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Abstract: Most existing image deblurring methods are based on the estimation of blur kernels and
end-to-end learning of the mapping relationship between blurred and sharp images. However, since
different real-world blurred images typically have completely different blurring patterns, the perfor-
mance of these methods in real image deblurring tasks is limited without explicitly modeling blurring
as degradation representations. In this paper, we propose IDR2ENet, which is the Implicit Degrada-
tion Representations and Reblur Estimation Network, for real image deblurring. IDR2ENet consists
of a degradation estimation process, a reblurring process, and a deblurring process. The degradation
estimation process takes the real blurred image as input and outputs the implicit degradation repre-
sentations estimated on it, which are used as the inputs of both reblurring and deblurring processes
to better estimate the features of the blurred image. The experimental results show that whether
compared with traditional or deep-learning-based deblurring algorithms, IDR2ENet achieves stable
and efficient deblurring results on real blurred images.

Keywords: image deblurring; degradation estimation; reblur estimation

1. Introduction

Image deblurring is a classical topic in the field of low-level computer vision, with the
aim of converting blurred images into corresponding sharp images and thus recovering the
information contained in them. There are various factors involved in image blurring, such
as camera shake, lack of focus, fast motion of the target object, etc. [1]. Blurred images can
be expressed as follows:

y =M(x; θ) (1)

where x is the real sharp image corresponding to the blurred image y,M(·)is the image
blur function, and θ is the parameter vector ofM(·). The goal of image deblurring is to
recover the sharp image, i.e., to find the inverse of the image blur function in (1), as follows:

xde =M−1(y; θ) (2)

whereM−1(·) is the deblur function, and xde is the deblurred image, which is the estimation
of potential sharp image x.

Early deblurring research modeled the blurring process as a convolution of the blur
kernel with the image, at which point Equation (1) degenerated to

y = K ∗ x + n (3)

where K denotes the blur kernel, n denotes the additional Gaussian noise and ∗ denotes
the convolution operator. Then, the deblurring task transformed into an inverse-filtering
problem, focusing on how to find and estimate the blur kernel [2–7]. However, in real scenes,
the blurring of different images may be formed by completely diverse degradation patterns,
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which leads to the estimation of a single blurring kernel that cannot be well applied to
real-world image deblurring. To address this problem, scholars have proposed a series
of end-to-end methods for learning the mapping relationship between blurred and sharp
images [8–10], which are mostly based on deep learning networks, such as Convolutional
Neural Networks (CNN) [11–15] and Generative Adversarial Networks (GAN) [10,16–18].
Among CNN-based works, better results have been achieved in recent years based on Deep
Auto-Encoders (DAE), which fuse U-Net network structures [17,19,20]. Shen et al. [20]
set up an a priori face parsing/segmentation network to predict face labels before U-Net,
and then the blurred images were fed into U-Net along with the predicted face labels to
obtain the deblurred images. Other approaches analyze multiple DAEs and U-Nets in
an attempt to construct cascade networks, where one U-Net produces a coarse deblurred
image and then feeds into the second U-Net to obtain better deblurring performance.
Among the GAN-based approaches, Nah et al. [8] were the first to introduce the adversarial
loss function Ladv. They then constructed an eleven-layer discriminator , which is trained
with real sharp images as the input and computes Ladv based on whether it can eventually
distinguish deblurred images from real sharp images. Subsequent GAN-based approaches
basically follow this idea [10,16,21]: the generator G generates a deblurred image xde,
and the training is considered to be finished if G fools the discriminator D so that it cannot
distinguish between the generated image xde and the real sharp image x. Kupyn et al. [10,16]
proposed DeblurGAN, whose generator consists of two-stride layers of convolution blocks,
nine layers of residual blocks and two transposed convolution blocks. The DeblurGANv2
proposed on this basis introduces the results of relativistic conditional GAN [22], whose
generator uses a pyramidal-feature architecture, while its discriminator uses the Double-
Scale RaGAN-LS Discriminator, thus improving the efficiency and performance of the
whole network. However, whether U-Net or GAN, the end-to-end-based learning methods
mentioned above lack the exploitation of image degradation representations such that their
performance in real-world deblurring tasks is still limited. In addition, blurred regions
in blurred images usually show greater variation than noisy points or high-frequency
texture details, so the learning and estimation of the degradation process is important for
better reconstruction.

Based on the above issues, and inspired by the work of Dong et al. [23] , Zhai et al. [24],
Qin et al. [25] and Li et al. [26] on image restoration, we propose a real image deblurring
network based on the implicit degradation representations and reblur estimation with an
encoder–decoder structure, called IDR2ENet. More specifically, the network framework
contains three main processes, degradation estimation, reblurring, and deblurring, which
consist of a degradation estimation subnetwork, a multi-scale degradation-representation-
guided deblurring subnetwork and a multi-scale degradation-representation-guided re-
blurring subnetwork, respectively. The main contributions of this paper can be summarized
as follows:

• We propose an implicit degradation representation and reblur estimation network
called IDR2ENet. The network learns and estimates implicit degradation representa-
tions in real images by reblurring sharp images (generating a reblurred image from a
real sharp image that resembles a real blurred image). The degradation representations
are then used to guide the deblurring process for better reconstruction. Estimating
and using the degradation representations in this way has two advantages: (1) there
is no need to model the complex degradation process in the real blurred image; and
(2) the degradation representations estimated in a learning way can be adapted to the
blurring in different images.

