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Abstract: This study presents a new semi-supervised action recognition method via adaptive feature
analysis. We assume that action videos can be regarded as data points in embedding manifold
subspace, and their matching problem can be quantified through a specific Grassmannian kernel
function while integrating feature correlation exploration and data similarity measurement into a
joint framework. By maximizing the intra-class compactness based on labeled data, our algorithm
can learn multiple features and leverage unlabeled data to enhance recognition. We introduce
the Grassmannian kernels and the Projected Barzilai–Borwein (PBB) method to train a subspace
projection matrix as a classifier. Experiment results show our method has outperformed the compared
approaches when a few labeled training samples are available.

Keywords: non-monotone line-search; two-point step-size gradient; Grassmannian kernels

1. Introduction

Effective feature representation is key to image processing [1–3] and video under-
standing [4–6]. Spatio-temporal features [7,8], subspace features [9,10], and label infor-
mation [11,12] have been investigated for action recognition. Nevertheless, in Figure 1,
we observe that video understanding represents a significant evolution through new
datasets and approaches. The activities scenarios have moved on from simple sports,
isolated movies, normal surveillance to cluttered home sequences, egocentric interactions
of kitchens, real-world anomalous events, part-level action parsing, dark environments,
and complex surveillance videos. Considering the various views, illumination, poses,
and outdoor conditions of activities, while the data distribution of feature space remains
uncertain, how do we discover the underlying embedded subspace for different types of
features, and what are the boundaries of action clips?

On the other hand, large-scale videos are constantly emerging nowadays; thus, lots
of segments need automatic labeling, but this requires human labor. Large amounts of
normal behaviors are more than those of anomalous events. It is important to measure data
similarity by sample matching with distance metric learning. Noticeably, some segments in
untrimmed videos may be out of specific categories [13] , or there are no annotations of new
sequences in the dark environment [14]. Therefore, in order to solve the point-matching
problem in a semi-supervised manner, we discuss how to convert the video-set matching
problem to a data distance measurement problem on the manifold subspace.

Correlations between multiple features may provide distinctive information; hence,
feature correlation mining has been explored to improve the recognition results when
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labeled data are scarce [10,15]. However, these approaches may have limitations in learning
discriminant features. First, although existing algorithms evaluate the common shared
structures among different actions, they do not take inter-class separability into account.
Second, current semi-supervised approaches solve the non-convex optimization problem
by impressive derivation, but the global optimum may not be computed mathematically
through the alternating least-squares (ALS) iterative method.

Figure 1. Sample frames from (a) home activities (Charades [16]), (b) real-world anomalies (UCF-
Crime [13]), (c) dark environments (ARID [14]), (d) egocentric interactions (EPIC-KITCHENS-
100 [17]), (e) part-level actions (Kinetics-TPS [18]), and (f) fight scenarios (CSCD [19]). All videos
have a large gap towards target-oriented and diversity-oriented. (a) Charades depicts cluttered
home actions from multimedia, (b) UCF-Crime shows real-world events containing anomalous and
normal segments in untrimmed videos, (c) ARID aims to recognize actions in low illumination
through semi-supervised methods, (d) EPIC-KITCHENS-100 consists of daily activities in the kitchen
from first-person videos, (e) Kinetics-TPS develops a large-scale kinetics-temporal part state for
encoding the composition of body parts, and (f) CSCD collects fight and no-fight scenarios from
surveillance cameras.

2. Motivation and Contributions

To overcome the limitations of using multiple features for training, we propose mod-
eling intra-class compactness and inter-class separability simultaneously, then capturing
high-level semantic patterns via multiple-feature analysis. Considering the optimization
process, we introduce the PBB algorithm because of its effectiveness in obtaining an optimal
solution [20]. The PBB method is a non-monotone line-search technique considered for the
minimization of differentiable functions on closed convex sets [21].

