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Abstract: Chronic heart failure (CHF) is a prevalent and multifactorial condition associated with
a significant burden of morbidity and mortality. Despite progress in its clinical management, the
projected increase in CHF prevalence due to population ageing, increased cardiovascular risk burdens,
and advancing diagnostic and therapeutic options have led to a growing burden on healthcare
systems and public budgets worldwide. In this context, artificial intelligence (AI) holds promise in
assisting clinical decision-making, especially in analysing raw image data and electrocardiogram
recordings. This article provides an overview of the current gaps and needs in CHF research and
clinical management and the current and under-development AI-powered tools that may address
these gaps and needs.
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1. Introduction

Chronic heart failure (CHF) [1] is very common, representing the final evolution stage
of several cardiovascular diseases (CVD). Despite the large progress made with its clinical
management, CHF is still associated with a large burden of morbidity and mortality [2].
Its pathogenesis is multifactorial, ref. [3] leading to a life-long condition characterised by
an increasing hospitalisation rate, with high costs both for the patient and the healthcare
system [4]. Moreover, its projected prevalence is expected to steadily increase, due to the
improvement in the treatment of cardiovascular diseases and the higher life expectancy of
patients [5].

Multiple classifications exist for CHF, based on different elements. According to
disease progression, patients can be classified into progressive stages [6], starting from
stage A in patients without structural heart disease or symptoms of heart failure (HF), but
with a high risk of developing CHF. In contrast, patients in stage B do have structural
heart disease but no symptoms of heart failure, yet. Stages C and D are characterised by
overt clinical HF increasing severity from C to D. The introduction of stage A highlights
the key importance of the early recognition and correction of risk factors, with the aim to
prevent the development of CHF and/or the early identification of clinical progression
to CHF. This classification is very useful to increase disease awareness and promote early
recognition of risk factors and facilitate the identification of clinical signs of progression
to a more severe phase of the disease history with the ultimate aim to slow down its
course and progression [7]. Using a different approach, the New York Heart Association
(NYHA) developed the widespread functional classification stages, based on the severity
of symptoms and the level of impairment of physical activities: ranging from NYHA class
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I, including patients with no symptoms, nor limitation of physical activity, to NYHA class
IV where patients are unable to carry on any physical activity without discomfort and
symptoms at rest can be present [8].

The burden of chronic heart failure is continuously growing, and an integrative ap-
proach is needed to counteract its impact. On the one hand, CHF is projected to increase
progressively: HF currently affects approximately 6 million Americans, with its prevalence
projected to increase by 46 per cent by 2030 [9]. The reasons are multiple, including popula-
tion ageing, increased life expectancy, growing cardiovascular risk burden in developing
countries, and improvement in cardiovascular treatments allowing more patients to grow
old and eventually develop CHF. On the other hand, advancing diagnostic and therapeutic
options brings a progressive increase in healthcare and societal costs, overshooting the
current capacity of healthcare systems and public budgets worldwide. Hospitalisations are
the most significant component of direct medical expenses that will reach 53 billion dollars
in the US [10].

In this context, artificial intelligence (AI) [11] is a promising tool that might positively
impact multiple hurdles related to the ever-complicated management of heart failure.
With its remarkable ability to analyse large volumes of physiological data obtained from
thousands of patients, it can assist clinical practice and decision-making in a much more
accurate and selective way than the human brain [12]. AI will be essential in analyzing
raw image data from cardiac imaging techniques (such as echocardiography, computed
tomography, and cardiac MRI) and electrocardiogram recordings through an algorithm.
Multiple AI algorithms are currently able to automatically segment vessels or cardiac struc-
tures and to extract useful information, including standard clinical measures and additional
indices such as the vessel fractal dimension (FD), capturing the complexity of collateral
circulation networks [13–15]. Its adoption in the future will more closely approximate
human decision-making, potentially augmenting cardiologists’ real-time performance in
emergency rooms, catheterisation laboratories, imaging suites, and clinics [16].

Yet, the limits and potentials of AI have yet to be discovered entirely. This article
provides an overview of current gaps and needs in CHF research and clinical management,
reviewing currently available and under-development AI-based tools that might answer
those gaps and need [17] as reported in Figure 1.