• In terms of network structure, in order to fully utilize the degradation representa-
tions, we designed a multi-scale degradation representation fusion module, which is
integrated into the reblurring subnetwork and deblurring subnetwork, and is used
both for training and testing. We also conduct an ablation study to demonstrate the
effectiveness of implicit representation estimation. Our results show that our network
achieves stable and efficient outcomes on multiple datasets.
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2. Related Work
2.1. Blind Image Deblurring

Image deblurring can be divided into two categories: non-blind deblurring (a priori
known blur kernel K) and blind deblurring (unknown K). Since the degradation repre-
sentations of real-world blurred images are spatio-temporal variants [4,27,28], non-blind
deblurring methods cannot accommodate blur changes due to object movement and scene
depth. Therefore, blind deblurring is now more widely studied. Although the blur kernel
is unknown, early blind deblurring works still assume that it is uniformly distributed
throughout the whole image [2,29]. However, real-world blurred images often have differ-
ent blurring regions of an image composed of various blur kernels. Methods based on the
a priori assumption of uniform blur kernels do not perform well in dynamic scenes due
to camera shake and 3D blurring. To solve this problem, scholars have proposed many
deep-learning-based methods for dynamic scene deblurring [8,9,19]. Nah et al. [8] present
a multi-scale CNN-based network to directly map the various source-blurred images to
latent sharp images. Tao et al. [9] proposed a scale-recurrent network(SRN-DeblurNet),
whose input is a series of multi-scale blurred images. SRN-DeblurNet then learns blurring
features in the images and outputs the corresponding sharp images through the encoder–
decoder structure of residual blocks, residual skip connections, etc. The network proposed
by Gao et al. [19] also adopts an encoder–decoder structure to extract the blurred features.
Unlike Tao et al. [9], they added Parameter Selective Sharing for CNN parameters to the
network in order to achieve better deblurring performance. However, the methods men-
tioned above do not sufficiently extract the degradation representations of blurred images,
which leads to a decrease in deblurring performance in the face of more complex real
blurred images.

2.2. Reblur to Deblur and Degradation Estimation

Aside from deep auto-encoders (DAE), generative adversarial networks (GAN) and
multi-scale networks, reblurring networks have been widely studied in recent years due to
their ability to generate additional blurred images for learning [30–32]. Zhang et al. [31] pro-
pose a novel network combining two GAN-based models, learning-to-Blur GAN (BGAN)
and learning-to-DeBlur GAN (DBGAN). The BGAN learns to convert a sharp image to a
reblurred image, and DBGAN learns to recover the latent image from BGAN. Such multi-
GAN structures are very innovative, but due to the inherent limitations of GAN-based
networks, their performance on traditional deblurring metrics such as PSNR and SSIM is
not very good. Moreover, the final deblurring performance of the network proposed by
Zhang et al. [31] depends more on the generative adversarial structure, i.e., whether the
discriminator D of DBGAN can distinguish between (real) sharp and deblurred (fake sharp)
images, and does not explicitly extract the blurring features of blurred images themselves.

Some recent deblurring works treat image blurring as a kind of degradation and achieve
deblurring by extracting the degradation representations of the blurred images [24–26,33].
Zhai et al. [24] proposed a novel CNN-based iterative network, and incorporated a gradient
descent algorithm in the design of the deep network, resulting in state-of-the-art results.
Qin et al. [25] instead designed multiple modules to extract and utilize degradation repre-
sentations in a multi-scale manner, including residual blocks, a feature fusion module, skip
connections, and attention, so that the obtained degradation representations can reflect the
nature of the blurred image itself more comprehensively.

Inspired by the above works [24–26,33], we propose a deblurring method based on
implicit degradation representations and reblur estimation. It can effectively combine
the advantages of the above-mentioned reblurring estimation and degradation extraction,
which not only effectively extracts and utilizes the degradation representations of the
blurred image itself, but also allows the network to learn the degradation representations
better through the reblurring process, thus making the deblurring results more stable and
improving their quality.
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3. Proposed Method
3.1. Network Structure

As shown in Figure 1, IDR2ENet contains a degradation representation estimation
process, a reblurring process and a deblurring process during training, whose architecture
is mainly inspired by [24–26,33]. The degradation representation estimation process is
dominated by the degradation estimation subnetwork, whose input is a real blurred image
y, and whose output is implicit degradation representations E estimated by learning on y.
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Figure 1. Network structure of IDR2ENet, which is the Implicit Degradation Representations and
Reblur Estimation Network for real image deblurring.