Inspired by the research using multiple features [11,15], our framework was extended
in a multiple-feature-based manner to improve recognition. We proposed the characteriza-
tion of high-level semantic patterns through low-level action features using multiple-feature
analysis. Multiple features were extracted from different views of labeled and unlabeled
action videos. Based on the constructed graph model, pseudo-information of unlabeled
videos can be generated by label propagation and feature correlations. For each type
of feature, nearby samples preserve the consistency separately, while unlabeled training
data perform the label prediction by jointly global consistency of multiple features. Thus,
an adaptive semi-supervised action classifier was trained. The main contributions can be
summarized as follows:

(1) This work first simultaneously considers manifold learning and Grassmannian
kernels in semi-supervised action recognition, as we assume that action video samples
may be found in a Grassmannian manifold space. By modeling an embedding manifold
subspace, both inter-class separability and intra-class compactness were considered.

(2) To solve the unconstrained minimization problem, we incorporate the PBB method
to avoid matrix inversion, and apply globalization strategy via adaptive step sizes to render
the objective functions non-monotonic, leading to improved convergence and accuracy.
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(3) Extensive experiments verified that our method is better than other approaches on
three benchmarks in a semi-supervised setting. We believe that this study presents valuable
insights into adaptive feature analysis for semi-supervised action recognition.

3. Related Work

We review the related research on semi-supervised action recognition, multiple-feature
analysis, and embedded subspace representation in this section.

3.1. Semi-Supervised Action Recognition

Unlabeled samples are valuable for learning data correlations in a semi-supervised
manner [9,10,12,22]. Although they tend to achieve remarkable performance via semi-
supervised learning with limited labeled data, there are still many issues, such as inherent
multi-modal attributes leading to local optimum, or unconvincing pseudo-labels leading to
inaccurate predictions [23,24].

Si et al. [25] tackle the challenge of semi-supervised 3D action recognition for effec-
tively learning motion representations from unlabeled data. Singh et al. [6] maximize the
similarity of the same video at two different speeds, and recognize actions by training a two-
pathway temporal contrastive model. Kumar and Rawat [26] develop a spatio-temporal
consistency-based approach with two regularization constraints: temporal coherency and
gradient smoothness, which can detect video action in an end-to-end semi-supervised man-
ner.

3.2. Multiple-Feature Analysis

Because we can describe an object by different features that provide different dis-
criminative information, multiple-feature analysis has gained increasing interest in many
applications. In the early and late fusion strategies, multi-stage fusion schemes have re-
cently been investigated [10,27–29]. However, the correlations of each feature type have
not been considered in most late-fusion approaches.

Wang et al. [10] apply shared structural analysis to characterize discriminative infor-
mation and preserve data distribution information from each type of feature. Chang and
Yang [15] discover shared knowledge from related multi-tasks, take various correlations
into account, then select features in a batch mode. Huynh-The et al. [30] capture multiple
high-level features at image-based representation by fine-tuning a pre-trained network,
transfer the skeleton pose to encoded information, and depict an action through spatial
joint correlations and temporal pose dynamics.

3.3. Embedded Subspace Representation

Previous studies have shown that manifold subspace learning can mine geometric
structure information by considering the space of probabilities as a manifold [31–33]. Recent
research focuses on graph-embedded subspace or distance metric learning to measure
activity similarity [34–38].

Rahimi et al. [39] build neighborhood graphs with geodesic distance instead of Eu-
clidean distance, and project high-dimensional action to low-dimensional space by kernel-
ized Grassmann manifold learning. Yu et al. [40] propose an action-matching network to
recognize open-set actions, construct an action dictionary, and classify an action via the
distance metric. Peng et al. [41] alleviate the over-smoothing issue of graph representation
when multiple GCN layers are stacked by the flexible graph deconvolution technique.

