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Abstract: Malicious apps specifically aimed at the Android platform have increased in tandem
with the proliferation of mobile devices. Malware is now so carefully written that it is difficult to
detect. Due to the exponential growth in malware, manual methods of malware are increasingly
ineffective. Although prior writers have proposed numerous high-quality approaches, static and
dynamic assessments inherently necessitate intricate procedures. The obfuscation methods used
by modern malware are incredibly complex and clever. As a result, it cannot be detected using
only static malware analysis. As a result, this work presents a hybrid analysis approach, partially
tailored for multiple-feature data, for identifying Android malware and classifying malware families
to improve Android malware detection and classification. This paper offers a hybrid method that
combines static and dynamic malware analysis to give a full view of the threat. Three distinct phases
make up the framework proposed in this research. Normalization and feature extraction procedures
are used in the first phase of pre-processing. Both static and dynamic features undergo feature
selection in the second phase. Two feature selection strategies are proposed to choose the best subset
of features to use for both static and dynamic features. The third phase involves applying a newly
proposed detection model to classify android apps; this model uses a neural network optimized
with an improved version of HHO. Application of binary and multi-class classification is used, with
binary classification for benign and malware apps and multi-class classification for detecting malware
categories and families. By utilizing the features gleaned from static and dynamic malware analysis,
several machine-learning methods are used for malware classification. According to the results of the
experiments, the hybrid approach improves the accuracy of detection and classification of Android
malware compared to the scenario when considering static and dynamic information separately.

Keywords: malware; harris hawks optimization; feature selection; benign; multiclass classification;
multi-verse optimization; moth-flame optimization; machine learning

1. Introduction

Smartphones have rapidly grown in popularity over the past decade, with billions of
users, according to an analysis of Statista in 2021 [1]. The reason is that smartphones are so
handy and convenient [2]. Sending emails, playing games, taking photographs and videos,
searching the web, using GPS, and more are just some of the many uses for smartphones.
Applications are being developed and improved daily, making it possible to achieve this,
particularly on Android’s operating system, which first appeared as a hacked Linux kernel
optimized for touchscreen mobile gadgets.

Moreover, last year Android OS apps extended to more than 3 million apps [3].
Banking, social media, healthcare, education, and entertainment are just some of the many
possible uses for these Android apps [4]. As a result, most of these apps are employed to
benefit their end consumers. Some of them, however, are used maliciously by hackers and
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exploiters. Malware refers to these harmful applications, defined as invasive software that
steals data or causes damage to another user’s computer [5].

Cybercriminals create malware to function in many ways, including adware, worms,
ransomware, and Trojan viruses [6]. Because malicious software is always evolving, it is
increasingly challenging to foil security breaches [7]. For instance, in 2021, Cybersecurity
Check Point warned Android users that millions of mobile smartphones were vulnerable to
Agent Smith malware [8]. The spyware also uses WhatsApp as a cover to attack Android
systems. In 2021, coccus reported that more than a billion Android smartphones would be
vulnerable to hacking because they lacked the latest security upgrades [9]. Additionally,
experts from Kaspersky Lab in 2020 found that numerous hackers had used the Google Play
app store to spread complex malware [10] for years. Recently, many Facebook accounts
were hacked using the android malware “FlyTrap” app [11].

The Android operating system has a built-in authorization module that checks whether
or not a security policy has been breached before granting the permissions requested by an
Android app. The four categories of Android permissions correspond to the four levels
of security outlined in [12]. Also, the dataset includes four types of malware that may be
labeled as such: ransomware [13] adware [14], SMS malware, and scareware [15]. The
ever-expanding and changing nature of malware has prompted numerous proposals for
detecting and avoiding it. The research community has revealed two methods for spotting
malware. Static, dynamic, and hybrid malware analysis are three types of analyzing
android malware. Static malware analysis is where applications are inspected without
being run, while dynamic analysis evaluates the behavior of malware in a sandbox after it
has been run [16]. Despite the role of current technologies in improving quality of life and
expanding the cyber world, cyber-threats have reached a new level and are increasing at a
scary rate [17]. More importantly, new attacks that can breach a smartphone’s defenses are
constantly being developed and released.

Violating the security policy might take various forms, depending on the mobile
device’s OS. This paper focuses on the Android operating system and new threats that
threaten its security. The presence of malware in a mobile app has been investigated by
several previous research [18–22], some of which made use of API calls and permissions.
According to their findings, Dynamic analysis is also necessary since Static analysis is insuf-
ficient for detecting malware in obfuscated apps. It has been found in some research [23]
that deep learning can be utilized to detect malware in mobile apps. This paper aims to
provide a highly effective method for discovering and naming novel forms of malware,
thus overcoming all these restrictions.

This is why we have put time and effort into Android malware detection and family
classification. Here, “malware” and “benign” represent two classes in a binary classification
problem, whereas “family classification” represents 13 classes in a multi-class classification
problem. Android malware family refers to a collection of malicious apps that act similarly
and are based on the same code. To identify and categorize malicious Android apps, we
propose a hybrid classification. It depends on combining dynamic static malware analysis.
At first, we run a static malware analysis to pull out static features like command strings,
API calls, intents, and permissions. Then, we used CuckooDroid [24] to analyze dynamic
malware to extract features. To do the automated analysis of suspicious Android files,
CuckooDroid is an add-on to the cuckoo sandbox [25].

A standard method for malware detection using static and dynamic features, feature
selection has received considerable attention [26]. Managing these massive datasets is no
easy feat due to their complexity. It could hinder one’s learning ability or even lengthen the
time. Feature reduction methods are essential to reduce the dimensionality of data because
some attributes in datasets are unnecessary and redundant.

Accordingly, one of the most critical steps in developing a pattern classifier system
is the feature selection phase, during which an appropriate feature subset is selected
by analyzing possible feature subsets. For this reason, two feature selection strategies,
static and dynamic, are proposed for the best possible malware classification in the used
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dataset. Using fuzzy logic [27,28] in conjunction with metaheuristic optimization, a two-
stage feature selection strategy is proposed for selecting dynamic features. To detect and
categorize An-droid malware applications, a hybrid model based on fuzzy optimization
mixed with meta-heuristic optimization methods, hybrid of enhanced MFO [29] and
MVO [30] is evaluated as wrappers. Three feature selection methods, fisher score, chi-
square, and information gain, are applied to static features, eliminating more irrelevant
features. Then, a subset of candidate features from both static and dynamic features was
fed to several machine learning algorithms to produce the best detection results.

Several researchers have proposed artificial neural network (ANN) based models
to replace more conventional approaches to malware detection and classification [31].
It has been shown that ANNs can model the relationships between inputs and outputs
more accurately than other methods [32,33]. Additional restrictions on ANN use include
difficulties in extrapolating beyond training data and overtraining the network due to
extensive iterations during the training process. Therefore, the primary goals of this
research are to (1) develop a better ANN model using the enhanced version of Harris
Hawks optimizer (EHHO) and (2) check the accuracy of this model. The EHHO’s primary
goal is to establish the optimal parameters for the ANN.

The following are the original contributions made by us in this paper:

• DroidDetectMW is proposed as a functional and systematic model for detecting and
identifying Android malware and its family and category based on a combination of
Dynamic and Static attributes.

• Methods are proposed for selecting features, either statically or dynamically, to use.
• A hybrid fuzzy-metaheuristics-optimization approach is proposed for selecting the

optimal dynamic feature subset.
• An enhanced version of the HHO algorithm is proposed to optimize the parameters

of ANN for malware detection.
• A Comparison is applied between the results of the proposed Deep learning method

with those of more traditional machine learning classifiers in determining how well
DroidDetectMW works.

• Evaluate the performance of DroidDetectMW in comparison to seven traditional
machine learning methods: the Decision Tree (DT), the support vector machine (SVM),
the K-Nearest Neighbor, the Multilayer Perceptron (MLP), the Sequential Minimal
Optimization (SMO), Random Forest (RF) and the Naive Bayesian (NB).

• Compared to traditional machine learning algorithms and state-of-the-art studies,
DroidDetectMW significantly improves detection performance and achieves good
accuracy on both Static and Dynamic attributes.

In the remaining sections of the study, the following structure is used: literature
review and related work of previous studies are presented in Section 2. Understanding the
fundamentals of Harris Hawks Optimization is covered in Section 3. In Section 4, we detail
the methodology we’ll be using. Section 5 focuses on the experiments and findings, while
Section 6 discusses the conclusion and directions for the future.

2. Related Work

Academics have published many ways to detect and categorize Android malware
with ML algorithms. This paper will review the tasks involved in malware detection
and classification using ML and deep learning techniques, including static and dynamic
malware analysis.

In [34], Significant Permission Identification SigPID is a malware detection approach
proposed by Li et al. They construct a three-tiered pruning system based on extracted
permission data to identify malicious apps from legitimate ones. The Android apps were
categorized by the authors using ML methods. According to the experiments, SigPID has a
93.62% higher efficiency than the best existing approaches.