Figure 1. Relationship between artificial intelligence (AI) and cardiology, in particular in the manage-
ment of heart failure: tools currently available and current gaps. Abbreviations: ECG, electrocardio-
gram, MRI, magnetic resonance imaging.

The articles and tools mentioned in our work are the results of non-systematic research
on currently published literature regarding the use of AI technologies for the management
of HF patients. The search was carried out on PubMed, Google Scholar, and Scopus using
the keywords: “chronic heart failure”, “artificial intelligence”, “machine learning”, and
“deep learning”. Well-known studies are also included. All types of articles analyzing the
use of artificial intelligence in the management of patients with CHF are discussed.
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2. Current Gaps and Needs in Heart Failure Management

This paragraph reviews current gaps in the management of HF patients, to define the
most useful application of AI tools. What are the unmet needs of HF management at the
current stage?

• Tailored medicine: despite advances in our understanding of the underlying causes
of HF, there is still a lack of a truly personalised approach to treatment, taking into
account individual factors such as genetics, lifestyle, and disease history [18]. It is
essential to define the most appropriate therapeutic strategies depending on patients’
comorbidities, the specific etiology of CHF, the patient’s lifestyle, and specific disease
subgroups (elderly individuals, women, patients with congenital heart disease) [19].

• Early detection: CHF is a chronic, progressive, and irreversible disease. In this context,
improving our process for the early detection of HF is of key relevance to improve
patient outcomes, especially at early stages [20].

• Remote monitoring: the development of effective and scalable remote monitoring
solutions is paramount to improving HF management and reducing hospitalisation
rates, with a relevant impact on the control of management costs for healthcare systems
and to protect patients’ autonomy [21].

• Predictive modelling: to support decision-making and improve patient management,
it is advisable to improve the prediction of HF progression and to define the underlying
etiologies [22].

• Integration of data: methods for integrating and analyzing large amounts of data from
various sources, including electronic health records, imaging, lab results, and wearable
devices, to support the diagnosis and management of heart failure are paramount in
the current context, where a growing number of clinical data are recorded and stored
but often left unused [23].

• Research reorganisation: AI tools could help policy-makers and public payers to
improve the prioritisation of research, to better focus on under-investigated and/or
most promising topics. As an example, although it is recognised that the microbiome
plays an essential role in the pathogenesis of HF, the exact mechanism of action in
the development and progression of heart failure is still unknown. Similarly, there
is a need to increase research resources on regenerative approaches to HF, including
cell-based therapies, gene editing, and tissue engineering, to support the development
of new treatments [24].

3. Available AI Resources and Tools

Artificial intelligence (AI) was introduced as an academic discipline in the middle
of the 20th Century. AI has gained great attention in recent years due to the introduction
of novel algorithms and tools able to solve practical problems in real scenarios, such as
clinical and bioinformatics environments [25].

Machine learning (ML) is a field of AI methods allowing computers to learn a task
using data without being explicitly programmed. ML methods have been successfully
applied in many tasks to integrate heterogeneous data (e.g., analysts, imaging, electronic
health records) to discover novel biomarkers [25]. In parallel, ML is deeply applying
data-driven science to medical procedures, thus enabling the development of personalised
and precision medicine.

More recently, a subset of machine learning called deep learning (DL) has introduced
a set of algorithms based on modifying the neural network’s architecture. Neural net-
work architecture extends the classical linear perception using non-polynomial activation
functions and many hidden layers: the so-called deep neural networks (DNNs). The
capability of modelling non-linear tasks has made them extremely popular in both re-
search and application fields concerning a wide range of tasks, with a particular focus on
prediction problems.

DL applications have emerged due to the introduction of powerful computing archi-
tectures such as graphical processing units (GPUs). Classical applications of DL cover many
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tasks such as image classification and segmentation, natural language processing, speech
recognition, representation learning for graphs, integration, classification, and clustering of
heterogeneous biomedical data [26,27].

4. Clinical Applications of AI to CHF Management

Multiple AI-based solutions are currently adopted in all fields of cardiology, such
as imaging, invasive monitoring, and remote control of vital parameters, symptoms, or
electrocardiography [21].