The two aforementioned studies [9,10] are similar to ours. They assume that the visual
words in different actions share a common structure in a specific subspace. A transformation
matrix is introduced to characterize the shared structures. They solve the constrained
non-convex optimization problem through an ALS–like iterative approach and matrix
derivation. Nevertheless, the deduced inverse matrix is poorly scaled during optimization
or close to singular, which may lead to inaccurate results.
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To address these problems, we hypothesize that manifold mapping can preserve the
local geometry and maximize discriminatory power, as shown in Figure 2. However, we did
not aim to mine shared structures. Therefore, we ignored shared-structure regularization
and modeled the manifold by creating two graphs. As the optimization solution in [9,10]
may be mathematically imprecise, Karush–Kuhn–Tucker (KKT) conditions and PBB are
introduced to improve algorithm convergence and avoid matrix inversion.

Figure 2. An illustration of our method. (a) Video sets can be represented in RD. We can use
the principal angles between them to compare two actions. (b) Data points on the Grassmannian
manifold M can be described as linear subspaces in RD. When points on the manifold have a
proper geodesic distance, the video-set-matching problem may be converted to a points distance
measurement problem. (c) By employing a proper Grassmannian kernel, data points can be mapped
into another Grassmannian manifold M′ where the same actions become closer while different actions
are well separated.

Different from another related research [12], this work makes two major modifications
as follows: multiple-feature analysis with combined Grassmannian kernels, and non-
monotone line-search strategy with adaptive step sizes.

4. Proposed Approach

Our approach incorporates several techniques, including semi-supervised action
recognition, multiple-feature analysis, PBB, KKT, manifold learning, and Grassmannian
kernels. It is named Kernel Grassmann manifold analysis (KGMA).

4.1. Formulation

To leverage the multiple-feature correlation, n training sample pointsX = [X1, ..., Xn] ∈
Rd×n are defined from the underlying Grassmannian manifold, where Xi ∈ Rd×1. We aim
to uncover a new manifold while preserving the local geometry of data points, that is,
α : Xi → Fi. Since we should demonstrate data distribution on the manifold, a predicted
label matrix F = [F1, ..., Fn] ∈ Rn×n is defined, where the predicted vector of the i-th datum
Xi ∈ X is Fi ∈ Rn×1.

We assume that a similarity measurement of data points in the manifold subspace is
available through a Grassmannian kernel [31] ki,j = 〈Xi, Xj〉. By confining the solution to a
linear function, that is, αi = ∑n

j=1 aijXj, we define the prediction function f as f (Xi) = Fi =

(〈α1, Xi〉, 〈α2, Xi〉, ..., 〈αr, Xi〉)T . By denoting Al = (al1, ..., aln)
T and Ki = (ki1, ..., kin)

T , it can
be shown that 〈αl , Xi〉 = AT

l Ki, and thus, f (X) = F = ATK ≈ Y, where A = [A1|A2|...|Ar]
and K = [K1|K2|...|Kn]. As mentioned in [42], the performance of the least-square loss
function is comparable to hinge loss or logistic loss. This is associated with its diagonal
matrix Y = [Y1, ..., Yn] ∈ {0, 1}n×n, where Yi ∈ {0, 1}n×1 is the label matrix. We employ
least-squares regression to solve the following optimization problem, then obtain the
projection matrix A:

min
A
‖ATK−Y‖2

F + η‖AT‖2
F, (1)
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where η is the regularization parameter. ‖ · ‖2
F denotes the Frobenius norm. ‖AT‖2

F controls
the model complexity to prevent overfitting.

4.2. Manifold Learning

In contrast to [10], which utilizes a graph model to estimate data distribution on the
manifold, we model the local geometrical structure by generating between-class similarity
graph Gb and within-class similarity graph Gw , where Gw(i, j) = 1, if xi ∈ Nw(xj) or
xj ∈ Nw(xi); otherwise, Gw(i, j) = 0. Gb(i, j) applies the same method, although it selects
xi ∈ Nb(xj) or xj ∈ Nb(xi), where Nb(xi) contains neighbors with different labels, and
Nw(xj) is the set of neighbors xj sharing the same label as xi. Notably, the intra-class and
inter-class distances can be mapped on a manifold by similarity graphs [33].

