (Figure 7a–c). Each wire was connected to dead
weights, which were progressively added to the wire so as to cover loading history selected
for a given specimen within 10 load steps. The load was applied to sample by the 12 pul-
leys placed in the dodecagon side centers (Figure 7b). The toroidal holder prevented any
micro-movements and rigid body motions of the sample, that might have developed in the
loading phase.

The two-parameter Mooney–Rivlin hyperelastic law [59–62] is a classical phenomeno-
logical model. The strain energy density function W is:

W = a10
(
I1 − 3

)
+ a01

(
I2 − 3

)
(31)

where strain invariants of the Cauchy–Green strain tensor [C] are defined as I1 = tr[C] and
I2 = {tr2[C] − tr2[C]2}.

The Young’s modulus in the X or Y direction is EMR = 4(1 + ν)(a10 + a01), while the
shear modulus is µ = 2(a10 + a01). MR constants a10 and a01 are computed by minimizing the
difference between the experimentally measured principal Cauchy stresses and theoretical
values. A linear system is obtained:
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where NTG is the number of experimental data and k refers to the generic experimental
measure. The system (32) can be solved if the true stresses σTG

k and stretch ratios λ1k at
each load step are known. The nominal stress generated by the circumferential loads is
σeng = F/πtd, where F is the sum of radial forces applied to the specimen, t is the nominal
specimen thickness (i.e., 1 mm) and d is the specimen diameter between two opposite
punching points. For kth measure, “true” Chauchy stress and stretch ratio are, respectively,
determined as:

σTG
k = λ1k·σeng

k (33)

λ1k = eεTG
k

(34)

where the true strains εTG
k are determined via intrinsic moiré for each load applied to the

tested specimen. Here, load history was divided into 10 steps, and, hence, the k counter
varied from 1 to 11.

In the IM experiments, a cross-grating of 0.5 mm pitch was printed onto each spec-
imen following indications provided in [34,63]. Grating was modulated as the speci-
men deformed under the applied load. Moiré patterns were obtained by digitally sub-
tracting images of modulated grating at the various load levels selected for each biaxial
test (to increase stability, images were recorded 1–2 min after having removed toroidal
holder) from the reference image recorded for the unloaded state. A Dalsa CCD camera
(1600 × 1360 pixels, 2/3′′) with a Fujinon HF9HA-1B objective, lined up and focused on
the sample center, was utilized in the IM experiments.

All moiré patterns recorded in this study were analyzed with the Holo Moiré Strain
Analyzer™ (HMSA) Version 2.0 software (General Stress Optics Inc., Chicago, IL, USA).
HMSA includes FFT, filtering, carrier modulation, fringe extension, edge detection and
masking operations, quadrature, phase unwrapping, phase differentiation, removal of
discontinuities, etc. In-plane displacement maps were obtained from Equation (11), setting
the sensitivity ∆su,v = 0.5 mm, equal to the grating pitch. Spatial frequencies encoded in
moiré patterns of u- and v-displacements were extracted from Fourier space. Strains εx and
εy were directly computed by HMSA by differentiating phase maps.

For the values of MR constants a10 = 201.021 kPa and a01 = 13.201 kPa determined
in [34], assuming that the rubber membrane was homogeneous, isotropic and incompress-
ible (i.e., ν = 0.5), the equivalent Young’s modulus was EMR = 4(1 + 0.5)(201.021 + 13.201) =
1285.332 kPa. However, as mentioned before, the thickness of the tested membrane was
found to vary over the whole specimen. Local variation of thickness may be amplified
by the inflation process, which tends to stretch the membrane and reduce thickness as t =
to/λθθ [64], where t and to, respectively, are the current and initial membrane thicknesses,
and λθθ is the circumferential stretch ratio. For this reason, membrane thickness was
measured along the six diameters corresponding to the 12 loading directions selected in the
planar biaxial tests (see Figure 7c). The measurement points were located at 0, ±1/8, ±1/4,
±3/8,±1/2,±5/8,±3/4,±7/8 and±1 of the nominal membrane radius; the “±” notation
indicates pairs of symmetric locations about the center of the membrane. Thickness varia-
tions were randomly distributed over the surface, and no preferential direction of variation
could be identified. Overall, thickness variations became more significant as the membrane
diameter increased, ranging from 2.9% (for the smallest membrane of 25 mm diameter) to
14.8% (for the largest membrane of 125 mm diameter) of the 1 mm nominal thickness.

The system (32) was solved for the five membranes with diameters from 25 to 125 mm
considered in the preliminary biaxial tests. For each diameter, two different sets of MR
constants were determined by fitting the stresses developed for the εx or the εy strains; the
corresponding values of equivalent Young’s modulus were, respectively, denoted as EMR

(x)

and EMR
(y). The degree of mechanical anisotropy of each membrane was, hence, defined as

βanis = EMR
(x)/EMR

(y). Interestingly, for each membrane, βanis practically coincided with
the average ratio of thickness values measured along orthogonal diameters. In particular,
for the 100 mm diameter membrane mechanically characterized via inflation test, βanis
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resulted equal to 1.127. The MR constants determined by fitting stress–strain curves of
biaxial tests were consistent with the values reported in [34]: a10 = 203.702 ± 4.361 kPa and
a01 = 13.623 ± 0.287 kPa vs. a10 = 201.021 kPa and a01 = 13.201 kPa, respectively.

4.3. Detailed Mechanical Characterization of the 100 mm Diameter Membrane
4.3.1. Measured Displacement Fields

As mentioned in Section 2.3, the 100 mm diameter natural rubber membrane was
inflated at 1.07, 1.33, 1.60, 1.87 and 2.13 kPa. The one-shot moiré model described in
Section 2.2 was implemented in MATLAB. Equations (6) and (8)–(10) were used for deter-
mining the deformed shape of the inflated rubber membrane at each pressure level. The
v-displacements (u-displacements) of the membrane horizontal (vertical) diameter were
initially assumed to be equal to 0; initial values of displacements were initially corrected
by including information on thickness distribution gathered experimentally. However,
the deformed shape of the membrane was precisely reconstructed by the proposed moiré
model regardless of any assumption made on the values of displacement components.