Current gaps in HF management that AI might fill include early diagnosis and risk
prediction through the analysis of electronic health records and data from wearable devices.
AI tools can support the early detection of HF and its progression through predictive
modelling, remote monitoring, analysis, and interpretation of large amounts of data from
various sources, including electronic health records, imaging, and lab results [28]. It may
help the development of personalised treatment plans for HF patients based on individual
factors such as genetics, lifestyle, and health history. Finally, reminders, alerts, and coaching
tools can improve patient adherence to medications and lifestyle changes [29]. Finally,
Table 1 summarises some selected tools.

4.1. Telemedicine and Mobile Health

One of the possible applications of AI [30] is in telemedicine and smart-Home tech-
nologies. Thanks to remote patient monitoring and management platforms, it is possible to
tailor personalised treatment planning, correct drug dosing, and identify patients at risk for
adverse events and re-admissions. Among the others, Veta Health [31] is an AI-powered
telemedicine platform allowing remote monitoring and management of heart failure pa-
tients. As another example, Welby remote monitoring platform uses AI and machine
learning algorithms to remotely monitor and manage heart failure patients monitoring
their blood pressure levels and achieving weight loss by connecting patients with a clinical
care team that can work on nutritional counselling, tracking real-time view of patient blood
sugar https://www.welby.care/about accessed on 5 April 2023. According to the World
Health Organization (WHO)’s Global Observatory for eHealth, Mobile Health (mHealth)
consists of “medical and public health practice supported by mobile devices, such as [cell]
phones, patient monitoring devices, personal digital assistants (PDAs), and other wireless
devices” http://www.who.int/tb/areas-of-work/digital-health/faq/en/webcite accessed
on 5 April 2023. These will offer tremendous potential for monitoring health through
phone calls, text messages, data recording, highly portable peripheral devices, and activity
monitoring, which may find utility for novel models of health care delivery that are cost-
effective, accessible, and patient-centric [32]. Their potential impact is relevant and will be a
key tool to complement telemedicine, but will also be a key technology when used together
with smart environments and the Internet of Things. MHealth has multiple potential
applications. Among the most interesting in CHF is the possibility to track their health by
checking their heart rate, blood glucose levels, medication dosages, and sleep cycles. It also
allows for remote consultations and maintaining electronic health records [33].

4.2. Monitoring Devices and AI-Powered Platforms

Various devices able to precisely and timely monitor heart failure patients for the
early detection of the prediction of clinical worsening are actually available on the market,
and many others are under development. Wearable devices that continuously monitor
heart rhythm and are already used for detecting atrial fibrillation, such as KardiaMobile by
AliveCor [34], and iRhythm Zio XT [35]. In patients with CHF, the impairment of cardiac
pumping capacity can cause pulmonary congestion and shortness of breath (dyspnea).
This was the drive to develop implantable devices such as CardioMEMS [36] that can
measure pulmonary artery pressure (PAP) or devices such as remote dielectric sensing
(ReDS) [37] that use electromagnetic waves to detect the extent of pulmonary congestion,
which infers lung field concentration, helping in the interpretation of CT scans of lung field