Inspired by manifold learning [12,31,33], we maximize inter-class separability and
minimize intra-class compactness simultaneously. An ideal transform pushes the con-
nected points of Ab to the extent possible while moving the connected points of Aw closer.
The discriminative information can be represented as follows:

f =
1
2

n

∑
i,j=1

(Fi − Fj)
2Gw(i, j)− 1

2
β

n

∑
i,j=1

(Fi − Fj)
2Gb(i, j)

= tr(FT(Lw − βLb)F),
(2)

where β is a regularization parameter, which controls the trade-off between inter-class
separability and intra-class compactness. tr(·) denotes the trace operator, and Lw =
Dw−Gw denotes the Laplacian matrix. Furthermore, Db is a diagonal matrix with Db(i, i) =
∑n

j=1 Gb(i, j), and Dw is a diagonal matrix with Dw(i, i) = ∑n
j=1 Gw(i, j).

4.3. Multiple-Feature Analysis

Multiple features imply combining kernelized embedding features, data-point man-
ifold subspace learning (1st term in Equation (4)), and label propagation (2nd term in
Equation (4)) with low-level feature correlations (3rd term in Equation (4)) for labeled and
unlabeled data.

We modify the aforementioned function to leverage both labeled and unlabeled sam-
ples. First, the training dataset is redefined as X = [XT

l ,XT
u ]

T , where Xl = [X1, ..., Xm]T

is the labeled data subset, and Xu = [Xm+1, ..., Xn]T is the unlabeled data subset. The la-
bel matrix Y = [YT

l ,YT
u ]

T , where Yl = [Y1, ..., Ym]T ∈ {1}m×m. The unlabeled matrix
Yu = [Ym+1, ..., Yn]T ∈ {0}(n−m)×(n−m). According to [9,43], diagonal label matrix Y and
the similarity graphs Gw, Gb should be consistent with the label prediction matrix F. We
generalize the graph-embedded label consistency as follows:

min
F

tr(FT(Lw − βLb)F) + ‖F−Y‖2
F, (3)

In contrast to previous shared-structure learning algorithms, we do not consider
shared-structure learning within a semi-supervised learning framework. Alternatively, we
propose a novel joint framework that incorporates the multiple-feature analyses of multiple
manifolds. As discussed in the problem formulation section, by employing the Frobenius
norm regularized loss function, we can reformulate the objective:

min
F,A

tr(FT(Lw − βLb)F) + ‖F−Y‖2
F

+ µ
(
‖ATK−Y‖2

F + η‖AT‖2
F

)
,

(4)

where β > 0, µ > 0 and η > 0 are regular parameters.
Equation (4) is an unconstrained convex optimization problem; hence, we can obtain

the global optimum by performing ALS or the projected gradient method. Although the
correlation matrix can only be singular under specific circumstances, the projected gradient



Appl. Sci. 2023, 13, 7684 6 of 14

method can handle the aforementioned issues without matrix inversion [20], and there-
fore leads to a better optimum than ALS. Notably, the convergence conditions in [9,10]
merely depend on a monotone decrease, which may result in mathematically improper
convergence; therefore, KKT conditions are utilized to consider this problem.

4.4. Grassmannian Kernels

The similarity between two action sample points Xi and Xj ∈ Rd×1 can be measured
by projective kernel combination:

k[proj]
i,j =‖ XT

i Xj ‖2
F . (5)

One attempt to solve the point-matching problem is the notion of principal angles [31].
Given Xi and Xj, we can define the canonical correlation kernel as

k[cc]
i,j = max

ap∈span(Xi)
max

bq∈span(Xj)
aT

p bq, (6)

subject to aT
p ap = bT

p bp = 1 and aT
p aq = bT

p bq = 0, p 6= q.
We create a combined Grassmannian kernel through existing Grassmannian ker-

nels [31].
k[A+B] = δ[A]k[A] + δ[B]k[B], (7)

where δ[A], δ[B] > 0. Notably, k[A] + k[B] defines a new kernel based on the theory of
reproducing the kernel Hilbert space, as described in [31].