In [35], the authors delved into the threats posed by Android apps’ need for per-
missions. T-tests, mutual information, and correlation coefficients were used to sort the
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risks associated with each permit. The subgroups of potentially malicious permissions are
identified using sequential forward selection and principal component analysis (PCA). A
decision Tree, Support Vector Machine, and Random Forest were used to evaluate how
well risky permission could identify malicious apps. From what we can see, this detector
has a 94.62% detection accuracy and a 0.6 False Positive Rate (FPR).

Regarding enhancing accuracy, the innovative fusion technology (DroidFusion) intro-
duced by Yerima and Sezer [36] is hard to beat. DroidFusion trains classifiers to construct a
model, which is then used with a feature importance ranking method based on the predic-
tion precisions to obtain a classifier. The experiments highlight DroidFusion’s superiority
over the stacking ensemble technique.

The methodology suggested by Das et al. [37], frequency centric for feature creation
utilizing system calls, can accurately identify malware through only those system calls.
The authors create an MLP on FPGA-based ML methodology for classifier training. The
suggested method was determined to achieve high precision, rapid detection, and low
power usage.

Automatically classifying the app as malicious or benign, the authors in [23] built an
engine called DroidDetector. Using dynamic and static analysis, the authors extracted the
features. Finally, the experimental results show that DroidDetector has the highest accuracy
of 96.76% compared to traditional ML methods.

The Android Application Sandbox (AASandbox) was introduced by the authors
of [38], which can perform both static and dynamic analysis to aid in detecting malicious
apps. They used cloud deployment of the detection algorithm and sandbox to provide
widespread and fast detection. The outcomes show that AASandbox performs better than
Android antiviral apps.

In [39], the authors create a hybrid sequential network architecture using stacked de-
noising auto-encoders (SDAEs) and stacked hybrid learning merged sparse auto-encoders
(MSAEs). Feature extraction from this hybrid model is fed into classification techniques
like the SVM and K-NN. Using two datasets, the proposed model is compared to various
previous detection methods using evaluation metrics such as precision, accuracy, f1-score,
specificity, and sensitivity.

Malware classification is proposed in [40], which presents a DeepMal model for
malware detection based on a combination of LSTM and CNN deep learning models. The
data for this model was derived from a similar source—a sequence of API calls. This
hybrid CNN-LSTM design features a variety of layers, including a nonlinearity layer, a
convolution layer, and a whole layer. There is a significant probability of malware assaults
due to the massive volumes of data uploaded to the cloud.

Metrics for assessing the efficacy of a model for detecting malware in the cloud are
presented in [41]. A two-dimensional convolutional neural network (CNN) model supplied
with memory, CPU, and network information yielded 90% accuracy. Furthermore, the
SMOTE method and standardization with hyper-parameter adjustment can be used to
achieve excellent detection accuracy. For research purposes, the Cuckoo sandbox has
collected logs of API calls made by dynamic malware.

Using the deep learning model called Convolutional Neural Network (CNN), the
authors of this research [42] present a malware detection model and compare it to existing
machine learning classification models SVM, MLP, and RF. Netmate transforms publicly
available data into flow information regarding the Stratosphere IPS project. The feature
extractor Netmate was employed. Regarding accuracy, precision, and recall, CNN and
random forest algorithms perform best.

3. Preliminary
3.1. Harris Hawks Optimization (HHO)

HHO was developed by [43], and it is a population-based optimization method with
inspiration drawn from the natural world. Harris’ hawks’ cooperative chasing of prey,
known as the surprise pounce, is an inspiration for HHO. Hawks use this strategy by
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swooping in from all sides to catch their prey off guard. The HHO consists of two primary
phases: exploitation and exploration and a transition between exploitative actions. The
hawks in the desert are the potential solutions, and the prey they’re waiting for is the best
at each stage. Harris’ hawks begin their haunting by randomly picking areas and waiting
to see whether they can detect any prey during the exploring phase. The first method relies
on the locations of other hawks also involved in haunting the prey, whereas the second
relies on the absence or presence of tall trees within the haunt range.

In both cases, the decision is based on the first strategy being chosen if q ≥ 0.5 and the
second strategy being chosen if q < 0.5. The vector of hawk positions in the next cycle is
defined as X(t + 1). The current iteration’s prey position is denoted by Xrabbit (t), a hawk’s
position is chosen at random using Xrand (t), and the hawks’ positions are represented by
X(t). Lower and upper bounds LB and UB are iteratively updated for the random values r4,
r2, r1, r3, and q in the interval (0,1) as shown in Equation (1).

x(t + 1) =
{

Xrand(t)− r1 | Xrand(t)− 2r2X(t)| q ≥ 0.5
(Xrabbit(t)− Xm(t))− r3(LB + r4(UB− LB)) q < 0.5

(1)

Equation (2) can be used to determine the mean position of the current population
of hawks, denoted by the symbol Xm(t). Where Xi(t) defines the position of the hawk i in
recent iteration, and N is the whole number of hawks.

Xm(t) =
1
N

N

∑
i=1

Xi(t) (2)

During the exploitation stage, Harris’ hawks initiate attacks on victims using the
surprise pounce. In response to repeated attempts at evasion by their victim, hawks modify
their pursuit strategies. As a result, hawks employ four distinct chasing strategies: the Soft
Besiege, the Hard Besiege, the Hard Besiege with progressive rapid dives, and the Soft
Besiege with progressive quick dives.

As the victim expends energy to flee the haunt, its remaining reserve determines which
of the four strategies it will employ. This means that the individual can switch between
several forms of exploitation. Equation (3) is a valid modeling of the energy of the prey,
where T is the highest number of iterations with E0 is the initial energy of the prey.

E = 2E0

(
1− t

T

)
(3)

The soft besiege takes place when |E| ≥ 0.5 and if the prey has a probability of r
≥ 0.5 of being able to leak from the hawks. If r < 0.5, then the soft besiege strategy with
progressive rapid dives is employed. Both approaches are shown in Equations (4) and
(5), respectively. The instruction to assess the hawks’ next move during a soft besiege is
denoted by Y, where ∆X(t) represents the difference between the rabbit’s position vector
and the location stored in the current iteration t, J = 2(1− r5) that denotes the varying
magnitude of the rabbit’s leaps during the process of its escape. Only if the Y rule isn’t
successful may the misleading zigzag motion shown in the Levy Flight LF move be used.
Readers can find Z, Y, and LF in the original literature.

X(t + 1) = ∆X(t)− E|JXrabbit(t)− X(t)| (4)

X(t + 1) =

{
Y if F(Y) < F(X(t))
Z if F(Z) < F(X(t))

(5)
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If |E| < 0.5, then the Hard besiege strategy is used, provided that r ≥ 0.5. In that
case, a hard be-siege with progressive quick dives will be applied. For hard besiege with
advanced rapid dives, the same Equation (5) is employed, except that Y considers the
average locations of the hawks instead, as shown in Equation (6).

X(t + 1) = Xrabbit(t)− E|∆X(t)| (6)

3.2. Dataset and Malware Categories

We determined that the Canadian Institute for Cybersecurity (CIC) [44] offers a com-
petent real-world dataset named CICAndMal2017 after examining the most comprehensive
and coherent set of related papers. First, the CIC amassed around 4000 malware apps
from various sources as Contagiodumpst [45] and VirusTotal [46]. In addition, nearly
6000 benign apps from 2015 to 2017 that were uploaded to the Google Play market were
collected. CIC has only been able to install 5000 (benign 5065 and malware 429) on actual
An-droid smartphones to undertake real-world scenario testing. Several articles make use
of the Drebin dataset. A total of 5560 apps from 179 distinct malware families are included
in this data collection. The MobileSandbox project generously provided us with samples
gathered between August 2010 and October 2012. A total of 4890 recent Android apps were
downloaded from virusshare and apkmirror and selected from DREBIN, CICInvesAnd-
Mal2017, datasets of them there are 1910 samples of malware and 2980 samples of benign.
The used dataset consisted of static and dynamic features to evaluate the proposed model.
The realm of malicious software encompasses a plethora of classifications, ranging from
worms and viruses to adware, spyware, Trojans, SMSware, Ransomware, and various other
insidious variants.

In this data set, labels can be found at various depths. Beginning with a binary
classification system, files are either malware or benign. The CICAndMal2017 dataset
comprises both benign and malware applications. It includes four distinct categories of
malware, namely Adware, SMS Malware, Scareware, and Ransomware. There are four
categories of malware in the second level:

• Adware: To generate as much revenue as possible from unsolicited banner ads, the
ad-ware will display these ads automatically [47].

• Ransomware: One goal of malicious software is to prevent apps from accessing system
resources. To extort money from users, it can encrypt their files and demand payment
before allowing them to access their files or recover their devices [48].

• Scareware: This malware software uses scare tactics to convince users to buy bogus
security updates [49].

• SMS malware: A malicious malware that makes sms calls and sends text messages
with-out the user’s permission. The malware operator can use the compromised
handsets as a high-end SMS distribution channel [50].