The deblurring process takes the real blurred image y and the degradation representa-
tion E as input, and outputs a sharp image xde after deblurring. E enables the multi-scale
degradation-representation-guided deblurring subnetwork to learn the corresponding blur
features in blurred images, so that it can adaptively handle a wide range of blurred images.
It is worth mentioning that the multi-scale degradation-guided deblurring subnetwork
does not learn a complete mapping from the real blurred image y to the deblurred image
xde; instead, it only learns the residuals between them, which can be expressed by the
following equation:

xde = NDeb(y, E) (4)

where NDeb denotes the multi-scale degradation-guided deblurring subnetwork.
In order to better learn degradation representations, the design uses the reblurring

process. An immediate idea is that the reblurring subnetwork learns to generate the re-
blurred image yre using only the sharp image x as input. However, since a sharp image
can correspond to countless blurred images, in order to reduce training difficulty and
assist the degradation estimation subnetwork to better estimate the degradation represen-
tations, the real sharp image x and degradation representation E are used together as the
input of the reblurring subnetwork, which is also expressed as a multi-scale degradation-
representation-guided reblurring subnetwork, with y as the target and the output as the
reblurred image yre. Likewise, the multi-scale degradation-guided reblurring subnetwork
learns only residuals between the sharp image x and reblurred image yre to better imple-
ment degradation representation E to guide reconstruction. The equation of the deblurring
process is expressed as follows:

yre = NReb(x, E) (5)
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where NReb represents the multi-scale degradation-guided reblurring subnetwork. This
is intended to, on the one hand, guide the degradation estimation subnetwork to focus
more on learning in order to extract the degradation representation E in the image during
the reblurring process and ignore the content of the image itself, and on the other hand,
to make the training process faster and more stable.

During training, the degradation estimation subnetwork, multi-scale degradation-
guided reblurring and deblurring subnetwork are trained jointly. This has the advantage of
constraining the degradation estimation subnetwork to better estimate E in the joint training
on the one hand, and enable the multi-scale degradation-guided deblurring subnetwork
to better utilize degradation representations for reconstruction on the other. For testing,
IDR2ENet only retains the degradation estimation and deblurring process.

3.2. Degradation Estimation Subnetwork

As shown in Figure 2, the degradation estimation subnetwork takes the real blurred
image y as the input and outputs the estimated degradation representation E, whose
structure is inspired by the work of Qin et al. [25]. In order to encourage the subnetwork to
better learn and estimate degradation representation, discrete wavelet transform (DWT)
pairs are designed at the beginning and end of the subnetwork. y is converted to a smaller
size with an increasing dimensionality through DWT, followed by initial feature extraction
through a 3× 3 convolutional layer and learning in a cascade of 10 convolutional blocks.
Then, symmetrically with input, the image is passed through one 3× 3 convolution layer
and one inverse discrete wavelet transform (IDWT) layer in order to achieve size recovery.
Finally, a 1× 1 convolution layer is used to transform the output after IDWT into 64 channels
of high dimensionality. Compared with the single explicit blur kernel estimated in the
general method, implicit degradation representations of 64 channels can better adapt to the
complex spatially variant degradation representations in real blurred images and possesses
a stronger expression of them.
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Figure 2. Network structure of degradation estimation subnetwork.

3.3. Multi-Scale Degradation-Representation-Guided Deblurring (Reblurring) Subnetwork

As shown in Figure 3, the multi-scale degradation-representation-guided reblurring
and deblurring subnetworks share the same network structure but they do not share
weights. For better illustration, this structure is subsequently referred to as the multi-
scale degradation-guided reconstruction subnetwork. Following the design of the high-
dimensional non-blind denoising (HDNBD) engine in [25], the multi-scale degradation-
guided reconstruction sub-network adopts a U-net-based codec structure and follows
core modules such as the feature enhancement module, enhanced residual bridge con-
nection and attention module. DWT and IDWT are also used as down-sampling and
up-samping methods, respectively. What is different is that the multi-scale degradation-
guided reconstruction subnetwork takes both the image (sharp image x or blurred image
y) and degradation representation E as input. Moreover, our design uses a multi-scale
degradation representation fusion module for a better use of degradation representations.
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ring) subnetwork.

At the encoding end, the input of each layer first goes through a feature enhancement
module to initially extract features, and then the dimension is halved after DWT down-
sampling as the input of the next layer. Both the encoding end and the decoding end are
five layers in depth. The bottom layer of the encoding end goes through one Conv 3× 3 and
ReLU to become the bottom layer of the decoder. Apart from the bottom layer, the input of
each layer at the decoder end is the concatenation of the up-sampling value of the lower
layer and the output of the multi-scale degradation representation block and the enhanced
residual bridge connection block cascaded with it. After concatenation, the decoder-side
feature is cascaded through a Conv 1× 1 and a feature enhancement module, and then the
input is up-sampled to the upper layer.