4.5. Optimization

According to [20,21], a general unconstrained minimization problem can be solved by
the trace operator and the PBB method. Hence, a new objective function g(F,A) instead of
Equation (4) is defined:

g(F,A) = tr(FT(Lw − βLb)F) + tr(F−Y)T(F−Y)

+ µtr(ATK−Y)T(ATK−Y) + µηtr(AAT).
(8)

If (F∗,A∗) is an approximate stationary point in Equation (8), it must satisfy the KKT
conditions in Equation (8). Then, we have an iteration-stopping criterion

‖∇gF(F∗,A∗)‖2 + ‖∇gA(F∗,A∗)‖2 6 ε, (9)

where ε is a non-negative small constant.

4.6. Projected Barzilai-Borwein

Similar to [20], a sequence of feasible points (Ft,At) is generated by the gradient
method:

dFt = −λt∇gF(Ft,At), Ft+1 = Ft + σtdFt,

dAt = −λt∇gA(Ft,At), At+1 = At + σtdAt,
(10)

where λt = min{λmax, max{λmin, λt
ABB}} > 0 is another step size, and σt denotes the

non-monotone line-search step size that is determined through an appropriate selection
rule. Following [21], we have two choices for step size:

λt+1
BB1 =

〈st
1, st

1〉+ 〈st
2, st

2〉
〈st

1, yt
1〉+ 〈st

2, yt
2〉

,

λt+1
BB2 =

〈st
1, yt

1〉+ 〈st
2, yt

2〉
〈yt

1, yt
1〉+ 〈yt

2, yt
2〉

,

(11)
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where

st
1 = Ft+1 − Ft, st

2 = At+1 −At,

yt
1 = ∇gF(Ft+1,At+1)−∇gF(Ft,At),

yt
2 = ∇gA(Ft+1,At+1)−∇gA(Ft,At),

(12)

The characteristic of the adaptive step sizes (11) can render the objective functions
non-monotonic; hence, g(Ft,At) may increase in some iterations. Alternatively, using (11)
is better than merely using one of them [21]; the step size is expressed by

λt
ABB =

{
λt

BB1, for odd number t
λt

BB2, for even number t
(13)

To guarantee the convergence of (Ft,At), a globalization strategy based on the non-
monotone line-search technique is described as [20]

g(Ft+1,At+1) 6 Ct + γσt{〈∇gF(Ft,At), dFt〉
+ 〈∇gA(Ft,At), dAt〉}

(14)

where τ ∈ (0, 1], Ct are the parameters of the Armoji line-search method [21]. Following [20],
in order to overcome some drawbacks of non-monotone techniques, the traditional largest
function value is converted by the weighted-average function value:

Ct =
τ ·min{t− 1, M}Ct−1 + g(Ft,At)

τ ·min{t− 1, M}+ 1
, (15)

5. Experiments

The proposed method called KGMA is summarized in Algorithm 1. The conventional
method that uses SPG [12] and the ALS method instead of PBB, called kernel spectral projected
gradient analysis (KSPG) and kernel alternating least-squares analysis (KALS), respectively,
was also adopted to solve the objective function (8) for comparison in our experiments.

Algorithm 1: Kernel Grassmann Manifold Analysis (KGMA).