4. Proposed Framework

Here, we’ll review the recommended process for locating and categorizing Android
apps by family. Data preprocessing, feature selection, detection, and family categorization
are its three main phases. The feature values are normalized in the first phase, and duplicate
apps are removed from the dataset. Then, feature extraction of both static and dynamic
malware features is applied. In this phase’s end stage, the extracted features are vectorized
and put in binary vectors for further processing. He pulled static characteristics, including
Command strings, API calls, intents, and permissions. Extracted elements from dynamic
malware analysis include cryptographic activities, dynamic approvals, system calls, and
information leakage. In the second phase, feature selection is employed for static and
dynamic features extracted from the feature extraction stage. Three filter approaches are
applied for static attributes, and the optimum feature subgroup is selected. For dynamic
features, a two-stage fuzzy-metaheuristic method is applied to attain the best set of dynamic
features. In the third phase, a proposed deep learning approach based on enhanced HHO
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is used to categorize the categories of malware and families. Then, the Android apps are
identified and classified using the proposed detection approach against several distinct
classifiers based on machine learning and deep learning, such as SMO, RF, DT, K-NN, NB,
SVM, SMO, and MLP. The process flow of the proposed approach is pro-posed in Figure 1.
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4.1. Data Pre-Processing

The best results from a machine learning or deep learning model can only be achieved
after extensive preprocessing. Duplicate instance cleanup, NaN removal, and normal-
ization/scaling are all examples of everyday preprocessing operations. We use MinMax
scaling to normalize the features because the given dataset has minimal variance and ambi-
guity. The term normalizing describes the operation of rescaling values with a fundamental
number component to a speci-fied interval (e.g., 0 and 1). If your model depends on the
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absolute values of inputs, you must ensure that they are appropriately scaled. Data is
normalized by applying the formula presented in for MixMax scaling using Equation (7):

Xnorm =
Xi − Xmin

Xmax − Xmin
(7)

where Xi is the feature’s initial value, the denominator represents the difference between
the feature’s new normalized maximum and minimum values.

To filter out duplicates, the gathered Android apps are hashed using the MD5 method.
There are now only 3514 unique Android apps after the copies have been removed, which
consists of 1479 samples of malware and 2035 samples of benign.

Features can be extracted from malware using both dynamic and static analysis.
According to the analysis of static features, we have collected intents, API calls, command
strings, and permissions using a custom-written python script that uses the Apktool tool.
According to the analysis of dynamic features, we have used CuckooDroid to extract
dynamic permissions, cryptographic operations, system calls, and information leakage.

4.2. Feature Selection

It’s a tool for reducing the number of dimensions in a problem, which aids in selecting
the most critical aspects—lowering the quality and accuracy of a classification model,
and irrelevant and redundant features might have. More processing time and storage
were needed for higher-dimensional datasets [51]. The time and space complexity can be
reduced and the accuracy improved by selecting the necessary features. We have used
feature selection methods that consider both static and dynamic features in this paper.
The features that are generated as a byproduct are the most helpful set of features for the
subsequent classification and detection processes. The results demonstrated that combining
static and dynamic attributes is superior to using either alone. To eliminate and decrease
the unnecessary static features, three filter techniques were employed to generate three
candidate subsets; the best of these was then used for static feature selection. To select the
optimal feature subset of dynamic features, a two-stage hybrid metaheuristic optimization
algorithm using a fuzzy approach is proposed. More specific instructions for doing so are
provided below.

To rationally evaluate the static features and improve the algorithm’s performance,
feature selection is required. We use a filter-based methodology to ensure that feature
selection does not rely on the underlying detection technique. See Algorithm 1 for further
explanation. Three potential feature subsets were obtained using the chi-square test, the
Fisher score, and the mutual information gain. The detection models are further compared
in terms of their performance on the three feature subsets to determine which one is the
most effective. The optimal detection model is chosen by averaging the results of various
algorithmic models applied to the feature subset. The optimal feature subset is then selected
by examining the effects of the chosen optimal model applied to the different feature subsets.
Using experimental results, the chi-square test is the superior technique for determining
features using the random forest anomalies detection model. The above methods were
implemented using scikit-learn [52] a Python machine-learning package.

This study proposes combining fuzzy and meta-heuristic optimization to eliminate
redundant information and improve performance. Both fuzzy benchmarking and meta-
heuristic optimization techniques, such as Multi-Verse Optimization (MVO) and Enhanced
Moth Flame Optimized (EMFO), executed within Machine Learning (ML) wrappers, are
utilized to discover the best features.
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Algorithm 1: static-feature-select

Input: Training dataset D with static features S
Output: optimal subset of features Snew

1. def static-feature-select(D,S):
2. Calculate feature importance using chi-square, fisher and information gain from S
3. S1 = remove features with score 0 and NaN from chi-s
4. S2 = remove features with score 0 and NaN from fisher
5. S3 = remove features with score 0 and NaN using MIG
6. A = avg-perf-model(S1,S2,S3)
7. M = best-subset(S1,S2,S3)
8. S = best-subset(S1,S2,S3)
9. return Snew
10. End def

In Figure 2, we see a schematic of the proposed dynamic feature selection framework.
This phase generates fuzzy sets for each feature retrieved in the previous phase [23]. To
get the fuzzy optimal feature set, each feature’s standard deviation (SD) is computed and
compared to a threshold value. Fuzzification filters feature before sending them on to
metaheuristic swarm optimization methods [53]. Following classification, the reduced
feature set is sent into machine learning algorithms for testing their ability to categorize
the dynamic features into benign and malicious categories. While there are various feature
optimization techniques to choose from, we have focused on MVO and MFO due to their
lack of attention in the mal-ware detection literature. Following is a breakdown of the
proposed hybrid method:
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A fuzzy set [54] is a collection of things with varying degrees of membership. Each
item in this set is given a membership degree between 0 and 1 according to the membership
function defined by this set [55].

Let’s write down the labeled data set as H, where h is a member of H. With its definition
in Equation, the fuzzy set A defined on H is a set of sorted pairs as in Equation (8):

A = {x, µA(x; a, b, c, d)}, x ∈ X (8)
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As demonstrated in Equations (9) and (10), a trapezoidal membership function,
µ(x; a, b, c, d) is used to project each element h into fuzzy space:

µtrapezoidal (h; a, b, c, d) =



0, h ≤ a
h−a
b−a , a ≤ h ≤ b
1, b ≤ h ≤ c

d−h
d−c , c ≤ h ≤ d

0, d ≤ h

(9)

µtrapezoidal (h; a, b, c, d) = m
(

m
(

h− a
b− a

, 1,
d− h
d− c

)
, 0
)

(10)

With quantile values of 0.100, 0.25, 0.50, and 0.75 for this characteristic, a, b, c, and
d have been chosen to represent them. By taking the Mean, Median, Mode, Standard
Deviation, and Variation into account, Sandya et al. [56] conducted research in the field of
fuzzification. Based on their research, we have investigated using SD as a parameter in
our lab work. The resultant fuzzy set is next parsed into its constituent features, and each
feature’s standard deviation is determined and represented using Equation (11):

Z = [z1, z2, z3, . . . , zn] (11)

where n is the whole number of features, each feature of Z that satisfies the criterion in
Equation (12) below is considered an optimized feature.

Zi > T (12)

A threshold value T ∈ [0, 1] is shown above, with i = [1, 2, 3, ..., n]. In this study, we
calculated the thresholds using the SD that is constantly on the move throughout a certain
time period. By using trial and error, we investigated possible threshold values between 0
and 1. The optimal values for threshed was determined through trials and errors during
experimentations as 0.47, 0.48, 0.49. There are several methods for optimizing features, and
picking one that works well requires consideration of many different criteria, such as the
available optimization time, the number of parameters, and the amount of space required.

4.3. Detection and Family Classification

This section introduces the proposed detection approach and the comparative results
with other machine learning models.

As mentioned in Section 2, the HHO algorithm is based on observations of how
different Harris hawks approach prey. A solution’s efficacy determines how quickly HHO
moves between exploitation and exploration. When it comes time to exploit the catch,
Hawk swoops in for the kill.

Despite the remarkable performance of basic HHO, through simulations, we learn that
improving both the exploration and exploitation processes improves the original HHO. Incor-
porating a QRL technique has been shown to improve both intensification and diversification.

A mechanism recognized as quasi-reflection-based learning (QRL) has developed in
recent research as a potentially useful approach to increasing exploration, balancing exploitation
and exploration, and accelerating convergence [57]. It has been recognized as an effective
approach in the field, showcasing its potential for advancing learning algorithms.

To generate the quasi-reflected component, denoted as xqr
j , of solution x, the following

process is employed:

Xqr
j = rnd

( LBj + UBj

2
, Xj

)
(13)
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where rnd
( LBj+UBj

2 , xj

)
generates random numbers from a uniform distribution in the

range
[ LBj+UBj

2 , Xj

]
, and

LBj+UBj
2 calculates the average of the upper and lower bound for

every parameter j.
Each iteration ends when, a quasi-reflected solution xqr

i is generated for each individual
i in the entire population P, which consists of N individuals. This leads to the formation
of a quasi-reflected population Pqr. Eventually, the populations P and Pqr are combined,
and the solutions in this merged population are sorted in descending order based on their
fitness. The top N individuals are then selected for propagation to the next iteration.