The encoder side and the decoder side are set up with a jump connection section.
The jump connection part of each layer consists of a feature enhancement module, the first
enhanced residual bridge connection, the multi-scale degradation representation fusion
module, and the second enhanced residual bridge connection cascade in turn. In particular,
it should be noted that the input of the multi-scale degradation representation fusion
module is not only the encoder-side features of that layer, but also the encoder-side features
of the remaining layers and the implicit degradation representation E. The code-side
features of each subsequent layer are denoted as Ri subsequently, where i refers to the
number of code-decoder layers, which increases from top to bottom. According to Figure 3,
the dimensionality of E and Ri is shown as

E ∈ R64×H×W

Ri ∈ R64×Hi×Wi i = 1, . . . , 4
(6)

where H and W denote the height and width of the input image, respectively. At the
top layer (i.e., the layer with i = 1), the output decoder-side feature after the feature
enhancement module is again changed back to 64 channels after being passed through
a Conv 1× 1, which is then passed through a Conv 3× 3 and then used as the input of
the attention module. The output of the attention module is added element-wise to the
features initially inputted at the encoder side, which is used as a global short connection
to further enhance feature fusion between the encoder and decoder. Finally, the output
image is obtained after one more Conv 1× 1: if the input image is x, the corresponding
output is the reblurred image yre, and the deblurred image yde is obtained when inputting
the blurred image y. The structure of the sub-modules is analyzed below.
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The structure of the feature enhancement module is shown in Figure 4, which consists
of four sets of cascaded blocks of the Conv 3× 3 layer and rectified linear unit (ReLU),
jump connections, and one Conv 1× 1 layer. As in Figure 3, 64/256 indicates the number of
channels. It should be emphasized that the residual skip connection (indicated by a dashed
line in the figure) of the input feature only exists at the encoder end, which is caused by the
different number of channels between the encoder and decoder ends (256 at the encoder
end and only 64 at the decoder end).
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Figure 5 shows the structure of the enhanced residual bridge connection. This module
consists of a cascade of Ni residual blocks and an attention module in the end. Each
residual block consists of two Conv 3× 3 layers, one ReLU layer and concatenation. Since
the network enters deeper layers when i increases, the number of differences between the
encoder-side features and the decoder-side features decreases, and therefore the number of
residual blocks required decreases. In this paper, Ni is set as Ni = 4− i + 1, i.e., 4, 3, 2, and
1 residual blocks from top to bottom, respectively.
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The structure of the attention module is illustrated in Figure 6. Inspired by [25],
the X–Y avg/max pool is designed to extract features in two different dimensions (vertical
and horizontal directions). In more detail, the features are input and divided into two
paths in the X–Y Avg Pool and X–Y Max Pool, followed by the average/max pooling of
X (horizontal direction) and Y (vertical direction) in two modules, respectively, and then
output via Concat operation. Afterwards, the average pooled and max pooled features are
concatenated together again, and then partitioned after the Conv 1× 1 layer, BN (batch
normalization) layer and nonlinear layer; finally, the reweighted output is obtained through
a Sigmoid function.

Figure 7 shows the structure of the multi-scale degradation representation fusion block.
Inputs that do not belong to the specific layer are denoted as the inputs of complementary
layers. For instance, the complementary layers of the third layer are the first, second and
fourth layer. As mentioned in Equation (6) above, the dimensionality of the encoder-side
features Ri of this layer and the implicit degradation representation E are not necessarily
the same, so the inputs of the implicit degradation representation E need to go through
interpolation down-sampling and ReLU first. The inputs of the complementary layers also
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need to be scale-transformed accordingly. In summary, the feature inputs of the upper and
lower layers need to go through down-sampling/up-sampling, Conv 3× 3, and ReLU,
respectively. Scale-transformed E and Ri share the same dimensions of 64 × Hi ×Wi.
Afterwards, they are concatenated together by the Concat operation and fed into enhanced
residual bridge connection after a Conv 1× 1 to reduce the number of channels to 64, thus
obtaining the corresponding R′i at the decoder end.
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In summary, with the design of a high-dimensional reconstruction subnetwork detailed
above, not only are the features of the input image itself efficiently extracted and fused with
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the decoder-side features, but also the implicit degradation representation E is incorporated
into the obtained image features in various dimensions and utilized several times. The
pseudo-code of the entire proposed method is shown in Algorithm 1.