Input : Training sample X ∈ Rd×n

Diagonal labels Y ∈ {0, 1}n×n

Semi-supervised parameters β, µ and η.
The PBB parameters M, λmin, λmax, σt, γ, τ, Ct

Output : Optimised A∗ ∈ Rn×n

Grassmann matrix [K]ij for all Xi, Xj
Between-class similarity graph Lb ∈ Rn×n

Within-class similarity graph Lw ∈ Rn×n

Initialise F0 ∈ Rn×n,A0 ∈ Rn×n randomly
Initialise C0 = g(F0,A0)
Initialise t = 0, λ0 = 1, σ0 = 1, γ = 0.1, τ = 0.3
repeat

. PBB Method
if (14) is satisfied then

Compute Ft+1,At+1 according to (10)
Compute st

1, st
2, yt

1, yt
2 according to (12)

if 〈st
1, yt

1〉+ 〈st
2, yt

2〉 6 0 then λt+1 = λmax;
else λt+1 = min{λmax, max{λmin, λt+1

ABB}};
t = t + 1
until Convergence according to (9);

Return A∗
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5.1. Features

For handcrafted features, we follow [12] to extracted improved dense trajectories
(IDTs) and Fisher vector (FV), as shown in Figure 3.

Figure 3. Comparison (average accuracy ± std) with IDT+FV when different number of training
samples are labeled, gmmSize = 16.

For deep-learned features, we retrained the temporal segment network (TSN) [7]
models of 15 × c, and then extracted the global pool features of 15 × c using a pre-trained
TSN model, concatenating rgb + flow into 2048 dimensions with power L2-normalization,
as listed in Table 1.

Table 1. Comparison with deep-learned features (average accuracy ± std) when 15× c training
videos are labeled

JHMDB HMDB51 UCF101

SFUS 0.6942 ± 0.0121 0.5217 ± 0.0114 0.7910 ± 0.0087

SFCM 0.7125 ± 0.0099 0.5394 ± 0.0108 0.8070 ± 0.0101

MFCU 0.7154 ± 0.0088 0.5556 ± 0.0098 0.8429 ± 0.0085

SVM-χ2 0.6931 ± 0.0106 0.5190 ± 0.0095 0.8138 ± 0.0108

SVM-linear 0.7140 ± 0.0086 0.5385 ± 0.0077 0.8450 ± 0.0087

KSPG 0.7287 ± 0.0114 0.5697 ± 0.0833 0.8552 ± 0.0111

KALS 0.7218 ± 0.0087 0.5607 ± 0.0098 0.8411 ± 0.0095

KGMA 0.7361 ± 0.0096 0.5762 ± 0.1040 0.8673 ± 0.0087

We verified the proposed algorithm using three kernels: projection kernel k[proj],
canonical correlation kernel k[CC], and combined kernel k[proj+CC]. In some cases, k[proj] is
better than k[CC] or vice versa, suggesting that the kernels combination is more suitable
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for different data distributions. For k[proj+CC], the mixing coefficients δ[proj] and δ[CC] were
fixed at one. We obtain better results by combining δ[proj+CC] two kernels.

5.2. Datasets

Three datasets were used in the experiments: JHMDB [44], HMDB51 [45], and UCF101 [46].
The JHMDB dataset has 21 action categories. The average recognition accuracies over three
training–test splits are reported. The HMDB51 dataset records 51 action categories. We
reported the MAP over three training–test splits. The UCF101 dataset includes 101 action
categories, containing 13,320 video clips. The average accuracy of the first split was re-
ported.

For the JHMDB dataset, we followed the standard data partitioning (three splits)
provided by the authors. For other datasets, we used the first split provided by the authors,
and applied the original testing sets for fair comparison. Because the semi-supervised
training set contained unlabeled data, we performed the following procedure to reform the
training set for each individual dataset. The class number c was denoted for each dataset
(c = 21, 51, and 101 for JHMDB, HMDB51, and UCF101, respectively).

Using JHMDB as an example, we first randomly selected 30 training samples per
category to form a training set (30× c samples) in our experiment. From this training set,
we randomly sampled m videos (m = 3, 5, 10, and 15) per category as labeled samples.
Therefore, if m = 10, 10× c-labeled samples will be available, leaving (30× c− 10× c)
videos as unlabeled samples for the semi-supervised training setting. We used three splits of
testing set on JHMDB and HMDB51 but only the first testing split on UCF101 due to lack of
GPU memory resources. Owing to the random selected training samples, the experiments
were repeated 10 times to avoid bias.