To improve upon both the worst Xworst and best solution Xbest, the proposed method
employs the QRL at each iteration. Where, Xbest and Xworst are replaced by Xqr

best and
Xqr

worst respectively, if and only if Xqr
best ’s fitness is greater than the previous best solution.

The proposed method for the malware families and categories detection phase using
EHHO-ANN is depicted in Figure 3.
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In this classification, models for identifying and categorizing Android malware are
construct-ed using a wide range of ML techniques (including RF, SVM, DT, SMO, K-NN,
MLP and NB). To gauge the efficacy of our proposed method, we employ these models for
analysis. To train these models, the entire dataset is split into five sections called “folds.”
Every part of the model is run, four pieces are utilized for training, and the remaining two
are used for testing. Brief descriptions of ML algorithms and the criteria by which they are
judged are provided here.

In this work, we used the following machine-learning algorithms:

• K-Nearest Neighbors (K-NN) is a simple supervised learning technique. This concept
shares terminology with the lazy learner [58]. This technique does not care about
the underlying data structure when a new instance appears. Instead, it uses distance
measurements (e.g., Euclidean distance, Manhattan distance) to determine which
training samples are most similar to the incoming instance. Majority voting notions
ultimately determine this new instance’s class.

• Sequential Minimal Optimization (SMO) takes a set of points as its input. The method
generates a hyperplane that separates points within the same class by analyzing the
gaps between them. Kernel functions fill in the blanks in SMO by revealing data about
the distance between two spots.

• SVM is a technique [59] that uses a hyperplane to partition the information. In a
nutshell, it’s a dividing line from which to choose. Distances between the nearest data
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points are called support vectors, and the hyperplane is calculated randomly after the
hyperplane is drawn. It searches for the optimal hyperplane that maximizes the profit.

• Random Forest (RF): A considerable number of independent decision trees are used in
RF to form a unified whole [60]. Each decision tree generates an output classification
for the input data, then compiled by RF and represented graphically based on a
majority vote.

• A Decision Tree (DT) is organized in the form of a tree, where each node (whether
internal, leaf, terminal) represents a test on an attribute, and each branch (whether
internal, leaf, or terminal) carries a class name and the results of the test. The C4.5
algorithm has been utilized in this work to categorize Android malware [61].

• Bayes’ theorem provides the theoretical foundation for the NB idea. The program
predicts the probabilities of class membership or the likelihood that a set of tuples
belongs to a specific class. Multi-class and binary classification problems [57] both
benefit from their application.

• Multilayer Perceptron (MLP): There are the hidden and output layers and the input
layer. It can produce results in several different measurement systems. The hidden
layer’s output units are fed into the subsequent layer as input applied deep learning
approaches like ANNs classifiers to various classification challenges. The authors use
MLP to identify and categorize Android malware when classifying and predicting
gait data. The MLP is executed using a hidden layer of h = 3 and sigmoid activation
function for the binary classification and h = 5 and softmax activation function for
the multi-class classification. Learning is assumed to occur at a rate of 0.35. For a
high-level overview of how backpropagation works in a neural network, see Figure 4.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 23 
 

gaps between them. Kernel functions fill in the blanks in SMO by revealing data 
about the distance between two spots. 

• SVM is a technique [59] that uses a hyperplane to partition the information. In a nut-
shell, it’s a dividing line from which to choose. Distances between the nearest data 
points are called support vectors, and the hyperplane is calculated randomly after 
the hyperplane is drawn. It searches for the optimal hyperplane that maximizes the 
profit. 

• Random Forest (RF): A considerable number of independent decision trees are used 
in RF to form a unified whole [60]. Each decision tree generates an output classifica-
tion for the input data, then compiled by RF and represented graphically based on a 
majority vote. 

• A Decision Tree (DT) is organized in the form of a tree, where each node (whether 
internal, leaf, terminal) represents a test on an attribute, and each branch (whether 
internal, leaf, or terminal) carries a class name and the results of the test. The C4.5 
algorithm has been utilized in this work to categorize Android malware [61]. 

• Bayes’ theorem provides the theoretical foundation for the NB idea. The program 
predicts the probabilities of class membership or the likelihood that a set of tuples 
belongs to a specific class. Multi-class and binary classification problems [57] both 
benefit from their application. 

• Multilayer Perceptron (MLP): There are the hidden and output layers and the input 
layer. It can produce results in several different measurement systems. The hidden 
layer’s output units are fed into the subsequent layer as input applied deep learning 
approaches like ANNs classifiers to various classification challenges. The authors use 
MLP to identify and categorize Android malware when classifying and predicting 
gait data. The MLP is executed using a hidden layer of h = 3 and sigmoid activation 
function for the binary classification and h = 5 and softmax activation function for the 
multi-class classification. Learning is assumed to occur at a rate of 0.35. For a high-
level overview of how backpropagation works in a neural network, see Figure 4. 

 
Figure 4. Methodology of backpropagation in neural network. 

5. Experiments 
Specifically, we conduct three primary experiments to measure the efficacy of the 

proposed DroidDetectMW: The first experiment, detection, and identification, is to deter-
mine whether or not a specific app is a malware; the second experiment seeks to identify 
the family of malware, and the last one is the impact of feature selection proposed ap-
proach for both static and dynamic features. In the previous experiment, a comparison 
between with and without feature selection approaches is applied over different models, 

Figure 4. Methodology of backpropagation in neural network.

5. Experiments

Specifically, we conduct three primary experiments to measure the efficacy of the pro-
posed DroidDetectMW: The first experiment, detection, and identification, is to determine
whether or not a specific app is a malware; the second experiment seeks to identify the
family of malware, and the last one is the impact of feature selection proposed approach for
both static and dynamic features. In the previous experiment, a comparison between with
and without feature selection approaches is applied over different models, including the
proposed detection approach. To begin, we divide the dataset into two classes: malware
and benign apps. Ransomware, SMS malware, scareware, and adware samples comprise
the four categories of malware used in the second stage of classification of the dataset. The
data set is further annotated with labels for 13 families of malware as shown in Table 1.
Table 2 offers a comprehensive breakdown of the collected samples utilized to construct
the data set.
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Table 1. Malware family types used.

Malware Family Types Malware Category # of Samples

Ewind Adware 154
Kemoge Adware 153
Dowgin Adware 176
Zsone SMSmalware 105
Jisut Ransomware 117

Svpeng Ransomware 116
AndroidDefender scareware 133

FakeAV scareware 103
Penetho scareware 142

Biige SMSmalware 174
SMSsniffer SMSmalware 181

Youmi Adware 164
Ginmaster Adware 192

Table 2. Distribution of used samples of dataset.

Dataset Number of Samples #of Malware Samples # of Benign Samples

Drebin 1400 450 950
CICAndMal2017 1240 450 790

APKMirror 1200 410 790
VirusShare 1050 600 450

Total 4890 1910 2980

5.1. Evaluation Measures and Experimental Setup

Several measures are used to evaluate the classifiers’ efficacy, such as Matthews
correlation coefficient (MCC), precision, F-measure, true positive rate (TPR), Area under
curve (AUC), and false positive rate (FPR). The evaluation measures are based on false
positive (FP), true negative (TN), true positive (TP), and false negative (FN). We used 20%
of the data during the experiment for testing, while 80% was for training. The following
Equations provide further information. The experimental computing setup is listed in
Table 3. For dynamic features, it also shows that certain families of malware are tailored to
ARM devices and hence cannot run on x86 emulation. Consequently, in such scenarios, the
use of emulator sandboxes for studying and detecting these families becomes impractical,
restricting the effectiveness of emulators as platforms for forensics and detection.

Table 3. The experimental environment settings.

Setting Parameter

PU Intel(R) Core(TM)i7-2.40 GHz
Operating System Windows 10 Home Single

GPU NVIDIA 1060
RAM 32 GB

Python Version 3.8

• TPR—Recall: It is calculated by dividing the number of confirmed positive results by
the total number of positive results. As illustrated in Equation, it can be estimated by
Equation (14):

TPR =
TP

TP + FN
(14)

• FPR: This metric represents the proportion of false positive cases relative to the total
number of true negative cases. The calculation is described by the following Equation (15):
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FPR =
FP

TN + FP
(15)

• Precision is calculated by dividing the number of correct predictions by the total
number of correct predictions. It can be calculated by Equation (16):

Precision =
TP

TP + FP
(16)

• F-measure: It indicates the harmonic mean of precision and recall. Equation (17) is
used to deter-mine this is:

F−measure =
2× (Precision× Recall)
(Precision + Recall)

(17)

• Accuracy: It is calculated by dividing the number of cases by the sum of the instances
that are both true negatives and true positives. Equation (18) used to determine this is:

Accuracy =
TP + TN

TP + FP + FN + TN
(18)

• MCC: It is a standard for evaluating the efficacy of binary classifiers. Its numerical
value ranges from +1 to −1. Here, a value of +1 indicates an exact prediction, while a
value of −1 indicates an opposite forecast. Equation (19) used to determine this is:

MCC =
TP× TN− FP× FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
(19)

• AUC curve: The F-measure is a crucial indicator of a classification model’s efficacy. It
is a quantitative indicator of how easily things can be separated.

where, True Positives (TP) are cases that were expected to be in the “Yes” category and
were found there. False positives (FP) occur when a case is incorrectly labeled as belonging
to the YES category. True Negative (TN) means the case was not included in the YES list
but was expected to be. When a case is predicted to not be in the YES column but is, this is
called a False Negative (FN).