https://www.welby.care/about
http://www.who.int/tb/areas-of-work/digital-health/faq/en/webcite
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concentration. Another device is LINK-HF [38], a non-invasive sensor placed on the pa-
tient’s chest using adhesive tape able to record ECG, 3-axis accelerometry, skin impedance,
body temperature, and posture. Finally, data saved on a cell phone are transferred to an
encrypted cloud for viewing and storage. Implantable cardioverter defibrillators offer the
opportunity to record and store a number of data which might be well used to increase
patients’ management. In recent years, a number of algorithms were developed that use
data acquired by means of ICD to predict the worsening of HF and the development
of acute exacerbations. Among these, the HeartLogic (Boston Scientific, Marlborough,
MA, USA), is an automatic, remotely accessible system that combines trend analysis from
different sensors, including nocturnal heart rate, acoustic analysis of heart sounds, intratho-
racic impedance, respiratory rate, tidal volume, and physical activity, integrating them
to generate a single numerical indicator, the HeartLogic index. A significant alteration
of the index suggests an acute decompensation of HF. Particularly, an increase in heart
rate and a higher intensity of the third heart sound, a decrease in the first heart sound, a
higher respiratory rate, a reduction in breathing depth, a diminishing inspiratory volume,
a fall in intrathoracic impedance associated with pulmonary congestion, a lower level of
physical activity are hallmarks of HF worsening. The system is able to transfer relevant
information to a remote monitoring platform that can be accessed by healthcare personnel.
The MultiSENSE (Multisensor Chronic Evaluation in Ambulatory Heart Failure Patients)
trial enrolled 900 patients with cardiac resynchronisation therapy defibrillators using the
HeartLogic model. The algorithm automatically calculated a daily HF index and identified
periods as “IN” or “OUT” of an active alert state relative to a configurable threshold. This
dynamic assessment can identify patients at increased risk of worsening HF and who,
among these, could potentially benefit from early treatment [39]. Along the same line, the
MANAGE-HF study enrolled 200 patients implanted with a CRT-D or ICD powered by
the HeartLogic algorithm. It demonstrated that the guidance provided by the HeartLogic
allowed earlier treatment augmentation, which was then associated with more rapid re-
covery of the HeartLogic index and of the clinical status of the patient [40]. The utility
of the HeartLogic was independently confirmed by Santini et al. The alert system was
tested in 104 patients, with the adoption of a standardised protocol including remote data
reviews and patient phone contacts every month and at the time of alerts. During a median
follow-up of 13 months, the overall number of HF hospitalisations was 16, and 100 alerts
were reported in 53 patients. Sixty alerts were judged clinically meaningful and were associ-
ated with multiple HF-related clinical conditions [41]. Along the same line, a retrospective
analysis by Capucci showed that the HeartLogic algorithm might be helpful to detect the
gradual worsening of HF and to stratify the risk of HF decompensation [42]. On the other
hand, Treskes et al. evaluated the clinical impact of the HeartLogic algorithm observing a
relevant reduction in the total number of HF hospitalisations, which declined from 27 in the
pre-activation period to 7 in the post-activation period (p = 0.003) [43]. Similar results were
reported for the RE-HEART registry: the HeartLogic algorithm was shown to predict HF
decompensation or clinically relevant events in more than half of the alerts, with an average
of 20 days in advance [44]. The favourable impact of these technologies was also explored
in the SELENE HF study, which validated the algorithm HearthInsight for the prediction of
heart failure (HF) hospitalisations using remote monitoring data transmitted by implanted
defibrillators. The study included patients with an ICD capable of atrial sensing or a
CRT-D, left ventricular ejection fraction (LVEF) less than 35 per cent, and a New York Heart
Association (NYHA) class II or III before the implantation. All devices used the Home
Monitoring technology characterised by daily automatic data transmissions over the Global
System for Mobile Communication network. With the developed algorithm, two-thirds of
first post-implant HF hospitalisations could be predicted timely with only 0.7 false alerts
per patient year [45]. Another platform for HF remote monitoring of implantable devices
was tested in the TriageHF, originally developed and validated by Cowie et al. [46] The
primary aim of the TRIAGE-HF trial [47] was to correlate cardiac implantable electronic
device-generated heart failure risk status (HFRS) with signs and symptoms associated with
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worsening heart failure (HF). The algorithm could predict the worsening of HF with a
sensitivity of 90 per cent. Table 2 summarises these approaches. In the RESPOND-CRT trial,
998 patients were randomised to receive weekly automatic CRT optimisation with SonR vs.
an echo-guided optimisation of AV and VV timings. Responder rates were 75.0 per cent in
the SonR arm and 70.4 per cent in the Echo arm. At an overall mean follow-up of about
700 days, SonR was associated with a 35 per cent risk reduction in HF hospitalisation [48].
Recent evidence from OptiVol algorithm, available on CRT-D and CRT-P devices was in
the PARTNERS HF study that assessed the relationship between OptiVol-powered fluid
monitoring data and clinically relevant pulmonary congestion events [49]. Insertable car-
diac monitors (ICMs) have become widely adopted in clinical electrophysiology practice.
Their utility in the diagnosis of worsening conditions in patients with heart failure was
analysed by the LUX-Dx PERFORM, a multicenter, prospective, single-arm, post-market,
observational study with a planned enrollment of up to 827 patients, demonstrating the
safety of insertion, high data transmission rates, the ability to detect atrial flutter, and the
feasibility of remote programming to optimise arrhythmia detection and improve clinical
workflow. At the same time, LINQ II ICM enables remote programming capability for all
device parameters post-insertion from the clinic, which may reduce patient office visits
and scheduling hassles [50]. These algorithm developed to monitor HF might be further
improved through AI and/or the integration with other tools, such as CardioMEMS or
ReDS, described in Table 1.