The maximum u-displacements recorded by the present moiré setup for the differ-
ent pressure levels were 0.542, 0.641, 0.769, 0.915 and 1.140 mm while the maximum
v-displacements were 0.567, 0.674, 0.803, 0.961 and 1.167 mm; the corresponding out-of-
plane displacements ranged between 6.047 and 13.932 mm. Figure 8 shows the map of the
u-, v- and w-displacements for the maximum inflation pressure of 2.13 kPa.
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It can be seen that in-plane displacement patterns were symmetric enough with
respect X- and Y-axes (see Figure 8a,b) although the actual thickness of the natural rubber
membrane varied by about 14% along these directions. Figure 8c shows that contour maps
of w-displacements are shaped as ellipses inclined with respect to horizontal (i.e., the
X-axis) and vertical (i.e., the Y-axis) diameters of the membrane. The asymmetry of the
out-of-plane displacement field of the inflated membrane is confirmed by the fact that the
maximum w-deformation point (indicated by the star in Figure 8c) does not coincide with
the center of the membrane (i.e., the intersection of x = 0 and y = 0 diameters).

As mentioned above, displacement components of the inflated membrane were also
measured with the two-projectors, one-camera IMPM setup described in Section 2.3, a
variant of the setup used in [34]. The in-plane displacements were determined referring
to the 2 mm pitch dot grating printed on the specimen and then corrected including
information on the slope of the deformed surface given by the modulation of projected
vertical lines. Since the light source, layout, illumination angles and pitch of the gratings
selected for the two-projectors, one-camera IMPM setup were the same as those used in the
one-shot projection moiré measurements, the two optical setups obviously shared the same
value of out-of-plane sensitivity.

Figure 9 compares the u- and v-displacement fields measured with the present one-shot
projection moiré setup and the two-projectors, one-camera IMPM setup along two control
paths corresponding to horizontal and vertical diameters of the inflated membrane (see
insets of Figure 9). These diameters are parallel to the two sets of lines of the cross-gratings
used by the one-shot proposed moiré setup. Furthermore, they are, respectively, orthogonal
and parallel to the vertical lines projected by the IMPM setup. Although these specifications
might seem obvious, it should be noted that the inflated membrane actually does not
deform in an axially symmetric way because the thickness is not constant throughout the
specimen. Thickness was measured along the 12 loading directions (corresponding to six
diameters) selected in the preliminary in-plane testing (see Section 4.2). However, each pair
of orthogonal diameters may present a different mechanical response from the expected
nominal behavior based on the amount of thickness variation. Selecting diameters that
correspond to grating-lines directions makes it easier to extract displacement information
from the moiré pattern. In fact, moiré fringes imaged by the sensor actually are projections
of spatial functions u, v and w onto the sensor image plane whose local reference system
is centered in the entrance pupil of the camera and coincides just with the global XYZ
reference system where displacement components are expressed. This makes coordinate
transformations unnecessary.

Figure 9 shows that the two moiré setups obtained very similar results. The average
difference between u-displacements determined with the present methodology and their
counterpart obtained from IMPM was about 7.5% with a maximum value of about 12%. The
most significant differences occurred near the constrained left side of the membrane (i.e.,
the part of the control path with x≤0), the center of the membrane and the regions experi-
encing the maximum deformation. A similar behavior was observed for v-displacements:
an average difference of about 6.3% and a maximum difference of about 10% near the
constrained bottom side of the membrane (i.e., the part of the control path with y ≤ 0), the
membrane’s pole and the most deformed regions of the tested specimen.

As expected, the deformed shape taken by the inflated membrane was not perfectly
symmetric with respect to the specimen’s center. In fact, along the horizontal diameter of
the specimen, the u-displacement ranged from −1.069 mm at xm = −3.101 cm to 1.140 mm
at xM = 3.171 cm. Furthermore, on the vertical diameter of the specimen, the v-displacement
ranged from −1.099 mm at ym = −3.004 cm to 1.167 mm at yM = 3.086 cm. This effect
was better captured by the one-shot projection moiré setup, which inherently accounts for
the local curvature variations occurring for the deformed object. In fact, Figure 9 shows
that the present moiré model correctly located u = 0 and v = 0 positions on corresponding
horizontal and vertical control paths right at points with x > 0 and y > 0, consistently with
the conditions xM > |xm| and yM > |ym| observed in the experiments.



Appl. Sci. 2023, 13, 7758 28 of 44

The displacement curves plotted in Figure 9 appear somehow noisy, especially those
relative to IMPM measurements. This may be due to the random variations in thickness
occurring all over the membrane. In the processing of IMPM patterns, filter sizes were
heuristically selected to try to predict the effect of thickness variations while the proposed
one-shot projection moiré model inherently attempted to correct diametrical strains based
on the observed thickness variations along all analyzed diameters.

Appl. Sci. 2023, 13, x FOR PEER REVIEW  29  of  47 
 

Figure 8. Displacement maps obtained by the proposed one‐shot projection moiré setup for the 100 

mm  diameter  natural  rubber membrane  inflated  at  the maximum  pressure  of  2.13  kPa:  (a)  u‐

displacement; (b) v‐displacement; and (c) w‐displacement (with  indication of nominal symmetry 

axes and position of maximum deformation point). 

 

 

Figure  9. Comparison  of  in‐plane displacements  obtained  by  the  proposed  one‐shot projection 

moiré  setup  and  the  two‐projectors, one‐camera  IMPM  setup  for  the natural  rubber membrane 

inflated at the maximum pressure of 2.13 kPa: (a) u‐displacement; and (b) v‐displacement. 

As expected, the deformed shape taken by the inflated membrane was not perfectly 

symmetric with respect to the specimen’s center. In fact, along the horizontal diameter of 

the specimen, the u‐displacement ranged from −1.069 mm at xm =   −3.101 cm to 1.140 mm 

at  xM   =  3.171  cm.  Furthermore,  on  the  vertical  diameter  of  the  specimen,  the  v‐

displacement ranged from −1.099 mm at ym  =   −3.004 cm to 1.167 mm at yM  = 3.086 cm. 

This effect was better captured by the one‐shot projection moiré setup, which inherently 

(a) 

(b) 

Figure 9. Comparison of in-plane displacements obtained by the proposed one-shot projection moiré
setup and the two-projectors, one-camera IMPM setup for the natural rubber membrane inflated at
the maximum pressure of 2.13 kPa: (a) u-displacement; and (b) v-displacement.