5.3. Experimental Setup

To demonstrate the superiority of our approach (KGMA), we adopted 8 methods for
comparison: SVM, SFUS [47], SFCM [9], MFCU [10], KSPG, and KALS. Notably, SFUS,
SFCM, MFCU, KSPG, and KALS are semi-supervised action recognition approaches. Using
the available codes, we can facilitate a fair comparison.

For the semi-supervised parameters η, β, µ for SFUS, SFCM, MFCU, KSPG, KALS,
and KGMA, we follow the same settings utilized in [9,10], ranging from {10−4, 10−3, 10−2,
10−1, 1, 101, 102, 103, 104}. Because the PBB parameters were not sensitive to our algorithm,
we initialized the parameters as in [20], as indicated in Algorithm 1. Notably, since KGMA
applied PBB to solve the optimal value of the objective function (8), it resulted in non-
monotonic convergence with oscillating objective function values, as shown in Figure 4.
Thus, using only the absolute error made it difficult to determine when to stop iterating,
and relative error of objective function values was better than absolute error, which may
be mathematically improper convergence. We chose constant ε = 10−4 as the iteration-
stopping criterion in (9).

5.4. Mathematical Comparisons

The recognition results with handcrafted features on three datasets are demonstrated
in Figure 3. We compared our method with deep-learned features in Table 1.

Regarding the presented objective function (8), Figure 4 summarizes the computational
results of the three optimization methods. When we used the 2048-dimensional deep-
learned features by TSN on the JHMDB dataset, the model was trained with only 15
labeled samples and 15 unlabeled samples per class. With the same semi-supervised
parameters set up, η, β, µ, the performance differences during the solving of the same
objective function could be compared in terms of running time, number of iterations,
absolute error, relative error, and objective function value. Figure 4 shows the convergence
curves of the three optimization methods. Since both SPG and PBB were non-monotonic
optimization methods with relatively large fluctuations in objective function values, we
omitted the first 29 iterations of SPG and PBB in Figure 4, and only displayed the data
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starting from the 30th iteration so as to better illustrate the monotonic convergence process
of ALS.

As shown in Figure 3, for a randomly selected video data sample, ALS exhibited the
fewest iterations, shortest running time, and fastest computation speed of 0.1220 s after
extracting the deep features by TSN. In contrast, PBB exhibited the most iterations, longest
running time, and slowest computation speed of 0.4212 s, while SPG’s performance was
intermediate between ALS and PBB. Considering Figures 4 and Table 2, it is evident that
despite using the PBB optimization method, our KGMA algorithm still achieves the highest
accuracy on the kernelized Grassmann manifold space. Nevertheless, Equation (9) using
SPG results in marginal improvement over ALS, which is likely attributable to our novel
kernelized Grassmann manifold space.

Figure 4. The convergence curves of the three optimization methods on the JHMDB dataset, with the
final convergence results shown in Table 2. Due to the larger oscillations of PBB, the data for the first
29 iterations of SPG and PBB have been omitted here in order to better illustrate the comparative
convergence of ALS, SPG and PBB.

Table 2. Mathematical results on JHMDB using 15× c-labeled training samples. “Obj-Val” means
objective function value.

Methods Features (dim × nSample) Parameters Times (s) Iter. Error Relative Error Obj-Val

ALS TSN (2048 × 660) η = 0.001, β = 0.01, µ = 0.001 0.4880 4 0.5972 2.0691× 10−4 2.0137

SPG TSN (2048 × 660) η = 0.001, β = 0.01, µ = 0.001 6.1992 49 0.4706 8.1024× 10−4 32.0130

PBB TSN (2048 × 660) η = 0.001, β = 0.01, µ = 0.001 23.5855 56 0.6146 7.1873× 10−4 10.0185