Table 1. Selected examples of AI-powered tools and their potential function.

AI Tools Function

Telemedicine and Mobile Health

Veta Health Allow remote monitoring and management of heart
failure patients

Welby
Uses AI and machine learning algorithms to remotely
manage heart failure patients monitoring their blood

pressure levels and achieving weight loss

Monitoring devices
KardiaMobile Continuously monitor heart rhythm and are already

used for detecting atrial fibrillation

iRhythm Zio XT

AI-powered platforms

CardioMEMS Measure pulmonary artery pressure

ReDS Detect the extent of pulmonary congestion

LINK-HF Record ECG, 3-axis accelerometry, skin impedance, body
temperature, and posture

Medicomp-Quippi Help healthcare providers personalise treatment plans
and drug dosing

Natural Language Processing
Linguamatics’ NLP software Extract data from electronic health records to provide

insights on heart failure patients

EHR analytics platform Analyse electronic health records to support the
diagnosis and management of heart failure
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Table 2. Current algorithms in ICD.

Implantable Devices Algorithm Name Type of Device Function

Boston HeartLogic ICD

Reveals signs of elevated filling pressures and
weakened ventricular contraction. Measures

pulmonary accumulation. Monitors rapid shallow
breathing patterns. Indicated cardiac status and

arrhythmias. Show activity levels

Medtronic TriageHF ICD
Thoracic impedance, detection of arrhythmias,

atrial fibrillation burden, evaluation of heart rate,
heart rate variability, blood pressure

Biotronik HeartInsight ICD
Atrial fibrillation burden, evaluation of heart rate
variability, blood pressure, thoracic impedance,

detection of arrhythmias,

4.3. Internet of Things (IoT)

The concept of the Internet of Things (IoT) is based on the use of various electronic
sensors embedded in objects that are regularly part of our environment by means of
a common software platform [51]. From a technical point of view, it consists of three
layers; a sensing layer is the patient’s particular sensor. A transport layer comprises
connectors transporting data from sensors to the remote device; an application layer is a
server. IoT has considerable potential for telemedicine and for patients self-monitoring.
(Figure 2) Leveraging IoT, physicians can now monitor various vital signs and select clinical
parameters to forecast medical emergencies. The most recent technology establishes a
global network of machines and gadgets individually equipped with software that allows
them to exchange and communicate information through the Internet. The critical feature
of IoT is that it can transform anything into an intelligent, bright object by giving it the
capacity to act, communicate, sense, and compute.

The application of IoT to smart wearable technology is useful for the management
of chronic heart failure patients providing a continuous flow of healthcare data, such as
temperature, saturation, cardiac frequency, blood pressure, respiration rate, patient activi-
ties, and rhythm abnormalities. This allows early identification of worsening patient status,
providing clinicians with a more comprehensive view of a patient’s health compared with
the traditional sporadic measures captured by office visits and hospitalisations. Several
randomised trials have assessed the value of remote non-invasive telemonitoring inter-
ventions in HF, with mixed results. For example, one miniature smartwatch-integrated
sphygmomanometer (Omron™ HeartGuide) has met the American National Standards
Institute criteria for measuring blood pressure by oscillometry across a range of blood
pressures. The use of such a wearable device may facilitate optimal adjustment of an-
tihypertensive or heart failure medication, monitoring of iatrogenic hypotension, and
support persistence with therapy [52]. A summary of common commercial smart wear-
ables available is available in Table 3 Not only wearable devices are available for remote
monitoring and management of patients with heart failure. Platforms like Medicomp
Quippi https://medicomp.com/quippe-clinical-data-engine/ accessed on 5 April 2023,
Royal Philips’ HealthSuite digital platform [53] help healthcare providers personalise
treatment plans and drug dosing.