Figure 10 compares the w-displacement distributions measured on horizontal and
vertical diameters of the inflated specimen. Again, the results obtained by the two moiré
approaches were rather similar. However, the two-projectors, one-camera IMPM setup
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underestimated the magnitude of out-of-plane deformations: w-displacement peak values
measured by the two methods at the pole of the inflated membrane differed by about 2.3%
while the difference on measured w-displacements rose to almost 5% near the constrained
edge of the membrane. The lack of information on parallax in the Y-direction caused by
the fact that only vertical lines were projected onto the inflated membrane did not allow
IMPM to correctly differentiate phase distribution with respect to the y-coordinate when
the surface’s slope and curvature components were determined.
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Figure 10. Comparison of out-of-plane displacements obtained by the proposed one-shot projection
moiré setup and the two-projectors, one-camera IMPM setup for the natural rubber membrane
inflated at the maximum pressure of 2.13 kPa.

The out-of-plane displacement field was not symmetric about the pole of the inflated
membrane. Both moiré methods correctly located the position (xw,max;yw,max) of the mem-
brane point Pw,max with the maximum out-of-plane deformation. This point does not
coincide with the center of the membrane: xw,max and yw,max coordinates are positive and
almost equal to (xm + xM)/2 and (ym + yM)/2, respectively. This is consistent with the
position indicated in Figure 8c for the maximum w-deformation point. Furthermore, the av-
erage difference between the w-displacements measured along the vertical and horizontal
diameters of the specimen at each fixed distance from the pole of the membrane (this point
corresponds to the origin of the reference system) is 2.795% (with a standard deviation of
0.181%) for the one-shot projection moiré technique and 1.355% (with a standard deviation
of 0.0687%) for the two-projectors, one-camera IMPM technique. This confirms that the
proposed one-shot projection moiré setup using cross-gratings can capture asymmetries
in the membrane’s displacement field in a more effective way than a double illumination
projection moiré projecting only vertical lines.

All displacement components increased slightly in magnitude passing from the left
side (i.e., x < 0) to the right side (i.e., x > 0) of the horizontal diameter of the membrane
and from the bottom side (i.e., y < 0) to the top side (i.e., y > 0) of the vertical diameter.
Furthermore, measured displacements along the horizontal diameter control path were
slightly smaller than their counterparts relative to vertical diameter. This is consistent with
the in-plane tests results that indicated the membrane to be stiffer in the X-direction (see
Section 4.2).

Interestingly, both the one-shot projection moiré proposed here and the two-projectors,
one-camera IMPM obtained smoother distributions for out-of-plane displacements than for
in-plane displacements. Such a behavior occurred for at least two reasons: (i) projection
moiré techniques are inherently sensitive to w-displacements; and (ii) out-of-plane dis-
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placements undergone by the inflated membrane are much larger than the corresponding
in-plane displacements.

4.3.2. Solution of the Inverse Problem: FE Analysis and Metaheuristic Optimization

The last step of the present study was to determine the hyperelastic constants and
the stiffness distribution of the 100 mm diameter natural rubber membrane subjected to
inflation. For this purpose, the inverse problem stated by Equation (1) was reformulated as:

Min

Ω(
→
a10,

→
a01,

→
t ) =

√
1

NCNT

NCNT
∑

k=1

(
utotk−utotk

utotk

)2


a10
l ≤ a10 ≤ a10

u

a01
l ≤ a01 ≤ a01

u

tmin ≤ ts ≤ tmax

(35)

If the membrane has homogeneous material properties and constant stiffness, the
inverse problem (35) obviously includes only two variables, the MR constants a10 and
a01. However, if mechanical properties and stiffness (strictly related to thickness) are not
uniform, local values of MR parameters, and membrane thickness should be stored in the

vectors
→
a10,

→
a01,

→
t and selected as design variables. In order to cover this general scenario,

the membrane can be divided in the 108 sectors shown in the schematic of Figure 11, and
the terns {a10,a01,t}s describing local properties of the generic sth sector may be included
as design variables. Membrane subdivisions were strictly related to the locations where
thickness was measured along the six diameters corresponding to the 12 loading directions
of the preliminary in-plane equi-biaxal tests (i.e., 0, ±1/8, ±1/4, ±3/8, ±1/2, ±5/8, ±3/4,
±7/8 and ±1 of the radius, see Section 4.2). These locations correspond to the green dots
sketched in Figure 11 (the loading directions of in-plane tests are schematized in the figure
with etched lines): (i) the center of the membrane (i.e., the vertex common to the 12 inner
triangular sectors of the membrane schematization, numbered from 1 to 12); (ii) the centers
of 84 quadrilateral sectors located from ± 1/8 to ± 7/8 of the membrane radius (sectors
numbered from 13 to 96); and (iii) 12 points on the external boundary of the membrane
(sectors numbered from 97 to 108). The radial dimension of the 12 inner sectors and the
12 outer sectors is half of the radial dimension of the remaining 84 sectors. In summary,
sectors are centered or symmetric about thickness measurement points.
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Three variants of the inverse problem (35) were considered. The first variant cor-
responds to the most general formulation including a total of 324 (i.e., 108 × 3) design
variables. The second variant is a simpler problem formulation with only 110 design
variables: 2 unknown MR parameters and 108 unknown thickness values. The last variant
of the inverse problem solved here assumes the measured thickness distribution and hence
includes only two unknown MR parameters as design variables.

Additional constraints (e.g., positive definiteness of tangential material stiffness)
ensured stability of nonlinear material. The lower bounds of hyperelastic constants were
100 kPa for a10 and 1 kPa for a10, while upper bounds were 1 MPa and 200 kPa, respectively.
Thickness could vary between 0.9tto and 1.1tto (tto = 1 mm is the nominal thickness of the
membrane), a slightly larger range than the one observed experimentally.

The measured total displacements of the inflated membrane utot =
√

u2 + v2 + w2 were
compared with those computed by an FE model simulating the inflation test. Measured
displacements utotk and computed displacements utotk were compared at NCNT control
points, and the former quantities were the target of the optimization process because moiré
data are gathered without knowing material/structural parameters a priori. Conversely,
hyperelastic constants were given in input to the FE solver to compute displacements;
moiré data and numerical results match only if true MR constants are given in input to
FE model.