5.2. Malware Binary Detection Based on Static Features

As mentioned before chi-square is the optimal for selecting the static features to use.
Tables 4–6 describe the classification accuracy, precision and F-measure score using different
classification algorithms with chi-square, fisher and MIG score, respectively. The results
from tables proved that the average accuracy of chi-square outperform other measure
for static features. The results for the binary detection using static features are shown in
Table 7. With DroidDetectMW, accuracy is maximized to 96.9%. The accuracy of some
other standard meth-ods, including KNN, SMO, SVM, RF, DT, NB, and MLP, ranges from
92.3% to 93.5.0%, 92.3%, 95.8%, 95%, 94.2%, and 93.5%, respectively. Since NB’s accuracy
relies on the probability distribution, additional data examples would have helped it
perform better. The mentioned models work reasonably well on binary classification with
static features and feature selection. The MCC of DroidDetectMW is recorded at 93.8%.
When compared to other standard models, DroidDetectMW demonstrates a substantial
performance gain. When tested, DroidDetectMW achieves a maximum accuracy of 96.9% at
the 7th epoch. Accuracy in training ranges from 0.811% to 0.987%. This leads to a consistent
convergence of training accuracy. The passing accuracy of a test might be anywhere from 0.795%
to 0.951%.
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Table 4. The evaluation metrics with different classifiers using chi-square rank.

Algorithm K-NN SMO SVM RF DT NB MLP Average

Accuracy (%) 0.923 0.935 0.923 0.958 0.950 0.942 0.935 0.938
Precision (%) 0.917 0.925 0.908 0.942 0.933 0.917 0.933 0.925

F-measure (%) 0.917 0.929 0.916 0.954 0.945 0.936 0.929 0.932

Table 5. The evaluation metrics with different classifiers using fisher rank.

Algorithm K-NN SMO SVM RF DT NB MLP Average

Accuracy (%) 0.904 0.915 0.902 0.912 0.941 0.922 0.942 0.918
Precision (%) 0.925 0.925 0.901 0.909 0.933 0.910 0.930 0.919

F-measure (%) 0.904 0.912 0.901 0.904 0.940 0.916 0.933 0.915

Table 6. The evaluation metrics with different classifiers using MIG rank.

Algorithm K-NN SMO SVM RF DT NB MLP Average

Accuracy (%) 0.931 0.933 0.916 0.934 0.948 0.944 0.931 0.933
Precision (%) 0.922 0.927 0.910 0.931 0.916 0.915 0.927 0.921

F-measure (%) 0.925 0.921 0.911 0.928 0.944 0.940 0.928 0.928

Table 7. The effectiveness of static feature selection for binary malware classification.

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.923 0.935 0.923 0.958 0.950 0.942 0.935 0.969
FPR (%) 0.071 0.064 0.077 0.049 0.056 0.069 0.058 0.029
TPR (%) 0.917 0.933 0.924 0.966 0.957 0.957 0.926 0.967

Precision (%) 0.917 0.925 0.908 0.942 0.933 0.917 0.933 0.967
F-measure (%) 0.917 0.929 0.916 0.954 0.945 0.936 0.929 0.967

MCC (%) 0.845 0.868 0.845 0.915 0.899 0.884 0.869 0.938
AUC (%) 0.923 0.931 0.915 0.946 0.939 0.924 0.938 0.969

5.3. Malware Category Detection Based on Static Features

The results of the static features selection on the detection of malware category can
be shown in Table 8. Using DroidDetectMW, the highest accuracy possible is 94.2%. The
accuracy of some other standard methods, including KNN, SMO, SVM, RF, DT, NB, and
MLP, is 86.5%, 89.6%, 87.3%, 92.3%, 92.3%, 90.4%, and 88.80%. To improve the probability
distribution, NB requires more data examples.
Table 8. The effectiveness of static feature selection for malware category classification.

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.865 0.896 0.873 0.923 0.923 0.904 0.888 0.942
FPR (%) 0.138 0.105 0.126 0.083 0.071 0.092 0.117 0.069
TPR (%) 0.87 0.897 0.872 0.931 0.917 0.899 0.896 0.957

Precision (%) 0.833 0.875 0.85 0.9 0.917 0.892 0.858 0.917
F-measure (%) 0.851 0.886 0.861 0.915 0.917 0.895 0.877 0.936

MCC (%) - - - - - - - -
AUC (%) 0.848 0.885 0.862 0.908 0.923 0.900 0.871 0.924

In this analysis, we look at category as a feature in the malware dataset, and we
find that its ROC AUC curve is 92.4%. When compared to conventional approaches,
DroidDetectMW demonstrates a noticeable performance gain. With an improved f-score of
93.6%, DroidDetectMW is an intelligent solution.

5.4. Malware Family Classification and Detection Based on Static Features Selection

The result of the malware family classification using the static feature selection is
shown in Table 9. DroidDetectMW ‘s accuracy of 91.5% is the best for identifying malware
belonging to the same family. The accuracy of other standard methods, including KNN,
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SMO, SVM, RF, DT, NB, and MLP, is 85.8%, 85.4%, 85%, 86.9%, 86.2%, 83.5%, and 84.6%.
Due to its focus on probability distribution, Naive Bayes obtains a minimum accuracy
of 83.5% in this scenario and requires more data examples to improve. This analysis
determines that family is a significant feature in the malware dataset, with an MCC of 83%
and an Area Under the Curve (AUC) of 90.1%.

Table 9. The effectiveness of static feature selection for malware family classification.

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.858 0.854 0.850 0.869 0.862 0.835 0.846 0.915
FPR (%) 0.129 0.155 0.142 0.132 0.134 0.170 0.158 0.090
TPR (%) 0.843 0.866 0.840 0.871 0.856 0.841 0.851 0.922

Precision (%) 0.850 0.808 0.833 0.842 0.842 0.792 0.808 0.892
F-measure (%) 0.846 0.836 0.837 0.856 0.849 0.815 0.829 0.907

MCC (%) - - - - - - - -
AUC (%) 0.860 0.826 0.846 0.855 0.854 0.811 0.825 0.901

5.5. Malware Binary Detection Based on Dynamic Features Selection

The result of the binary classification using the dynamic feature selection is shown in
Table 10.

Table 10. The effectiveness of dynamic feature selection for binary classification.

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.927 0.938 0.935 0.942 0.935 0.935 0.931 0.973
FPR (%) 0.094 0.069 0.082 0.050 0.064 0.051 0.076 0.028
TPR (%) 0.955 0.948 0.956 0.934 0.933 0.919 0.940 0.975

Precision (%) 0.883 0.917 0.900 0.942 0.925 0.942 0.908 0.967
F-measure (%) 0.918 0.932 0.927 0.938 0.929 0.930 0.924 0.971

MCC (%) 0.854 0.876 0.869 0.884 0.868 0.869 0.861 0.946
AUC (%) 0.895 0.924 0.909 0.946 0.931 0.945 0.916 0.969

DroidDetectMW ‘s accuracy of 97.3% is the best. The accuracy of some other standard
meth-ods, including KNN, SMO, SVM, RF, DT, NB, and MLP, is 92.7%, 93.8%, 93.5%, 94.2%,
93.5%, 93.5%, and 93.1. The MCC of DroidDetectMW is at 94.6%. The proposed approach
is superior to other models in evaluation metrics for dynamic feature selection as it obtains
high accuracy and f-measure.

5.6. Malware Category Detection Based on Dynamic Features Selection

The result of the malware category classification based on dynamic feature selection
is displayed in Table 11. By utilizing DroidDetectMW, we can improve accuracy to 89.2%.
Accuracy levels of 79.6%, 80.8%, 93.5%, 84.6%, 81.2%, 81.2%, 83.5%, and 80.8% are attained
using the alternative traditional methods of KNN, SMO, SVM, RF, DT, NB, and MLP, re-
spectively. When compared to conventional approaches, DroidDetectMW demonstrates a
noticeable performance gain. Regarding f-score, accuracy, precision, and recall, DroidDe-
tectMW displays a competent growth of 88.2%, 89.2%, 87.5%, and 89%, respectively. This
work finds that the ROC AUC curve is 88.5%.

Table 11. The effectiveness of dynamic feature selection for malware category classification.

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.796 0.808 0.935 0.846 0.812 0.835 0.808 0.892
FPR (%) 0.204 0.179 0.082 0.143 0.173 0.183 0.188 0.106
TPR (%) 0.796 0.792 0.956 0.833 0.793 0.860 0.802 0.890

Precision (%) 0.750 0.792 0.900 0.833 0.800 0.767 0.775 0.875
F-measure (%) 0.773 0.792 0.927 0.833 0.797 0.811 0.788 0.882

MCC (%) - - - - - - - -
AUC (%) 0.773 0.807 0.909 0.845 0.814 0.792 0.794 0.885
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5.7. Malware Family Classification and Detection Based on Dynamic Feature Selection

In Table 12, we see that DroidDetectMW achieves the highest accuracy, 82.7% when
applied to Malware Family classification using dynamic feature selection.