In addition to platforms that facilitate the management of the patient with chronic
heart failure, predict tools are able to estimate the risk of developing acute complications,
such as the Zebra Medical Vision’s Risk Assessment platform http://www.zebra-med.com/
accessed on 5 April 2023, CarePredict’s Tempo platform https://www.carepredict.com/
accessed on 5 April 2023. Each platform uses machine learning algorithms to predict the
risk of acute clinical complications in heart failure patients based on imaging, electronic
health record data and lab results.

https://medicomp.com/quippe-clinical-data-engine/
http://www.zebra-med.com/
https://www.carepredict.com/
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Finally, AI tools like Inovalon’s AI Risk Assessment platform https://www.inovalon.
com/products/the-inovalon-one-platform/ accessed on 5 April 2023, IBM Watson Health’s
Predictive Analytics platform https://www.ibm.com/topics/healthcare-analytics accessed
on 5 April 2023, and Medopad’s AI Predictive Analytics platform https://medopad.com/
data-and-ai/ accessed on 5 April 2023, predict the risk of developing heart failure based on
electronic health record data, lab results, and demographic information [54].

Table 3. Summary of common commercial smart wearables devices and their various cardiovascular
clinical applications. BP, blood pressure; ECG, electrocardiogram; HR, heart rate; PPG, photoplethys-
mography; SaO2, oxygen saturation.

Type of Wearable Device Sensors Measurements Available Clinical Application

Ear buds PPG
HR; BP; SaPO2; cardiac output;

stroke volume; rhythm and sleep
evaluation

Risk assessment and prediction;
Cardiac telerehabilitation; Arrhythmia

detection Long QT diagnosis; HF
management; Hypertension screening

and management

Smart ring PPG
HR; BP; SaPO2; cardiac output;

stroke volume; rhythm and sleep
evaluation

Risk assessment and prediction;
Cardiac telerehabilitation; Arrhythmia

detection; Long QT diagnosis; HF
management; Hypertension screening

and management

Patch ECG
Single-lead and multi-lead ECG;

continuous ECG-monitoring; QTc
measurement; arrhythmia detection

Risk assessment and prediction;
Cardiac telerehabilitation; Arrhythmia

detection; Long QT diagnosis; HF
management; Hypertension screening

and management

Chest strap ECG
Single-lead and multi-lead ECG;

continuous ECG-monitoring; QTc
measurement; arrhythmia detection

Risk assessment and prediction;
Cardiac telerehabilitation; Arrhythmia

detection; Long QT diagnosis; HF
management; Hypertension screening

and management

Clothing and shoe sensors ECG
Single-lead and multi-lead ECG;

continuous ECG-monitoring; QTc
measurement; arrhythmia detection

Risk assessment and prediction;
Cardiac telerehabilitation; Arrhythmia

detection; Long QT diagnosis; HF
management; Hypertension screening

and management

Smart watch PPG; ECG

HR; BP; SaPO2; cardiac output;
stroke volume; rhythm and sleep

evaluation. Single-lead and
multi-lead ECG; continuous

ECG-monitoring; QTc
measurement; arrhythmia detection

Risk assessment and prediction;
Cardiac telerehabilitation; Arrhythmia

detection; Long QT diagnosis; HF
management; Hypertension screening

and management

Smart band PPG; ECG

HR; BP; SaPO2; cardiac output;
stroke volume; rhythm and sleep

evaluation. Single-lead and
multi-lead ECG; continuous

ECG-monitoring; QTc
measurement; arrhythmia detection

Risk assessment and prediction;
Cardiac telerehabilitation; Arrhythmia

detection; Long QT diagnosis; HF
management; Hypertension screening

and management

Smart ring PPG; ECG

HR; BP; SaPO2; cardiac output;
stroke volume; rhythm and sleep

evaluation. Single-lead and
multi-lead ECG; continuous

ECG-monitoring; QTc
measurement; arrhythmia detection

Risk assessment and prediction;
Cardiac telerehabilitation; Arrhythmia

detection; Long QT diagnosis; HF
management; Hypertension screening

and management

https://www.inovalon.com/products/the-inovalon-one-platform/
https://www.inovalon.com/products/the-inovalon-one-platform/
https://www.ibm.com/topics/healthcare-analytics
https://medopad.com/data-and-ai/
https://medopad.com/data-and-ai/
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Figure 2. Potential applications of AI-tools to telemedicine. Exemplification case of use of AI-powered
tools for the management of HF patients outside the hospital.