As mentioned in Section 4.1, the natural rubber membrane specimen characterized in
this study has a diameter of 100 mm, 2.5 times larger than the 40 mm diameter analyzed
in [34]. To account for the significantly lower stiffness of the present specimen and to
deform the inflated membrane in the nonlinear regime without affecting its structural
integrity, inflation pressure was reduced to 2.07 kPa from the 15.25 kPa of [34]. Interestingly,
the maximum in-plane deformations measured in the present case (i.e., umax = 1.140 mm
and vmax = 1.167 mm) practically coincided with the umax = vmax = 1.1 mm value (axi-
symmetric deformation) reported in [34] for the 40 mm diameter membrane; maximum
deformations occurred near (based on thickness variations as highlighted in Section 4.2)
or precisely (in the case of axi-symmetric deformation) at ± 0.6R independent of diameter
size. However, the maximum out-of-plane deformation of the 100 mm diameter membrane
increased to 13.932 mm from the 8.850 mm value measured in [34], in spite of the fact that
the inflation pressure was reduced by 7.5 times. The total displacement of the inflated
membrane was driven by the out-of-plane component w, which became more and more
predominant as bending stiffness decreased, such as occurred passing from the 40 mm to
the 100 diameter membrane. However, including also the u- and v-displacements in the
definition of the error functional Ω allowed us to test the robustness of the metaheuristic
algorithm used for solving the inverse problem (35).

The ANSYS® 2022 R2 Student general purpose FE code developed by ANSYS Inc.
(Canonsburg, PA, USA) was utilized in this study; the Student version was selected in
order to prove implementation easiness of proposed framework. Figure 12a shows the FE
model of natural rubber membrane used in the inverse problem (35). The mesh included
3072 4-node SHELL181 hyperelastic elements with 3137 nodes; convergence analysis
was performed to obtain mesh-independent solutions. The pressure load acting on the
membrane and the kinematic constraints on the membrane’s circular edge also are indicated
in Figure 12b. The nonlinear FE analysis option was selected by switching on the NLGEOM
command to account for the large deformations caused by inflation. ANSYS® adaptively
increased the load up to the 2.13 kPa applied pressure with the automatic time-stepping
option based on the convergence history of the FE solution.

The optimization problem (35) was solved with the HS–JAYA metaheuristic algorithm
described in Section 3. The error functional was computed as Ω = Ω1.07kPa + Ω1.33kPa +
Ω1.60kPa + Ω1.87kPa + Ω2.13kPa, summing over the values of Ω for each pressure level. Ex-
perimental data and numerical results were compared along the six control paths indicated
in Figure 12b. These control paths coincided with the loading directions selected in the
planar equi-biaxial tests. A total of NCNT = 769 control points were considered, sampling
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each control path in 128 points, i.e., an eight-times-higher sampling frequency than the one
selected for thickness measurements. Since the chosen element size for the ANSYS® model
was 10 times larger than the pixel size of the recorded images, it was easy to match nodes of
the FE model with the image pixels of moiré patterns. The error functional Ω thus defined
with Equation (35) was well posed, avoiding bias phenomena that may propagate errors in
the minimization process of error functional even when target quantities are derived from
synthetic patterns (see, for example, the very recent study [65] that analyzed performance
of a FEMU approach operating on DIC strains).
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Three population sizes, comprising, respectively, 20, 250 and 500 candidate designs,
were selected for performing metaheuristic optimizations relative to the first two variants
of the inverse problem described above: hence, the NPOP/NDV ratio ranged from 0.0617
to 1.543 for the first problem variant with 324 design variables, and from 0.182 to 4.545
for the second problem variant with 110 design variables. For the third problem variant
including only two design variables, population size was 5, 10 or 20: the NPOP/NDV ratio
hence ranged from 2.5 to 10. This was conducted to verify the insensitivity of HS–JAYA
convergence behavior to the size and composition of the initial population and, in summary,
to confirm the parameter-free nature of the metaheuristic optimizer selected for this study.

The HS–JAYA optimization algorithm for solving the inverse problem (35) was im-
plemented in the ANSYS® parametric language. The main code defined the problem
constraints (including design variables bounds) and perturbed material/stiffness prop-
erties of the membrane following the steps of HS–JAYA formulation. Each time a new
trial combination of hyperelastic constants and thicknesses was defined, the main code
prompted ANSYS® to create the new FE model of the membrane and perform structural
analysis. In post-processing, computed displacements were compared with target values to
evaluate error functional Ω. The new trial design was accepted/updated/rejected based
on its quality as described in Section 3. The optimization process was terminated when the
error functional and design vector varied by less than 0.0001 in two subsequent iterations.

In order to account for the metaheuristic nature of HS–JAYA, each optimization run
was repeated 20 times starting from various randomly generated populations. Equation (14)
was used to generate initial populations covering the whole design space. However, the
following cases were also considered in order to force HS–JAYA to start optimizations very
far from target solution: (i) MR parameters and membrane thicknesses close to their upper
bounds; (ii) MR parameters and membrane thicknesses close to their lower bounds; (iii) MR
parameters close to their lower bounds and membrane thicknesses close to their upper
bounds; and (iv) MR parameters close to their upper bounds and membrane thicknesses
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close to their lower bounds. The final solution given in output by HS–JAYA was averaged
over those obtained in the independent runs. Interestingly, standard deviations of identified
material properties and stiffness distribution over the different optimization runs always
were less than 1.1% for all problem variants regardless of population size, thus confirming
the robustness of the HS–JAYA algorithm selected in this study for solving the inverse
problem (35).

All computations were performed on a Toshiba Satellite L50-B-24C portable computer
with an Intel® CoreTM i7-5500 CPU and 8 GB of RAM memory in the Windows 10 en-
vironment. Evaluations of error functional for the inverse problem solution counted for
more than 95% of the total computation time because of the nonlinearity of the structural
analyses. One complete evaluation of error functional Ω for a trial solution required on
average 14.5 s, a reasonable time considering that each value of Ω elaborated by HS–JAYA
was obtained by summing over the five values Ω1.07kPa, Ω1.33kPa, Ω1.60kPa, Ω1.87kPa and
Ω2.13kPa resulting from structural analyses relative to each pressure level. The construction
of the FE model in ANSYS® including geometric modeling, meshing, definition of load-
ing/boundary conditions and setting of solution/post-processing options took about 1.5 s
of CPU time.