Table 12. The effectiveness of dynamic feature selection for malware family classification.

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.788 0.804 0.812 0.812 0.804 0.800 0.808 0.827
FPR (%) 0.229 0.209 0.210 0.206 0.213 0.222 0.204 0.194
TPR (%) 0.816 0.822 0.845 0.838 0.829 0.833 0.824 0.857

Precision (%) 0.700 0.733 0.725 0.733 0.725 0.708 0.742 0.750
F-measure (%) 0.753 0.775 0.780 0.782 0.773 0.766 0.781 0.800

MCC (%) - - - - - - - -
AUC (%) 0.735 0.762 0.757 0.763 0.756 0.743 0.769 0.778

Accuracy rates of 78.8%, 80.4%, 81.2%, 81.2%, 80.4%, 80%, and 80.8% are attained by
the traditional methods of KNN, SMO, SVM, RF, DT, NB, and MLP, respectively. When
compared to standard models, DroidDetectMW demonstrates a substantial performance
gain. According to this check of the family as a feature in the malware dataset, the ROC
AUC curve is 77.8%.

5.8. Classification Results Based on Hybrid Features

The malware’s execution stalling and obfuscation make a single static or dynamic
technique insufficient for correct classification. As a result, we employ a hybrid method of
analysis to address this issue. We integrated the dynamic and static malware analysis results
to get a complete picture. Along with the proposed model, seven ML algorithms are used
for both detection and classification of binary malware. Binary classification evaluation
results using ML approaches on integrated features are shown in Table 13. The proposed
DroidDetectMW model is superior and more accurate than the classifiers mentioned earlier.
DroidDetectMW’s accuracy is 98.1%, whereas RF and DT only manage 96.9% and 96.2%,
respectively. The results of a comparison of ML methods using integrated features for
category classification are shown in Table 14. Compared to the rest of these classifiers,
DroidDetectMW is superior in terms of performance and precision. DroidDetectMW’s de-
tection accuracy is 96.9%, with RF and K-NN each achieving 94.6 percent. DroidDetectMW
achieves superior outcomes than other classifiers in terms of precision (95%) as well as
TPR (98.3%) and F-measure (96.6%). Table 15 presents the malware family classification
using different classifiers and it is noted that the proposed model obtained high accuracy
of 88.9 which outperform other models. In Figure 5, we compare seven different classifiers
to the proposed model and other methods we tested for binary classification to see which
one yielded the best results in terms of MCC and accuracy. Integrated with the results in
Tables 13–15, it is evident that combining static and dynamic information leads to gains
in accuracy for all classifiers. This suggests that greater identification and classification of
Android malware is possible when dynamic and static features are used together.

Table 13. The effectiveness of integrated feature selection for malware binary classification.

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.946 0.958 0.942 0.969 0.962 0.946 0.946 0.981
FPR (%) 0.068 0.049 0.063 0.035 0.042 0.056 0.056 0.021
TPR (%) 0.965 0.966 0.949 0.975 0.966 0.949 0.949 0.983

Precision (%) 0.917 0.942 0.925 0.958 0.950 0.933 0.933 0.975
F-measure (%) 0.940 0.954 0.937 0.966 0.958 0.941 0.941 0.979

MCC (%) 0.892 0.915 0.884 0.938 0.923 0.892 0.892 0.961
AUC (%) 0.924 0.946 0.931 0.962 0.954 0.938 0.938 0.977
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Figure 5. Classifiers for binary malware classification were compared based on (a) Accuracy and (b)
MCC with dynamic, static, and integrated features.

Table 14. The effectiveness of integrated feature selection for malware category classification.

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.946 0.915 0.919 0.946 0.942 0.923 0.931 0.969
FPR (%) 0.068 0.096 0.101 0.063 0.063 0.095 0.082 0.042
TPR (%) 0.965 0.930 0.946 0.957 0.949 0.946 0.947 0.983

Precision (%) 0.917 0.883 0.875 0.925 0.925 0.883 0.900 0.950
F-measure (%) 0.940 0.906 0.909 0.941 0.937 0.914 0.923 0.966

MCC (%) - - - - - - - -
AUC (%) 0.924 0.894 0.887 0.931 0.931 0.894 0.909 0.954

Figure 6 compares seven classifiers to the proposed model in terms of accuracy con-
cerning different approaches in our tests for malware category classification.
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Figure 6. Accuracy and precision of different classifiers using static, dynamic and integrated features
in malware category classification.

Table 15. The effectiveness of integrated feature selection for malware family classification.

Algorithm K-NN SMO SVM RF DT NB MLP Proposed

Accuracy (%) 0.866 0.765 0.779 0.846 0.842 0.823 0.831 0.889
FPR (%) 0.092 0.086 0.131 0.103 0.093 0.097 0.115 0.072
TPR (%) 0.875 0.790 0.746 0.727 0.743 0.752 0.726 0.903

Precision (%) 0.897 0.893 0.885 0.865 0.855 0.863 0.850 0.860
F-measure (%) 0.850 0.756 0.759 0.822 0.827 0.802 0.812 0.862

MCC (%) - - - - - - - -
AUC (%) 0.824 0.744 0.732 0.812 0.813 0.792 0.801 0.852

It demonstrates that the integrated approach outperforms the dynamic and static
features separately for all classifiers.

5.9. Comparative Analysis

Precision and recall are evaluated between the two dataset versions in Tables 10
and 11. Taheri et al. [21] conducted the study, calculating the dataset’s precision and recall
with the help of the random forest algorithm. Using the DroidDetectMW algorithm, our
method delivers the best results. Our research improves upon previous studies’ findings in
Static and Dynamic feature analysis. Table 13 shows that our approach has a maximum
precision of 96.7% when classifying malware binaries. Compared to the state-of-the-art,
binary malware classification performance is enhanced by Static and dynamic classification
performance.

Table 16 shows that with static feature selection malware binary classification, Droid-
DetectMW achieves the maximum precision of 96.7%. Other investigations’ highest levels
of precision are 93%, 89%, and 85%. Table 17 shows that when applied to the dynamic
feature selection for the malware category classification problem, DroidDetectMW ‘s 87.5%
precision utilising optimized ANN is the best. For comparison, the highest levels of
precision were found in other research.

Table 16. Binary malware classification using static features selection: A comparison of results.

Related Work Precision Recall

Abuthawabeh et al. [49] 89%(RF) 83.22%(RF)
Taheri et al. [21] 85.8%(RF) 88.3%(RF)
Abuthawabeh et al. [49] 85.7% (DT) 86.1%(DT)
Lashkari et al. [45] 85.4%(KNN) 88.1%(KNN)
Jiang et al. [48] 93.8 (DT) 94.36 (DT)
DroidDetectMW 96.7 96.7
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Table 17. Malware category classification using dynamic features selection: A comparison of results.

Related Work Precision Recall

Abuthawabeh et al. [49] 80.2%(RF) 79.6%(RF)
Taheri et al. [21] 49.9%(RF) 48.5%(RF)
Lashkari et al. [45] 47.8%(DT) 45.9%(DN)
Lashkari et al. [45] 49.5%(KNN) 48%(KNN)
Abuthawabeh et al. [49] 77%(DT) 77%(DT)
DroidDetectMW 87.5% 89%

5.10. Feature Selection Effect on Static and Dynamic Features

The proposed two approaches for feature selection for static and dynamic features
significantly impact the number of features. When the number of features is reduced,
the evaluation metrics are improved. The filter approaches for feature selection in static
features select the optimal subset of features to participate in the detection phase. The
feature selection approach with the proposed model for malware detection improves the
detection ability and reduces the false negatives and positives of malware apps.

6. Conclusions and Future Work

For Android malware detection and classification, this research suggested a hybrid
analysis-based process, enhancing both static and dynamic features gleaned from network
traffic. The proposed mode can be broken down into three distinct phases. The features
are then sent into the selection phase after being extracted. There are two primary stages
within the feature selection process: dynamic feature selection and static feature selection.
We will work to lower the total amount of static and dynamic features throughout the
two phases. Static feature selection employs a variety of filtering methods to zero in on
the best static features. Fuzzy and metaheuristic optimization techniques are used in the
second stage of the dynamic feature selection process. When the feature selection process
is complete, the resulting subset of features is used in the detection stage. Within the
scope of the detection process, we introduced a novel detection technique that uses an
artificial neural network. The best architecture of ANN may be chosen with the help of a
revised version of HHO, which is presented here. The detection method and the feature
selection procedure are assessed by comparing the improved ANN to other ML models.
Experiments are run utilizing a variety of binary, malware category, and malware family
samples to gauge effectiveness. The results validated the proposed model’s ad-vantage
over competing methods. Overall performance is measured using a variety of assessment
criteria.