Algorithm 1: The Overall Process of IDR2ENet
Data: Real Blurred Image y and the corresponding Real Sharp Image x
Result: Reblurred image yre and deblurred image xde

1 Initialization: Set learning rate, batch size and hyperparameters of the Adam
solver; Cropping images from datasets;

2 while Training do
3 Expand and Crop the real blurred image y and corresponding sharp image x

from the training dataset——Gopro;
4 Obtain the implicit degradation representations E using the degradation

estimation network in Figure 2;
5 Input x and E into multi-scale reblurring subnetwork in Figure 7 to obtain

reblurred image yre;
6 Calculate Lre using Equation (7);
7 Input y and E into multi-scale deblurring subnetwork in Figure 7 to obtain

deblurred image xde;
8 Calculate Lde using Equation (9);
9 Evaluate total loss using Equation (11);

10 Back propagation and update the network parameters;
11 end
12 Obtain the reblurred image yre and deblurred image xde;
13 Obtain the test image pairs from the test dataset——RWBI or RealBlur;
14 while Testing do
15 Extract the real blurred image y from the testing dataset;
16 Obtain the implicit degradation representations E using the degradation

estimation network in Figure 2;
17 Input y and E into multi-scale deblurring subnetwork in Figure 7 to obtain

deblurred image xde;
18 end

3.4. Loss Function

In order to constrain the similarity between the reblurred image yre obtained by the
reblurring process and the original real blurred image y so that they are as consistent as
possible, this paper not only uses the L2 loss function to constrain the similarity at the
low-level pixel level, but also uses the perceptual loss function to constrain the similarity of
the high-level abstract features. Specifically, for the reblurring process, the loss function Lre
is defined as follows: 

L2 = ‖y− yre‖2
2

Lper = perceptual(y, yre)

Lre = L2 + Lper

(7)

where perceptual(·) is the perceptual loss function [34], expressed as

Lper =
1

WHC

√√√√ W

∑
x=1

H

∑
y=1

C

∑
c=1

(Φl
x,y,c(y)−Φl

x,y,c(yre))2 (8)

where Φl
x,y,c(·) denotes the output features of the classifier network from the l-th layer, C is

the number of channels in the l-th layer, and W and H denote the width and height of the
image, respectively. Instead of directly comparing the values of each pixel, the perceptual
loss function compares the differences in the high-level feature space, as in deep networks



Appl. Sci. 2023, 13, 7738 10 of 19

trained for classification tasks (e.g., VGG19 [35]). For the deblurring process, apart from
using the L2 loss function to calculate the difference in pixel values between the deblurred
image xde and real sharp image x, the Structural SIMilarity (SSIM) loss function is used to
calculate differences in structure, using the loss function Lde as follows:

L2 = ‖x− xde‖2
2

Lssim = 1− ssim(x, xde)

Lde = L2 + Lssim

(9)

where ssim(·) refers to the SSIM loss function [36], with the expression shown as

ssim(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
xµ2

y + C1)(σ2
x σ2

y + C2)
(10)

where µx and µy denote the mean value of image x and y, respectively, σ2
x and σ2

y denote
the variance of image x and y, respectively, σxy is the covariance between the two, and C1
and C2 are very small constants used to maintain stability. In summary, the loss function
used by IDR2ENet is

LIDR2ENet = λLre + Lde (11)

where λ denotes the regularization factor between Lre and Lde.

4. Experiments
4.1. Datasets

The datasets used in this paper include the GoPro dataset [8], the RealBlur dataset [37],
and the RWBI dataset [31].

The GoPro dataset is commonly used for training and evaluating deep-learning-based
deblurring methods, which is produced from clear videos captured at 240 fps (frames per
second) using the GoPro Hero4 Black camera, and the blurred images are obtained by
averaging sharp videos over time windows of different durations, which correspond to the
sharp images in the center of the time window. The GoPro dataset consists of 2103 pairs of
blurred and sharp images for training and 1111 pairs of images for testing. In this paper,
the GoPro dataset is applied to the training of IDR2ENet.

The RealBlur dataset, produced by Rim et al. [37], contains paired real blurred images
and consists of two subsets with the same image content, RealBlur-J and RealBlur-R.
RealBlur-R is generated from raw camera images (RAW images) and RealBlur-J is generated
from JPEG images processed by the camera ISP. Each subset contains 4738 pairs of blurred
and corresponding real sharp images from 232 different low-light static scenes, of which
3758 pairs are used for training and 980 pairs are used for testing. In this paper, the RealBlur
dataset is applied to the testing of IDR2ENet.

The RWBI dataset contains 3112 real blurred images from 22 different scenes. These
blurred images were obtained from a variety of mobile devices, including Huawei P30 Pro,
Samsung S9 Plus, iPhone XS, and GoPro Hero5 Black cameras. However, it is worth men-
tioning that the RWBI dataset only contains real blurred images without the corresponding
sharp images. Therefore, the RWBI dataset is only for the testing of IDR2ENet in this paper.