Before solving the three variants of the identification problem (35) considered here,
the computational efficiency of the HS–JAYA algorithm was preliminarily evaluated by
solving the most complicated test case of [27], the mechanical characterization of a bovine
pericardium patch (BPP), modeled as a transversely isotropic hyperelastic material. The
BPP identification problem included 17 unknowns: 16 hyperelastic constants (a1, a2, a3,
b1, b2, b3 for matrix; c2, c3, c4, c5, c6, d2, d3, d4, d5 and d6 for fibers) and the fiber orienta-
tion angle θ. In order to draw general conclusions, HS–JAYA was compared with many
other metaheuristic algorithms including variants of simulated annealing (SA), harmony
search (HS) and big bang–big crunch (BBBC), JAYA with approximate line search (rely-
ing todifferent extents on error functional gradient information even obtained via finite
differences) and elitist strategies. Those variants had in turn outperformed many other
metaheuristic algorithms as it is documented in [27]. Standard GA and PSO implementa-
tions enhanced by a hill-climbing strategy were also tested in the BPP problem in order
to have some comparison with MAs algorithms [57,58]. On average, HS–JAYA identified
material properties of BPP (only 0.25% error on target values) within about only 1100 anal-
yses vs. 1220–1370 analyses required by the other algorithms. GA and PSO enhanced by a
hill-climbing strategy did not perform well: error on target material properties still was
0.5% after 1500 analyses. The worst solution of HS–JAYA always was better than the best
solutions of all other algorithms in terms of lower errors on target material properties and
displacements. Population size selected for HS–JAYA optimizations was only 20 vs. the
30 to 90 population sizes used in [27]. These results confirmed with no shadow of doubt
the high efficiency of the proposed HS–JAYA algorithm and justified its use for solving the
identification problem (35).

All optimizations carried out by HS–JAYA for problem variants 1 and 2 were always
completed within (i) 1500 evaluations of the error functional Ω for the very large population
NPOP = 500, (ii) 700 evaluations of Ω for the intermediate size population NPOP = 250, and
(iii) 200 evaluations of Ω for the very small population NPOP = 20. HS–JAYA always
completed the optimization runs entailed by problem variant 3 within 100 evaluations of
Ω. HS–JAYA always found optimum solutions within 20 design iterations for all variants
of the identification problem (35) regardless of population size. The present algorithm
was also very robust: in fact, the ratio of standard deviation on number of analyses to the
average number of analyses required by HS–JAYA in the independent optimization runs
never exceeded 2%. Time complexity was not a relevant issue for HS–JAYA; evaluation of
error cost functional Ω always took almost 80% of total computation time regardless of the
number of optimization variables and population size.

HS–JAYA outperformed the above-mentioned algorithms of [27] and the GA/PSO
algorithms with hill-climbing strategy also in the natural rubber membrane identification
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problem considered in this study. In order to have a rigorous comparison, all optimization
runs performed for HS–JAYA were also performed for population-based algorithms (i.e.,
HS, BBBC, JAYA, hill-climbing-enhanced GA/PSO algorithms) starting from the same
initial populations; in the case of SA (a single-point algorithm), three optimizations were
performed for each initial population of HS–JAYA, taking as initial points for SA the XOPT
or XWORST or Xaver designs that, respectively, correspond to the best, worst and average
solutions stored in HS–JAYA’s population. Whilst HS–JAYA’s competitors practically
converged to the same material properties and thickness distributions found by the present
algorithm (the largest difference from material/thickness parameters identified by HS–JAYA
was 3.9%; the largest residual error on experimentally measured displacement components
was 6.3%) regardless of NDV and NPOP, their computational costs were significantly higher
than for the present algorithm. In particular, JAYA required on average 15% more analyses
than HS–JAYA to complete the optimization process; HS and BBBC required on average
between 23% and 26% more analyses than HS–JAYA; and SA required on average 35%
more analyses than HS–JAYA. Hill-climbing-enhanced GA/PSO algorithms required on
average between 50 and 70% more analyses than HS–JAYA; such a behavior was, however,
expected because these algorithms included a much lower amount of elitism than the
present algorithm in the transition from exploration to exploitation phases.

The 100 analyses’ computational cost of HS–JAYA recorded for problem variant 3 was
comparable with the 225 to 300 analyses computational costs reported in [66] for identifica-
tion problems regarding the two-parameter Mooney–Rivlin model and the three-parameter
Yeoh model. However, the number of error functional evaluations entailed by the optimiza-
tion process does not seem to be a critical issue in the hyperelastic materials identification
literature, and such information was not very often provided in technical papers [66–86].
Nevertheless, the selected implementations of some metaheuristic algorithms (e.g., particle
swarm optimization used in [67], standard simulated annealing used in [83] and evolution
strategies used in [85,86]) inherently entailed a huge number of finite element analyses
(i.e., 10,000 for [67], about 10,000 for [83] and 30,000 to 170,000 for [85,86]) to solve the
identification problem.

Table 1 summarizes the main results obtained in the identification problem (35) of the
natural rubber membrane. The table presents the average minimum, average maximum
and corresponding standard deviations of MR parameters and thickness values identified
by HS–JAYA for the three problem variants solved with different population sizes.

In problem variant 1, the values of MR constants identified by HS–JAYA ranged from
190 to 215 kPa for a10 and from 12.5 to 14 kPa for a01. Hence, the equivalent Young modulus
EMR = 4(1 + ν)(a10 + a01) of the membrane ranged from 1215 kPa to 1375 kPa with a 13.2%
variation, which is fully consistent with the degree of anisotropy of 1.127 found in the
preliminary in-plane equi-biaxial test (see Section 4.2). The MR constants identified for
problem variants 2 and 3 are very similar (on average, only 0.55% and 0.94% difference
on a10 and a01, respectively) and practically correspond to the average of maximum and
minimum values of hyperelastic constants identified by HS–JAYA for problem variant 1.

Figure 13 shows the average distribution (averaged over the 20 independent op-
timization runs performed for each population size) of the equivalent Young modu-
lus EMR determined by HS–JAYA for the 100 mm diameter natural rubber membrane
in problem variant 1. The figure also shows the directions (1) through (6) containing
the control paths along which moiré data were compared with finite element simula-
tions and specimen thickness was measured. Interestingly, the HS–JAYA results indi-
cate that the equivalent Young modulus is not constant along any of the control di-
rections and, above all, values of Young modus of each couple of orthogonal direc-
tions (i.e., (1)–(4), (2)–(5) and (3)–(6)) are in a different ratio. For example, it holds that
EMR

(1−)/EMR
(4+) = 1.2, EMR

(2−)/EMR
(5−) = 1.05 and EMR

(3+)/EMR
(6−) = 0.92 where the “−”

sign denotes the direction part with at least one negative coordinate x or y. This confirms
the non-isotropic mechanical response of the tested specimen.
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Table 1. Results of identification problem variants 1, 2 and 3 solved by HS–JAYA.