There is a significant risk that the use of code obfuscation and encryption will in-
validate the results of this experiment. Some dynamic analysis features, such as traffic
files, may not be enough to effectively detect malware that is not primarily network-based
because they are employed in isolation from other features like memory device and logs
information logs. The reliability of the experiment is also significantly affected by this.
There is also a lack of transparency in interpreting dynamic analytic techniques. Our future
efforts will center on these concerns.

Author Contributions: Conceptualization, F.T.; methodology, O.A.; software, H.A.H.; validation,
H.A.H. and F.T.; formal analysis, M.A.-k.; investigation, O.A.; resources, F.T.; data curation, F.T.;
writing—original draft preparation, S.A.; writing—review and editing, S.A.; visualization, H.A.H.;
supervision, F.T.; project administration, F.T.; funding acquisition, F.T. All authors have read and
agreed to the published version of the manuscript.

Funding: UAE University and Zayed University joint research grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2023, 13, 7720 21 of 23

Data Availability Statement: Canadian Institute for Cybersecurity (CIC) offers a competent real-
world dataset named CICAndMal2017.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Smartphone Users Worldwide 2016–2023. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-

users-worldwide/ (accessed on 27 December 2022).
2. Mosa, A.S.M.; Yoo, I.; Sheets, L. A Systematic Review of Healthcare Applications for Smartphones. BMC Med. Inform. Decis. Mak.

2012, 12, 67. [CrossRef] [PubMed]
3. Number of Apps Available in Leading App Stores as of 4th Quarter 2020. 2021. Available online: https://www.statista.com/

statistics/276623/number-of-apps-available-in-leading-app-stores/#:%7e:text=As (accessed on 27 December 2022).
4. Alzaylaee, M.K.; Yerima, S.Y.; Sezer, S. DL-Droid: Deep learning based android malware detection using real devices. Comput.

Secur. 2020, 89, 101663. [CrossRef]
5. Dhalaria, M.; Gandotra, E. Android malware detection techniques: A literature review. Recent Pat. Eng. 2021, 15, 225–245.

[CrossRef]
6. Taher, F.; Abdel-Salam, M.; Elhoseny, M.; El-Hasnony, I.M. Reliable Machine Learning Model for IIoT Botnet Detection. IEEE

Access 2023, 11, 49319–49336. [CrossRef]
7. Agrawal, P.; Trivedi, B. Machine Learning Classifiers for Android Malware Detection. In Data Management, Analytics and

Innovation; Springer: Berlin/Heidelberg, Germany, 2021; pp. 311–322.
8. Rajagopal, A. Incident of the Week: Malware Infects 25m Android Phones. 2019. Available online: https://www.cshub.com/

malware/articles/incident-of-the-week-malware-infects-25m-android-phones (accessed on 27 December 2022).
9. BBC. One Billion Android Devices at Risk of Hacking. 2021. Available online: https://www.bbc.com/news/technology-51751950

(accessed on 27 December 2022).
10. Goodin, D. Google Play Has Been Spreading Advanced Android Malware for Years. 2021. Available online: https://arstechnica.

com/information-technology/2020/04/sophisticated-android-backdoors-have-been-populating-google-play-for-years/ (ac-
cessed on 27 December 2022).

11. Vaas, L. Android Malware Flytrap Hijacks Facebook Accounts. 2022. Available online: https://threatpost.com/android-malware-
flytrap-facebook/168463/ (accessed on 27 December 2022).

12. Wang, C.; Xu, Q.; Lin, X.; Liu, S. Research on data mining of permissions mode for Android malware detection. Clust. Comput.
2019, 22, 13337–13350. [CrossRef]

13. Ko, J.-S.; Jo, J.-S.; Kim, D.-H.; Choi, S.-K.; Kwak, J. Real Time Android Ransomware Detection by Analyzed Android Applications.
In Proceedings of the 2019 International Conference on Electronics, Information, and Communication (ICEIC), Auckland, New Zealand,
22–25 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5.

14. Ideses, I.; Neuberger, A. Adware Detection and Privacy Control in Mobile Devices. In Proceedings of the 2014 IEEE 28th Convention
of Electrical & Electronics Engineers in Israel (IEEEI), Eilat, Israel, 3–5 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–5.

15. Faghihi, F.; Abadi, M.; Tajoddin, A. Smsbothunter: A novel anomaly detection technique to detect sms botnets. In Proceedings of
the 2018 15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC),
Tehran, Iran, 28–29 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

16. Sikorski, M.; Honig, A. Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software; No Starch Press: San
Francisco, CA, USA, 2012.

17. Iwendi, C.; Jalil, Z.; Javed, A.R.; Reddy, T.; Kaluri, R.; Srivastava, G.; Jo, O. Keysplitwatermark: Zero watermarking algorithm for
software protection against cyber-attacks. IEEE Access 2020, 8, 72650–72660. [CrossRef]

18. Manikandan, R.; Keerthana, S.; Priya, S.S.; Madhumitha, R.; Aditya, A.G.S.; Priya, D. Android-based System for Intelligent Traffic
Signal Control and Emergency Call Functionality. J. Cogn. Hum.-Comput. Interact. 2023, 5, 31–44. [CrossRef]

19. Pustokhin, D.A.; Pustokhina, I.V. FLC-NET: Federated Lightweight Network for Early Discovery of Malware in Resource-
constrained IoT. J. Int. J. Wirel. Ad Hoc Commun. 2023, 6, 43–55. [CrossRef]

20. Taheri, L.; Kadir, A.F.A.; Lashkari, A.H. Extensible Android Malware Detection and Family Classification Using Network-Flows
and API-Calls. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India, 1–3 October
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8.

21. Tchakounté, F.; Wandala, A.D.; Tiguiane, Y. Detection of android malware based on sequence alignment of permissions. Int. J.
Comput. 2019, 35, 26–36.

22. Yuan, Z.; Lu, Y.; Xue, Y. Droiddetector: Android malware characterization and detection using deep learning. Tsinghua Sci.
Technol. 2016, 21, 114–123. [CrossRef]

23. CuckooDroid. Available online: https://cuckoo-droid.readthedocs.io/en/latest/installation/ (accessed on 27 December 2022).
24. Gandotra, E.; Bansal, D.; Sofat, S. Malware intelligence: Beyond malware analysis. Int. J. Adv. Intell. Paradig. 2019, 13, 80–100.

[CrossRef]
25. Abid, R.; Rizwan, M.; Veselý, P.; Basharat, A.; Tariq, U.; Javed, A.R. Social Networking Security during COVID-19: A Systematic

Literature Review. Wirel. Commun. Mob. Comput. 2022, 2022, 2975033. [CrossRef]

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://doi.org/10.1186/1472-6947-12-67
https://www.ncbi.nlm.nih.gov/pubmed/22781312
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/#:%7e:text=As
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/#:%7e:text=As
https://doi.org/10.1016/j.cose.2019.101663
https://doi.org/10.2174/1872212114999200710143847
https://doi.org/10.1109/ACCESS.2023.3253432
https://www.cshub.com/malware/articles/incident-of-the-week-malware-infects-25m-android-phones
https://www.cshub.com/malware/articles/incident-of-the-week-malware-infects-25m-android-phones
https://www.bbc.com/news/technology-51751950
https://arstechnica.com/information-technology/2020/04/sophisticated-android-backdoors-have-been-populating-google-play-for-years/
https://arstechnica.com/information-technology/2020/04/sophisticated-android-backdoors-have-been-populating-google-play-for-years/
https://threatpost.com/android-malware-flytrap-facebook/168463/
https://threatpost.com/android-malware-flytrap-facebook/168463/
https://doi.org/10.1007/s10586-018-1904-x
https://doi.org/10.1109/ACCESS.2020.2988160
https://doi.org/10.54216/JCHCI.050204
https://doi.org/10.54216/IJWAC.060204
https://doi.org/10.1109/TST.2016.7399288
https://cuckoo-droid.readthedocs.io/en/latest/installation/
https://doi.org/10.1504/IJAIP.2019.099945
https://doi.org/10.1155/2022/2975033


Appl. Sci. 2023, 13, 7720 22 of 23

26. Lakovic, V. Crisis management of android botnet detection using adaptive neuro-fuzzy inference system. Ann. Data Sci. 2020, 7, 347–355.
[CrossRef]

27. Saridou, B.; Rose, J.R.; Shiaeles, S.; Papadopoulos, B. SAGMAD—A Signature Agnostic Malware Detection System Based on
Binary Visualisation and Fuzzy Sets. Electronics 2022, 11, 1044. [CrossRef]

28. Gupta, D.; Ahlawat, A.K.; Sharma, A.; Rodrigues, J.J. Feature selection and evaluation for software usability model using modified
moth-flame optimization. Computing 2020, 102, 1503–1520. [CrossRef]

29. Sahu, P.C.; Bhoi, S.K.; Jena, N.K.; Sahu, B.K.; Prusty, R.C. A robust Multi Verse Optimized fuzzy aided tilt Controller for AGC of
hybrid Power System. In Proceedings of the 2021 1st Odisha International Conference on Electrical Power Engineering, Communication
and Computing Technology (ODICON), Bhubaneswar, India, 8–9 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5.

30. Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M. Quasi-oppositional differential evolution. In Proceedings of the 2007 IEEE Congress
on Evolutionary Computation, Singapore, 25–28 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 2229–2236.

31. Strumberger, I.; Bacanin, N.; Tuba, M.; Tuba, E. Resource scheduling in cloud computing based on a hybridized whale optimization
algorithm. Appl. Sci. 2019, 9, 4893. [CrossRef]

32. Strumberger, I.; Minovic, M.; Tuba, M.; Bacanin, N. Performance of elephant herding optimization and tree growth algorithm
adapted for node localization in wireless sensor networks. Sensors 2019, 19, 2515. [CrossRef]

33. Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-An, W.; Ye, H. Significant permission identification for machine-learning-based android
malware detection. IEEE Trans. Ind. Inform. 2018, 14, 3216–3225. [CrossRef]

34. Wang, W.; Wang, X.; Feng, D.; Liu, J.; Han, Z.; Zhang, X. Exploring permission-induced risk in android applications for malicious
application detection. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1869–1882. [CrossRef]

35. Yerima, S.Y.; Sezer, S. Droidfusion: A novel multilevel classifier fusion approach for android malware detection. IEEE Trans.
Cybern. 2018, 49, 453–466. [CrossRef]

36. Das, S.; Liu, Y.; Zhang, W.; Chandramohan, M. Semantics-based online malware detection: Towards efficient real-time protection
against malware. IEEE Trans. Inf. Forensics Secur. 2015, 11, 289–302. [CrossRef]

37. Bläsing, T.; Batyuk, L.; Schmidt, A.-D.; Camtepe, S.A.; Albayrak, S. An android application sandbox system for suspicious
software detection. In Proceedings of the 2010 5th International Conference on Malicious and Unwanted Software, Nancy, France, 19–20
October 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 55–62.

38. Zhu, H.-J.; Wang, L.-M.; Zhong, S.; Li, Y.; Sheng, V.S. A hybrid deep network framework for Android malware detection. IEEE
Trans. Knowl. Data Eng. 2021, 34, 5558–5570. [CrossRef]

39. Zhang, J. Deepmal: A CNN-LSTM model for malware detection based on dynamic semantic behaviours. In Proceedings of the
2020 International Conference on Computer Information and Big Data Applications (CIBDA), Guiyang, China, 17–19 April 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 313–316.

40. Kotian, P.; Sonkusare, R. Detection of Malware in Cloud Environment using Deep Neural Network. In Proceedings of the 2021 6th
International Conference for Convergence in Technology (I2CT), Maharashtra, India, 2–4 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5.

41. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

42. Lashkari, A.H.; Kadir AF, A.; Taheri, L.; Ghorbani, A.A. Toward developing a systematic approach to generate benchmark
android malware datasets and classification. In Proceedings of the International Carnahan Conference on Security Technology (ICCST),
Montreal, QC, Canada, 22–25 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7.

43. Virustotal: Virustotal Free Antivirus Scanners. Available online: https://support.virustotal.com/hc/en-us/categories/36000016
0117-About-us (accessed on 27 December 2022).

44. Ahvanooey, M.T.; Li, Q.; Rabbani, M.; Rajput, A.R. A survey on smartphones security: Software vulnerabilities, malware, and
attacks. arXiv 2020, arXiv:2001.09406.

45. Liao, Q. Ransomware: A growing threat to SMEs. In Proceedings of the Conference Southwest Decision Science Institutes:
Southwest Decision Science Institutes, Houston, TX, USA, 4–8 March 2008; pp. 1–7.

46. Abuthawabeh, M.K.A.; Mahmoud, K.W. Android malware detection and categorization based on conversation-level network
traffic features. In Proceedings of the 2019 International Arab Conference on Information Technology (ACIT), Al Ain, United Arab Emirates,
3–5 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 42–47.

47. Hamandi, K.; Chehab, A.; Elhajj, I.H.; Kayssi, A. Android SMS malware: Vulnerability and mitigation. In Proceedings of the 27th
International Conference on Advanced Information Networking and Applications Workshops, Barcelona, Spain, 25–28 March 2013; IEEE:
Piscataway, NJ, USA, 2013; pp. 1004–1009.

48. Chizi, B.; Maimon, O. Dimension reduction and feature selection. In Data Mining and Knowledge Discovery Handbook; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 83–100.

49. Pedregosa, F. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
50. Sapre, S.; Mini, S. Emulous mechanism based multi-objective moth–flame optimization algorithm. J. Parallel Distrib. Comput.

2021, 150, 15–33. [CrossRef]
51. Sanki, P.; Mazumder, S.; Basu, M.; Pal, P.S.; Das, D. Moth flame optimization based fuzzy-PID controller for power–frequency

balance of an islanded microgrid. J. Inst. Eng. Ser. B 2021, 102, 997–1006. [CrossRef]
52. Liu, X.; Du, X.; Lei, Q.; Liu, K. Multifamily classification of Android malware with a fuzzy strategy to resist polymorphic familial

variants. IEEE Access 2020, 8, 156900–156914. [CrossRef]

https://doi.org/10.1007/s40745-020-00265-1
https://doi.org/10.3390/electronics11071044
https://doi.org/10.1007/s00607-020-00809-6
https://doi.org/10.3390/app9224893
https://doi.org/10.3390/s19112515
https://doi.org/10.1109/TII.2017.2789219
https://doi.org/10.1109/TIFS.2014.2353996
https://doi.org/10.1109/TCYB.2017.2777960
https://doi.org/10.1109/TIFS.2015.2491300
https://doi.org/10.1109/TKDE.2021.3067658
https://doi.org/10.1016/j.future.2019.02.028
https://support.virustotal.com/hc/en-us/categories/360000160117-About-us
https://support.virustotal.com/hc/en-us/categories/360000160117-About-us
https://doi.org/10.1016/j.jpdc.2020.12.010
https://doi.org/10.1007/s40031-021-00607-4
https://doi.org/10.1109/ACCESS.2020.3019282


Appl. Sci. 2023, 13, 7720 23 of 23

53. Aljarah, I.; Faris, H.; Heidari, A.A.; Mafarja, M.M.; Al-Zoubi, A.M.; Castillo, P.A.; Merelo, J.J. A robust multi-objective feature
selection model based on local neighborhood multi-verse optimization. IEEE Access 2021, 9, 100009–100028. [CrossRef]

54. Darrell, T.; Indyk, P.; Shakhnarovich, G. Nearest-Neighbor Methods in Learning and Vision: Theory and Practice; MIT Press: Cambridge,
MA, USA, 2005.

55. Keerthi, S.S.; Gilbert, E.G. Convergence of a generalized SMO algorithm for SVM classifier design. Mach. Learn. 2002, 46, 351–360.
[CrossRef]

56. Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22.
57. Ewees, A.A.; Abd Elaziz, M.; Houssein, E.H. Improved grasshopper optimization algorithm using opposition-based learning.

Expert Syst. Appl. 2018, 112, 156–172. [CrossRef]
58. Quinlan, J.R. C4.5: Program for Machine Learning; Morgan Kaufmann Publishers: San Mateo, CA, USA, 1993; pp. 1–299. Available

online: https://books.google.ae/books?id=b3ujBQAAQBAJ&printsec=frontcover&hl=ar&source=gbs_ge_summary_r&cad=
0#v=onepage&q&f=false (accessed on 27 December 2022).

59. Domingos, P.; Pazzani, M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 1997, 29, 103–130.
[CrossRef]

60. Semwal, V.B.; Mondal, K.; Nandi, G.C. Robust and accurate feature selection for humanoid push recovery and classification:
Deep learning approach. Neural Comput. Appl. 2017, 28, 565–574. [CrossRef]

61. Vasan, D.; Alazab, M.; Wassan, S.; Naeem, H.; Safaei, B.; Zheng, Q. IMCFN: Image-based malware classification using fine-tuned
convolutional neural network architecture. Comput. Netw. 2020, 171, 107138. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2021.3097206
https://doi.org/10.1023/A:1012431217818
https://doi.org/10.1016/j.eswa.2018.06.023
https://books.google.ae/books?id=b3ujBQAAQBAJ&printsec=frontcover&hl=ar&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.ae/books?id=b3ujBQAAQBAJ&printsec=frontcover&hl=ar&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1007/s00521-015-2089-3
https://doi.org/10.1016/j.comnet.2020.107138

	Introduction 
	Related Work 
	Preliminary 
	Harris Hawks Optimization (HHO) 
	Dataset and Malware Categories 

	Proposed Framework 
	Data Pre-Processing 
	Feature Selection 
	Detection and Family Classification 

	Experiments 
	Evaluation Measures and Experimental Setup 
	Malware Binary Detection Based on Static Features 
	Malware Category Detection Based on Static Features 
	Malware Family Classification and Detection Based on Static Features Selection 
	Malware Binary Detection Based on Dynamic Features Selection 
	Malware Category Detection Based on Dynamic Features Selection 
	Malware Family Classification and Detection Based on Dynamic Feature Selection 
	Classification Results Based on Hybrid Features 
	Comparative Analysis 
	Feature Selection Effect on Static and Dynamic Features 

	Conclusions and Future Work 
	References