4.2. Training Settings

IDR2ENet proposed in this paper is implemented on PyTorch, and all experiments
are executed on an NVIDIA GeForce GTX 2080Ti GPU. During training, images in the
GoPro dataset are randomly flipped and rotated horizontally during data expansion, and
then are further cropped into patches of size 256× 256, with the batch size set to 2. We
use the Adam solver as the optimizer for IDR2ENet with hyperparameters set to β1 = 0.9,
β2 = 0.99, and ε = 10−8. The learning rate γ is initially set as 10−4 and decreased to 10−6

when training stops.
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5. Results and Analysis
5.1. Real Image Deblurring

To evaluate the performance of IDR2ENet, traditional methods such as those proposed
by Xu et al. [6], Hu et al. [21], and Pan et al. [38], as well as deep-learning-based methods
such as SRN [9], SVRNN [39], DeepDeblur [8], DeblurGAN [10], DMPHN [40], DeblurGAN-
v2 [16], DBGAN [31], MIMO-Unet [41], MIMO-Unet+ [41], MPRNet [42], and Lightweight
MIMO-WNet [43], are introduced in this paper for comparison.

We first tested the objective metric PSNR/SSIM results of each deblurring method on
the real blur datasets RealBlur-J and RealBlur-R, which are shown in Table 1, respectively.

Table 1. Comparison of PSNR/SSIM for different methods on RealBlur-J and RealBlur-R.

Type Method
RealBlur-J RealBlur-R

PSNR (dB) SSIM PSNR (dB) SSIM

Traditional

Xu et al. [6] 27.14 0.830 34.46 0.937

Hu et al. [21] 26.41 0.803 33.67 0.916

Pan et al. [38] 27.22 0.790 34.01 0.917

Deep-Learning-Based

SRN [9] 28.56 0.867 35.66 0.947

SVRNN [39] 27.80 0.847 35.48 0.945

DeepDeblur [8] 27.87 0.827 32.51 0.841

DeblurGAN [10] 27.97 0.834 33.79 0.903

DMPHN [40] 28.42 0.860 35.70 0.948

DeblurGAN-V2 [16] 28.70 0.867 35.26 0.944

DBGAN [31] 24.93 0.745 33.78 0.909

MIMO-Unet [41] 27.76 0.836 35.47 0.946

MIMO-Unet+ [41] 27.63 0.837 35.54 0.947

MPRNet [42] 28.70 0.873 35.99 0.952

Lightweight
MIMO-WNet [43] 28.52 0.865 35.76 0.950

IDR2ENet (Ours) 28.81 0.876 35.96 0.952

As seen in Table 1, the IDR2ENet approach proposed in this paper obtains superior
results on both the RealBlur-J and RealBlur-R datasets. The PSNR and SSIM of traditional
methods lag behind those of most of the deep-learning-based methods, the results of
which are lower on both the RealBlur-J and RealBlur-R datasets, which indicates that
the traditional-based method models deblurring as a specific mathematical process that
cannot cope with the complex degradation in real blurred images and does not work well.
When compared to deep learning-based methods, IDR2ENet shows some improvement in
effectiveness, such as an objective metric increase of 0.11 dB/0.003 in the RealBlur-J dataset
compared to the newer MPRNet.

Furthermore, Figure 8A,B show the deblurred visual performances of different meth-
ods on two real blurred images from the Reblur-J dataset.

In Figure 8A, it can be seen that the blurred image suffers from severe blur degradation.
The image reconstructed by DeblurGAN-v2 achieves some deblurring effect. However,
compared with the results of IDR2ENet, the reblurred image recovered by DeblurGAN-v2
still retains blur artifacts and a purple-red artifact on the wall from the poster on the left
side, and the reblurred image of IDR2ENet is clearer and sharper.
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a) Blurred Image b) DeblurGAN-v2 c) DMPHN

d) MIMO-UNet+ e) MPRNet f) IDR2ENet (Ours)

(A)

a) Blurred Image b) DeblurGAN-v2 c) DMPHN

d) MIMO-UNet+ e) MPRNet f) IDR2ENet (Ours)

(B)

Figure 8. Deblurring performances of various methods on the RealBlur-J dataset. From left to
right, top to bottom: (a) blurred image, (b) DeblurGAN-v2 [16], (c) DMPHN [40], (d) MIMO-
UNet+ [41], (e) MPRNet [42], (f) IDR2ENet (Ours). (A) Deblurring performance: Image-1.
(B) Deblurring performance: Image-2.
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From the enlarged font blocks, the deblurred results of DeblurGAN-v2 are sharper,
but still have slight artifacts at the edges of the font, while the results of IDR2ENet do not.
When compared with other comparison algorithms, IDR2ENet recovered sharper results in
the poster and font parts. Compared with Figure 8A, the blurred image of Figure 8B has
milder blur degradation. The results of DeblurGAN-v2, DMPHN, and MIMO-UNet+ all
show varying degrees of mottled artifacts in the ground portion of the lower right corner
of the deblurred image when viewed overall. From the enlarged blocks, IDR2ENet still
obtains reconstructed results with clearer details. In general, deblurred images of IDR2ENet
reconstruct the details more clearly and do not generate incorrect artifacts.