Identified Properties Problem Variant 1 Problem Variant 2 Problem Variant 3

MR constants (kPa)

NPOP = 20

a10
min 191.638 ± 1.642

a10
max 213.086 ± 2.237

a01
min 12.568 ± 0.124

a01
max 13.834 ± 0.147

NPOP = 20

a10 204.852 ± 2.089

a01 13.412 ± 0.137

NPOP = 5

a10 203.763 ± 2.011

a01 13.279 ± 0.126

NPOP = 250

a10
min 191.727 ± 1.526

a10
max 213.077 ± 2.146

a01
min 12.675 ± 0.113

a01
max 13.743 ± 0.145

NPOP = 250

a10 204.819 ± 2.067

a01 13.356 ± 0.128

NPOP = 10

a10 203.692 ± 1.989

a01 13.234 ± 0.117

NPOP = 500

a10
min 191.563 ± 1.490

a10
max 212.979 ± 2.129

a01
min 12.497 ± 0.119

a01
max 13.698 ± 0.146

NPOP = 500

a10 204.833 ± 1.996

a01 13.387 ± 0.131

NPOP = 20

a10 203.728 ± 2.004
a01 13.269 ± 0.122

Thickness (mm)

NPOP = 20

Min: 0.9288 ± 0.003037

Max: 1.0715 ± 0.003138

NPOP = 20

0.9305 ± 0.003212

1.0728 ± 0.003387

Min: 0.930 1

Max: 1.073 1

NPOP = 250

Min: 0.9299 ± 0.003046

Max: 1.0726 ± 0.003154

NPOP = 250

0.9301 ± 0.003209

1.0723 ± 0.003367

NPOP = 500

Min: 0.9293 ± 0.003039

Max: 1.0719 ± 0.003127

NPOP = 500

0.9307 ± 0.003204

1.0726 ± 0.003348

1 Experimentally determined along with thickness distribution over the whole membrane.
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Thickness distributions identified by HS–JAYA for variants 1 and 2 of the inverse
problem (35) including the 108 local thickness values as optimization variables also were
consistent with experimental measurements. Figure 14a shows the measured thickness
distribution for the 100 mm diameter membrane. The measured maximum and minimum
thickness values were, respectively, 1.073 mm and 0.930 m, while the standard deviation
of the measured values with respect to the 1 mm nominal thickness was 0.0051 mm (i.e.,
about 0.55% of minimum thickness measured experimentally). Thickness distribution is
consistent with observed displacements (Figures 8–10): the membrane is stiffer in the x<0
and y<0 regions, which leads to larger deformations in the rest of the specimen. Further
evidence of this can be gathered from the distribution of equivalent Young modulus EMR
of Figure 13: elastic parameters are larger especially in the (x,y) < 0 region.

Figures 14b and 14c, respectively, show the percent errors on membrane thickness
distributions identified by HS–JAYA in variants 1 and 2 of the inverse problem. For the
tth generic membrane sector (see the schematic of Figure 11), percent error on identified
thickness is defined as (ts

identified − ts
measured)/ts

measured. The largest magnitude errors
(either positive or negative) are plotted in the figure. It can be seen from Figure 14 that
errors on identified local thicknesses practically coincided for the two problem variants and
always ranged between±0.3%, almost three orders of magnitude less than measured values.
Interestingly, the values of MR constants determined by HS–JAYA for problem variant
2 practically correspond to the average of the MR parameter distributions determined
for problem variant 1. Hence, the HS–JAYA algorithm correctly identified the thickness
variations over the whole membrane.

The statement made above was confirmed by the statistical analysis of HS–JAYA’s
optimized solutions. Since 20 optimizations were performed for all problem variants
starting from different initial populations, pairs of thickness distributions (each including
the 108 thickness values identified by HS–JAYA) corresponding to the pth (p = 1, . . . , 20)
optimization run carried out for variants 1 and 2 were compared in terms of mean and
standard deviation. Interestingly, these two parameters always matched, indicating that all
solutions obtained for variants 1 and 2 belong to the same population. The same result was
obtained for all population sizes NPOP = 20, 250 or 500 worked out by HS–JAYA. Another
statistical analysis investigated if any difference between thickness distributions could
have been derived from the complexity of design space of problem variants 1 and 2 that,
respectively, included 324 and 110 design variables. However, this scenario was excluded
by running three Wilcoxon tests that found a very high correlation between all solutions
within a level of confidence of 0.05. The Wilcoxon test gives a p-value stating whether a
statistical difference is significant or not; the smaller the p-value is, the greater the difference
between solutions will be. Here, the first Wilcoxon test compared two populations of
20 elements including the maximum (i.e., largest positive) errors on thickness recorded for
problem variants 1 and 2. The second Wilcoxon test compared the two populations formed
by minimum (i.e., largest negative) errors on thickness. The third Wilcoxon test compared
two populations including median error values on thickness for problem variants 1 and 2.
Remarkably, p-values always were much higher than 0.05, thus confirming that there is no
statistical difference between solutions of problem variants 1 and 2. The same conclusion
was reached for all population sizes NPOP = 20, 250 or 500 worked out by HS–JAYA.

Figure 15 shows the distribution of total displacements utot computed by ANSYS®:
the plotted map is the average of the utot-displacement maps relative to the optimization
runs performed for each combination of problem variant and population size.

As expected, the distribution shown in Figure 15 is very similar to the w-displacement
(the dominating displacement) map measured experimentally (see Figure 8c). The point
of maximum deformation does not coincide with the center of the membrane and lies in
the x,y > 0 quadrant. Contours are not perfect circles but ellipses with the axes slightly
rotated with respect to the X–Y reference system. The average magnitude of the largest total
displacement computed by ANSYS® was 13.969 mm (see Figure 15), only 0.12% different
from the experimentally measured value of 13.952 mm.
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Figure 16 compares in detail displacements u, v and w measured by the one-shot
projection moiré setup described in this study with those computed by ANSYS® in corre-
spondence with the average optimized solutions for the three variants of the identification
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problem (35). In particular, Figure 16a refers to the u-displacements of the horizontal
diameter of the membrane (i.e., control path 1 lying on the X-axis), while Figure 16b refers
to the v-displacements of the vertical diameter of membrane (i.e., control path 4 lying on
the Y-axis); furthermore, Figure 16c,d refer to w-displacements of control paths 1 and 4,
respectively. Experimental data are represented by a double-sided line embedding the nine
in-plane displacement distributions corresponding to the three problem variants solved
with three different population sizes. Similar results were obtained for the other control
paths sketched in Figure 12b and are not shown in this paper in order to save space.