4.4. Natural Language Processing

Natural language processing (NLP) refers to the branch of computer science—specifically,
the branch of artificial intelligence or AI—concerned with giving computers the ability to un-
derstand text and spoken words in much the same way human beings can. NLP combines
computational linguistics—rule-based modelling of human language—with statistical, ma-
chine learning, and deep learning models. Together, these technologies enable computers to
process human language in text or voice data and ‘understand’ its full meaning, complete
with the speaker or writer’s intent and sentiment. NLP drives computer programs that
translate text from one language to another, respond to spoken commands, and rapidly
summarise large volumes of text—even in real-time. Some prominent platforms are the
linguamatics’ NLP software https://www.linguamatics.com/products/linguamatics-nlp-
platform accessed on 5 April 2023, which extracts data from electronic health records to pro-
vide insights on heart failure patients; Nuance Communications’ Dragon Medical One plat-
form https://www.nuance.com/healthcare/campaign/ppc/dragon-medical-one-solution
accessed on 5 April 2023, that enables healthcare providers to document patient information
using voice recognition and convert it into structured data. Among the others, the EHR
analytics platform from MedAware https://www.medaware.com/ accessed on 5 April
2023, can analyse electronic health records to support the diagnosis and management of
heart failure [55]. NLP-based tools might become special tools, particularly for home-based
monitoring of CHF patients, for early recognition of clinical worsening. In this context, the
patient represents her/his control, and the tool scans the patient’s discourse searching for
new features that might reflect a reduced functional capacity or a worse clinical condition.

4.5. Application of AI to Echocardiography, ECG, and Cardiac MRI

Applications of AI techniques to electrocardiography, echocardiography, and elec-
tronic health records are the most promising. Some experience is already available with
CHF patients. The use of AI in echocardiography has been shown to have the potential
to mitigate common limitations of this diagnostic technique, such as long execution times
with manual measurement of multiple parameters, a high operator subjectivity causing
wide observation ranges, and systematic bias [56]. To address these issues, ML models
have been trained to recognise specific echocardiographic markers of a wide variety of
cardiac diseases helping in the interpretation of data and leading to faster analysis and
better outcomes. DL has been mostly utilised in imaging for segmenting the ventricles and

https://www.linguamatics.com/products/linguamatics-nlp-platform
https://www.linguamatics.com/products/linguamatics-nlp-platform
https://www.nuance.com/healthcare/campaign/ppc/dragon-medical-one-solution
https://www.medaware.com/
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evaluating left ventricular ejection fraction (EF), left ventricular volume, left ventricular
wall motion function, myocardial contractility, and global longitudinal strain (GLS) [57].
Another good example of the application of DL to echocardiography is the possibility
to automatically annotate and classify both 2D and Doppler tracings with excellent per-
formance (AUC = 0.90 − 0.92 to detect a left ventricular ejection fraction) [58]. Another
use of ML in this field is with cardiac MRIs, generating segmentations of heart chambers
that yield imaging biomarkers to predict CHF with an excellent reconstruction accuracy
both for the right ventricle and for calculation of left ventricular mass, papillary muscle
identification, common carotid artery, and descending aorta measurements [16]. Interpreta-
tion of multiple features on ECG tracings also presents some hurdles. In this regard, an
AI-powered platform for the analysis and interpretation of ECG data, thanks to ML models,
has recently been shown to help reduce the time taken in diagnosis to recognise the patient
to send to urgent care quickly. A similar AI tool enables the use of ECG as a screening
tool (e.g., to predict heart failure in asymptomatic individuals or the worsening in patients
with an established diagnosis) learning from big data sets, without the need to understand
the biological mechanism [59]. An example is Cardiogram’s DeepHeart platform [60],
an AI-powered platform that uses machine learning algorithms to detect ischemic heart
failure from ECG data. Artificial-intelligence-powered algorithms can be very practical in
analysing long EKG recordings, which would otherwise be very demanding. In fact, the
improvements in wearable technologies make it nowadays possible to register continuous
EKG tracings for several days up to some weeks [61]. Without an AI-based analysis, it
would not be possible for healthcare personnel to analyse the complete tracings [62,63].
Harmon DM et al. demonstrated an excellent predictive capacity (AUC = 0.903) using
electrocardiograms to detect left ventricular systolic dysfunction across age and ethnic
subgroups [64]. Cardio-HART is an AI-powered, cardiac diagnostic system for use in
clinical care settings, including primary and secondary care. It starts in a clinical care
setting where the CHART device first captures the biosignals, ECG, phonocardiography
(PCG), and mechanical force bio-signal (MCG), and then uploads them to the cloud for
AI processing [65]. The CHART AI then outputs a wide range of medical findings or
endpoints, consistent with cardiac dysfunction. In particular, Cardio-HART can diagnose
14 HART-findings—including structural, functional, and valve problems, that are classi-
fied as “Normal/Mild/Abnormal”. From these HART findings, HF is then classified into
four phenotypes, consistent with their medical context: HF unlikely, HFpEF, HFmrEF, and
HFrEF. HART-findings were validated with a database having both parallel bio-signals
and ECHO assessment. Cardio-HART HF prediction reaches significantly higher overall
performance compared to the best ECG criteria, with a sensitivity of 83 per cent, specificity
of 87 per cent and a positive predictive value of 70 per cent. CHART has the potential to
enable effective widespread screening of patients for the early detection of CVD onset and
resolve many ‘inconclusive ECG’ results, thereby reducing time in referral decisions [66].
Along the same line, in a recent retrospective study, the authors developed novel machine
learning (ML) models to predict HF-related mortality, incorporating social determinants
of health. In this study, the AI-powered tool outperformed traditional logistic regression
models for prognostic prediction [67].