Furthermore, in order to further verify the effectiveness of IDR2ENet on real image
deblurring tasks, we tested it on the RWBI dataset. Two images were selected and their
visual effects before and after processing are shown in Figure 9 and Figure 10, respectively.

(a) RWBI数据集中的真实模糊图像 (b) 本章RENet去模糊后Real Blurred Images from RWBI Deblurred Image of IDR2ENet

Figure 9. Deblurring performances of IDR2ENet on the RWBI dataset—Image 1.

(a) RWBI数据集中的真实模糊图像

(b) 本章RENet去模糊后(b) Deblurred Image of IDR2ENet

(a) Real Blurred Image from RWBI

Figure 10. Deblurring performances of IDR2ENet on the RWBI Dataset—Image 2.
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In Figure 9, the real blurred image after IDR2ENet processing achieves a good deblur-
ring performance, e.g., the edges of the building at the center of real blurred image and the
logo on top of it are very clear and do not have any vignettes. However, there still exist
some areas where the deblurring performance is not satisfactory, such as tree branches on
the right side of the image. In Figure 10, the real blurred image after IDR2ENet deblurring
is clearly identifiable in the enlarged text part of the letters. Overall, the test results on the
RealBlur and RWBI datasets show that IDR2ENet is consistently effective and reliable in
real image deblurring tasks.

Moreover, the author captured some real blurred images using a mobile phone and
processed them using IDR2ENet, and the comparative results are shown in Figure 11.

(1a) 真实拍摄的模糊图像 (1b) 本章RENet去模糊后

(2a) 真实拍摄的模糊图像 (2b) 本章RENet去模糊后

Shotted Real Blur Image-1  

Shotted Real Blur Image-2  Figure 11. Deblurring performances of IDR2ENet on images captured by a mobile phone. From
left to right: real blur images, and deblurred images of IDR2ENet.

From Figure 11, we can see that the deblurred images after IDR2ENet processing
no longer have obvious blurred parts in the overall perception, and the text that is most
affected by the blur degradation is basically recovered.

As a complementary experiment, we also select a low-contrast image from the RealBlur-J
dataset to test IDR2ENet’s performance in low-contrast situations, with the results shown
in Figure 12. The results show that our IDR2ENet also performs well on low-contrast
blurred images.
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a) A Low-contrast Blur Image From RealBlur-J b)  Deblurred Image by IDR2ENet

Figure 12. Deblurring performances of IDR2ENet on low-contrast images from RealBlur-J. From
left to right: (a) the low-contrast blur image, and (b) the corresponding deblurred image of IDR2ENet.

5.2. Network Complexity Analysis

Table 2 shows the number of network parameters, running time and FLOPs of dif-
ferent methods, where FLOPs are calculated on 256× 256 image blocks, the running time
is calculated on the average processing time over 100 blur images, and the deblurring
performance of each method on the RealBlur-J dataset is listed for comparison at the same
time. Note that all experiments are executed on an NVIDIA GeForce GTX 2080Ti GPU.
As shown in Table 2, IDR2ENet has 13.4 M parameters and 317.91 G FLOPs during train-
ing, while it has 7.5 M counts and 169.78 G FLOPs during testing, which has a smaller
memory footprint because no reblurring process is involved during testing. Compared
with most methods, IDR2ENet has a greater advantage in terms of the number of param-
eters and FLOPs because it does not involve iterations and other complicated designs.
Although the FLOPs of MIMO-UNet+ [41] are slightly smaller than those of this paper
with a difference of 15.54 G (compared to the FLOPs during testing), it still has twice the
number of parameters of IDR2ENet. Lightweight MIMO-Wnet [43] has smaller FLOPs by
improving a lightweight structure of MIMO-UNet [41]. Although its deblurring effect is
somewhat improved compared to the latter, it is still lower than IDR2ENet’s performance.
For the running time, IDR2ENet requires less time than any other network, as shown in
Table 2. In general, compared with other methods, IDR2ENet ensures excellent deblurring
performance while keeping the network complexity to a smaller level.

Table 2. Comparison of network complexity of different methods.

Methods Parameters FLOPs Time
RealBlur-J

PSNR (dB) SSIM

DMPHN [40] 21.7 M 678.56 G 0.034 s 28.42 0.86

DeblurGAN-v2 [16] 60.9 M 411.34 G 0.082 s 28.7 0.867

DBGAN [31] 11.6 M 660.20 G 0.084 s 24.93 0.745

MIMO-Unet+ [41] 16.1 M 154.24 G 0.032 s 27.63 0.837

MPRNet [42] 20.1 M 760.11 G 0.077 s 28.7 0.876

Lightweight MIMO-WNet [43] 14.1 M 138.81 G 0.028 s 28.52 0.865

IDR2ENet (Ours) Training 13.4 M 317.91 G - - -

IDR2ENet (Ours) Testing 7.5 M 169.78 G 0.012 s 28.81 0.876
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5.3. Ablation Study
5.3.1. Validation of the Effectiveness of Implicit Degradation Representations-Guided
Reconstruction