The displacement distributions computed by ANSYS® present some oscillations as
they were averaged over the 20 independent optimization runs performed for each com-
bination of problem variant and population size. However, all trends of numerically
reconstructed displacements practically show the same features. The highest residual
errors on displacements were recorded for problem variant 3, which included only 2 MR
constants as design variables: (i) for u-displacements, 1.883 ÷ 2% vs. only 1% of problem
variant 1; (ii) for v-displacements, 1.806 ÷ 2.096% vs. only 1.060 ÷ 1.170% of problem
variant 1; and (iii) for w-displacements, 2.436 ÷ 3.333% vs. only 1.25 ÷ 2% of problem
variant 1. Overall, the largest error on total displacement never exceeded 2.5% for problem
variant 1, 3.7% for problem variant 2 and 5.6% for problem variant 3. Maximum errors
were distributed in a rather uniform way in the case of in-plane displacements. However,
for out-of-plane displacements, maximum errors were localized either near the constrained
membrane boundary or near the points where in-plane displacements reached their highest
magnitude. This confirms the need for precisely matching the deformed position (x′,y′) of
each pixel of the moiré pattern image with the out-of-plane displacement component w.

Interestingly, the maximum residual error on displacement components never went
below 1% for all variants of the identification problem (35). In order to prove that this was
due not to some weakness in the formulation of the HS–JAYA algorithm, the identification
problem (35) was solved in silico by computing “synthetic” displacement fields for the
average solution of each problem variant. Hence, the optimizer had to recover the numer-
ically generated target displacement fields. Remarkably, HS–JAYA always converged to
the target material/structural properties reproducing displacement fields within at most
0.023% residual error. The observed residual errors in the hybrid numerical–experimental
identification process hence were fully consistent with the level of uncertainty normally
entailed by FEMU-based characterization. Optically measured displacements represent a
good target because PM accuracy may reach a very small fraction of the sensitivity of the
experimental setup. Hence, results of the identification process documented in this study
may be judged satisfactory.

Appl. Sci. 2023, 13, x FOR PEER REVIEW  40  of  47 
 

The displacement distributions computed by ANSYS® present some oscillations as 

they were  averaged  over  the  20  independent  optimization  runs  performed  for  each 

combination of problem variant and population size. However, all trends of numerically 

reconstructed  displacements  practically  show  the  same  features. The  highest  residual 

errors on displacements were recorded for problem variant 3, which included only 2 MR 

constants as design variables: (i) for u‐displacements, 1.883 ÷ 2% vs. only 1% of problem 

variant  1;  (ii)  for v‐displacements,  1.806  ÷  2.096% vs.  only  1.060  ÷  1.170%  of problem 

variant 1; and  (iii)  for w‐displacements, 2.436 ÷ 3.333% vs. only 1.25 ÷ 2% of problem 

variant 1. Overall, the largest error on total displacement never exceeded 2.5% for problem 

variant 1, 3.7% for problem variant 2 and 5.6% for problem variant 3. Maximum errors 

were distributed in a rather uniform way in the case of in‐plane displacements. However, 

for  out‐of‐plane  displacements,  maximum  errors  were  localized  either  near  the 

constrained  membrane  boundary  or  near  the  points  where  in‐plane  displacements 

reached  their  highest magnitude.  This  confirms  the  need  for  precisely matching  the 

deformed position (x’,y’) of each pixel of the moiré pattern image with the out‐of‐plane 

displacement component w. 

 

(a) 

Figure 16. Cont.



Appl. Sci. 2023, 13, 7758 39 of 44
Appl. Sci. 2023, 13, x FOR PEER REVIEW  41  of  47 
 

 

 

(c) 

(b) 

Appl. Sci. 2023, 13, x FOR PEER REVIEW  42  of  47 
 

 

Figure  16.  Experimentally  measured  displacements  vs.  those  computed  by  ANSYS®  for  the 

identified material/structural  properties  in  the different  variants  of  problem  (35)  solved  in  this 

study:  (a)  u‐displacement  (horizontal  diameter,  control  path  1);  (b)  v‐displacement  (vertical 

diameter,  control  path  4);  (c) w‐displacement  (horizontal diameter,  control  path  1);  and  (d) w‐

displacement (vertical diameter, control path 4). 

Interestingly, the maximum residual error on displacement components never went 

below 1% for all variants of the identification problem (35). In order to prove that this was 

due not to some weakness in the formulation of the HS–JAYA algorithm, the identification 

problem (35) was solved  in silico by computing “synthetic” displacement fields for the 

average  solution  of  each  problem  variant.  Hence,  the  optimizer  had  to  recover  the 

numerically  generated  target  displacement  fields.  Remarkably,  HS–JAYA  always 

converged  to  the  target material/structural properties  reproducing displacement  fields 

within  at  most  0.023%  residual  error.  The  observed  residual  errors  in  the  hybrid 

numerical–experimental identification process hence were fully consistent with the level 

of uncertainty normally entailed by FEMU‐based characterization. Optically measured 

displacements  represent  a  good  target  because  PM  accuracy may  reach  a  very  small 

fraction of the sensitivity of the experimental setup. Hence, results of the  identification 

process documented in this study may be judged satisfactory. 