5.5. Performance on Action Recognition

A linear SVM was utilized as the baseline. Based on the comparisons, we observe the
following: (1) KGMA achieved the best performance, and our semi-supervised algorithm
was better than linear SVM, which is a widely used supervised classifier (2) all methods
achieved better performances using more labeled training data, as shown in Figure 3,
or enlarging the semi-supervised parameter (i.e., η, β, µ) range such as Figure 5; (3) we
averaged an accuracy of 3× c, 5× c, 10× c, and 15× c cases, and the recognition of KGMA
on JHMDB, HMDB51, and UCF101 improved by 2.97%, 2.59%, and 2.40%, respectively.
When using TSN features, the recognition of our KGMA on the above-mentioned datasets
improved by 2.21%, 3.77%, and 2.23%, respectively. Evidently, our semi-supervised method
can improve recognition by leveraging unlabeled data compared to linear SVM with labeled
data merely. Figure 3 illustrates that our algorithm benefits from the multiple-feature
analysis, kernelized Grassman space, and iterative skills of the PBB method.

These results can be attributed to several factors. First, our method not only leverages
semi-supervised approaches, but also leverages intra-class action variation and inter-
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class action ambiguity simultaneously. Therefore, ours gain more significant performance
than other approaches when there are few labeled samples. Second, we uncover the
action feature subspace on the Grassmannian manifold by incorporating Grassmannian
kernels, and solve the objective function optimization by the adaptive line-search strategy
and the PBB method mathematically. Hence, the proposed algorithm works well in few
labeled cases.
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Figure 5. Accuracy on JHMDB using TSN, w.r.t the parameter β with fixed η and µ.

5.6. Convergence Study

According to the objective function (4), we conducted experiments with the TSN
feature, fixed the semi-supervised parameters η, β, µ, and then executed both the ALS and
PBB methods 10 times. The results of the study are listed in Table 2. Although no oscillation
exists in the convergence of the ALS and it requires fewer iterations, the PBB method can
outperform the ALS for three reasons. First, the PBB method uses a non-monotone line-
search strategy to globalize the process [21], which can obtain the global optimal objective
function value rather than being trapped in local optima using the monotone ALS method.
Second, the character of adaptive step sizes is an essential characteristic that determines
efficiency in the projected gradient methodology [21], whereas the iteration step skill has
not been considered in ALS. Finally, the efficient convergence properties of the projected
gradient method have been demonstrated because the PBB is well defined [21].

5.7. Computation Complexity

In the training stage, we computed the Laplacian matrix L, the complexity of which
was O(n2). To optimize the objective function, we computed the projected gradient and
trace operators of several matrices. Therefore, the complexity of these operations was
O(n3).

5.8. Parameter Sensitivity Study

We verified that KGMA benefits from the intra-class and inter-class by manifold
discriminant analysis, as shown in Figure 5. We analyze the impact of manifold learning on
JHMDB and HMDB51, set η = 103 and µ = 10−1 at optimal values over split2, for 15× c-
labeled training data. As β varied from 10−4 to 104, the accuracy oscillated significantly
and reached a peak value when β = 104. Since β controls the proportion of the intra-
class local geometric structure and the inter-class global manifold structure, as shown in
Figure 5, when the intra-class local geometric structure is treated as a constant 1, β

1 can
be considered such that the inter-class global manifold structure has a larger proportion
in the objective function and vice versa. When β = 0, no inter-class structure is utilized;
thus, if β → +∞, no intra-class structure is present. When the Grassmann manifold
space leverages an adequate balance of intra-class action variation and inter-class action
ambiguity, the proposed algorithm can further enhance the discriminatory power of the
transformation matrix.
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6. Conclusions

This study proposed a new approach to categorize human action videos. With Grass-
mannian kernel combinations and multiple-feature analysis on multiple manifolds, our
method can improve recognition by uncovering the intrinsic features relationships. We eval-
uated the presented approach on three benchmark datasets, and experiment results show
ours outperformed all competing methods, particularly when there are few labeled samples.
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