Implicit degradation representation E estimated by the degradation estimation sub-
network guides the reconstruction of blurred images by the deblurring process. In order to
verify the contribution of implicit degradation representation E to the final deblurring per-
formance, ablation studies are designed in this paper. Specifically, only the deblurring pro-
cess is retained on the original network framework of IDR2ENet, and the high-dimensional
deblurring subnetwork is made to take only real blurred image as input, at which time the
network framework is shown in Figure 13. This is noted as IDR2ENet-Q. The results of
retraining on the GoPro dataset with exactly the same experimental settings as IDR2ENet
are shown in Table 3.

Real Blur Image

y

Multi-scale 

Degradation 

Representations 

Guided 

Deblurring 

Subnetwork
Deblur Image

dex

Figure 13. Network structure of IDR2ENet-Q.

Table 3. Comparison of the performance of different network structures.

Network Framework
RealBlur-J

PSNR (dB) SSIM

IDR2ENet-Q 28.4 0.863

IDR2ENet-R 28.64 0.87

IDR2ENet 28.81 0.875

As shown in Table 3, the performance of IDR2ENet-Q is reduced by 0.41 dB/0.012
compared to the original IDR2ENet, which proves that IDR2ENet can better reconstruct
deblurred images and achieve a higher performance guided by the implicit degradation
representation E when facing complex degradation in real blurred images.

5.3.2. Validation of Reblurring Process

The proposed IDR2ENet employs a reblurring process to help the degradation esti-
mation subnetwork to better estimate the implicit degradation representation E. Thus,
an ablation experiment is designed to verify it in this section. Specifically, the network
framework with the reblurring process removed and only the degradation estimation pro-
cess and deblurring process retained is shown in Figure 14. This framework is denoted as
IDR2ENet-R, which is also retrained on exactly the same experimental settings. The deblur-
ring results of IDR2ENet-R on the RealBlur-J dataset are also shown in Table 3. In Table 3,
the result of IDR2ENet-R is 28.64 dB/0.870, which is a decrease of 0.17 dB/0.005 compared
to the original IDR2ENet. This proves that the degradation estimation subnetwork can
better estimate the implicit degradation representations in real blurred images through the
reblurring process, which in turn better helps the reconstruction process.
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Real Blur Image

y

Multi-scale 

Degradation 

Representations 

Guided 

Deblurring 

Subnetwork
Deblur Image

dex

Real Blur Image

Degradation 

Estimation 

Subnet

Ey

Deblur Process

Degradation Feature

Degradation Estimation Process

Figure 14. Network structure of IDR2ENet-R.

5.4. Discussion

We perform five experiments in this section, including (1) IDR2ENet’s performance
on the real blur datasets RealBlur (Table 1 and Figure 8) and RWBI (Figures 9 and 10),
(2) IDR2ENet’s performance on real captured blur images (Figure 11), (3) IDR2ENet’s
performance on low-contrast blur images (Figure 12), (4) a comparison of IDR2ENet’s
complexity and running time with other networks (Table 2), and (5) ablation experiments
to verify the role of the degradation estimation subnetwork and reblurring subnetwork
of IDR2ENet (Figures 13 and 14, and Table 3). The overall results show that our IDR2ENet
not only achieves good performance on various kinds of real blurred images, but it also
has a smaller network complexity as well as better quantitative metrics, known as PSNR
and SSIM. The results of the ablation study also demonstrate the effectiveness of our
methods—reblur estimation and degradation estimation.

However, there are still areas where our results can be improved. For example,
the deblurring effect of IDR2ENet on real captured blurred images (Figure 11) can still
be enhanced, which proves that the network’s understanding of degradation representa-
tions in blurred images is perhaps not sufficient. Therefore, it might be useful to consider
introducing GAN-based structures in the design of the degradation estimation subnet-
work and reblurring network to enhance the understanding, constraint and utilization of
degradation representations.

6. Conclusions

In this paper, we propose a real image deblurring network framework, IDR2ENet,
based on reblurring to estimate the implicit degradation representation. Unlike the general
methods for estimating explicit degradation representations, IDR2ENet learns implicit
degradation representations by constructing a “sharp image–blurred image” reblurring
process, and uses the generated degradation representations to guide the deblurring and
reblurring processes. In order to better constrain the feature similarity between the re-
blurred image and the original blurred image, a perceptual loss function is added to the
corresponding loss function, and SSIM is introduced to calculate the difference between the
deblurred image and the original blurred image. The experimental results show that our
network achieves stable and efficient deblurring results for real image deblurring on the
RealBlur dataset, RWBI dataset and real captured blurred images. Additionally, IDR2ENet
has better results and lower network complexity compared with other methods.
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