Remarkably,  HS–JAYA  solved  variants  1  and  2  of  the  identification  problem 

including,  respectively,  324  and  110  unknown  material/structural  parameters,  a 

significantly larger number of unknowns than those usually reported in the literature for 

elastomers  and  rubberlike  materials  [66–72]  (from  two  to  six  unknown  material 

parameters  or  neural  networks  depending  on  three  input  characteristics),  visco‐

hyperelastic materials [73–75] (from six to nine unknown material parameters including 

tangent modulus and softening index, Prony constants and relaxation times), biological 

tissues [76–81] (from five to sixteen unknowns accounting also for visco‐elastic effects and 

stochastic  variation  of material  properties),  non‐homogeneous  hyperelastic  structures 

[37,63,82–84] (from four to sixteen unknown material parameters for the global model, or 

two unknown material parameters for each local inverse problem at the element level) or 

anisotropic  hyperelastic materials modeled with much more  complicated  constitutive 

equations [27,34,84–86] (from three to seventeen unknown material parameters). A very 

recent study by Borzeszkowski et al. [38] considered identification problems of nonlinear 

shells  subject  to various  loading  conditions  (i.e., uniaxial  tension, pure bending,  sheet 

inflation  and  abdominal wall  pressurization).  Similar  to  the  present  study,  thickness 

(d) 

Figure 16. Experimentally measured displacements vs. those computed by ANSYS® for the iden-
tified material/structural properties in the different variants of problem (35) solved in this study:
(a) u-displacement (horizontal diameter, control path 1); (b) v-displacement (vertical diameter, control
path 4); (c) w-displacement (horizontal diameter, control path 1); and (d) w-displacement (vertical
diameter, control path 4).
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Remarkably, HS–JAYA solved variants 1 and 2 of the identification problem including,
respectively, 324 and 110 unknown material/structural parameters, a significantly larger
number of unknowns than those usually reported in the literature for elastomers and
rubberlike materials [66–72] (from two to six unknown material parameters or neural
networks depending on three input characteristics), visco-hyperelastic materials [73–75]
(from six to nine unknown material parameters including tangent modulus and softening
index, Prony constants and relaxation times), biological tissues [76–81] (from five to sixteen
unknowns accounting also for visco-elastic effects and stochastic variation of material
properties), non-homogeneous hyperelastic structures [37,63,82–84] (from four to sixteen
unknown material parameters for the global model, or two unknown material parameters
for each local inverse problem at the element level) or anisotropic hyperelastic materials
modeled with much more complicated constitutive equations [27,34,84–86] (from three to
seventeen unknown material parameters). A very recent study by Borzeszkowski et al. [38]
considered identification problems of nonlinear shells subject to various loading conditions
(i.e., uniaxial tension, pure bending, sheet inflation and abdominal wall pressurization).
Similar to the present study, thickness values were included as design variables in some
test problems of [38]. However, target properties in [38] either were defined analytically
or some level of noise was artificially added to the analytical fields. Target displacements
and reaction force were hence computed by a finite element model and not measured
experimentally. The number of design variables (including shear modulus of the neo-
Hookean hyperelastic model and bending stiffness or shell-wall thickness) considered in
the identification problems including artificial noise was at most 289, yet lower than the
324 variables considered in this study.

5. Conclusions and Future Work

This paper described a novel hybrid framework for mechanical characterization of
soft hyperelastic membranes. The contribution of this study in terms of novelty was at least
three-fold: (i) the characterization framework accounted for structural inhomogeneity and
induced anisotropic response to symmetric loading; (ii) a novel one-shot projection moiré
model able to recover the whole 3D displacement field of inflated membranes; and (iii) a
fast, efficient, robust enhanced hybrid metaheuristic optimization algorithm for solving
large-scale inverse problems.

The proposed framework combined biaxial tests (planar and inflation), one-shot
projection moiré (with two symmetric projectors that project cross-gratings onto the inflated
membrane), a mathematical model to extract 3D displacement information from moiré
measurements and metaheuristic optimization. The deformation of the membrane was
accurately measured by the moiré setup that exploited the connections between moiré
and differential geometry. Metaheuristic optimization was performed with the HS–JAYA
algorithm combining harmony search and JAYA methods. The HS–JAYA algorithm was
inherently able to minimize the computational cost of the identification process as it always
perturbed design moving along descent directions.

The characterization framework was successfully applied to a 100 mm diameter
natural rubber membrane exhibiting non-isotropic mechanical response because thickness
varied over the specimen. The two-parameter Mooney–Rivlin constitutive model was used
for modeling the hyperelastic behavior of the tested membrane. Several variants of the
identification problem including up to 324 unknown material properties (local values of
MR constants) and local thickness values were solved by minimizing differences between
measured total displacements and those computed by an FE model simulating the inflation
test. The identified thickness distributions were highly correlated and fully consistent with
the distribution measured experimentally. The values of hyperelastic constants determined
by HS–JAYA combined very well into an equivalent Young’s modulus matching the level
of anisotropy found from planar biaxial tests. The optimization process was very robust,
and very little dispersion of solutions was seen.
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Although the characterization framework was described in great detail in this article
and provided satisfactory results, some aspects have to be further analyzed in future
studies. First, the characterization of highly anisotropic hyperelastic materials should be
considered. However, this issue should not be critical because the proposed projection
moiré model does not rely on any assumption of the material’s constitutive behavior;
complications derive for the most part from anisotropic hyperelasticity modeling that
usually entails a huge number of material parameters. It should be noted that natural
rubber follows an isotropic hyperelastic behavior as it is universally acknowledged in the
technical literature. The present study obviously was not aimed at proving the contrary.
The goal (fully accomplished) was instead to show how to account for any structural
inhomogeneity (for example, thickness variations) that may lead to a globally non-isotropic
mechanical response of the specimen/structure to be characterized.

The second aspect worthy of investigation is that the metaheuristic search engine
may be further enhanced, considering the implications of the No-Free-Lunch theorem. For
example, if material anisotropy is coupled to structural inhomogeneity, the number of
design variables of the identification problem may exponentially increase and the number
of search directions may become too large to be efficiently handled by a metaheuristic
algorithm. However, HS–JAYA inherently employs elitist strategies in all steps of the search
process, which enable the proposed algorithm to quickly converge to the optimum solution.
Such an ability appears to be independent of problem size. Preliminary results obtained
for a randomized version of the classical least square problem (the cost function of this
problem is built by summing over the squares of differences between design variables
and random numbers, thus resembling the definition of error functional Ω) including
from 500 to 1000 design variables (i.e., from 1.5 to 3.1 times more than the 324 variables
of problem variant 1) seem to confirm the above-mentioned assumption. However, an
extensive campaign of numerical tests is currently being carried out to limit population size
below 1/10 of the problem size for identification problems with hundreds of unknowns.

Last, other experimental arrangements may be considered besides the one-shot projec-
tion moiré optical setup proposed here: for example, the two projectors may be placed in
the space so as to define two mutually orthogonal planes with the optical axis of the camera.
Each projector may project a single system of lines (i.e., horizontal or vertical) and the two
systems of projected lines may interact so as to generate a dot grating in correspondence
with the specimen surface. The dot grating would still provide the curvature informa-
tion necessary to recover the shape of the deformed specimen, but fringe processing may
become easier.
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