5. Smart Clinics

Smart clinics can be defined as medical institutions that create new value and insights
on patient safety, quality of care, and cost-effectiveness using information and commu-
nications technology. The main services of smart clinics are the Internet of Things (IoT),
mobile health, AI, robotics, extended reality, high-speed communication networks, and
telehealth. Thanks to these it will be possible to improve the efficiency of integrated nursing
care services but also treatment, education, and training in medical institutions. With the
introduction of smart clinics, preventive health management is provided in various living
spaces of local communities, such as homes and workplaces, using mobile and wearable
sensors, which is expected to achieve customer-centred medical services that can be ac-
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cessed from the comfort of people’s residences through the virtual expansion of hospitals
without physical space restrictions. In addition, based on the data collected through smart
hospitals, specific detailed indicators related to the core aspects of medical value can be
defined, quantitatively measured, and fed back to inform healthcare policy. Data collected
through smart hospital services within medical institutions will contribute to the estab-
lishment of national healthcare policies by defining and quantitatively measuring detailed
indicators related to core aspects of medical value. This “virtual expansion of hospitals”
will contribute to the realisation of customer-oriented medical services that individuals
encounter in their daily lives.

6. Current Research Focus

Current healthcare research is strongly focused on the concept of personalisation
and early prevention. In this context, AI can be a powerful tool for predictive modelling,
e.g., through deep learning. A key challenge for the near future will be the development
of lean, efficient, and highly integrated algorithms to improve the management of the
patient with CHF, particularly to predict the risk of developing heart failure or its pro-
gression [68]. The added value of AI tools in this setting resides in (i) the efficiency of
execution, (ii) the ability to measure and recognise additional pieces of information that are
currently underestimated and/or under-recognised by human examiners, and (iii) their
reproducibility. Wearable devices and remote monitoring will change the management
of these patients, allowing a higher degree of personalisation, taking into account multi-
ple individual characteristics such as genetics, lifestyle, and health history. Some of the
ongoing projects are the AI-Powered Heart Failure Management System (AIHFMS) [16],
and The Heart Failure Prediction with Deep Learning project [69], which aim at devel-
oping a deep learning algorithm to predict the risk of heart failure progression based on
electronic health record data and wearable device data and based on imaging and lab
results respectively [22]. Another example is the Cardihab project, a digital health plat-
form developed by researchers at the University of Sydney that uses AI to personalise
heart failure management. The platform tracks patients’ symptoms, medication adher-
ence, and lifestyle habits and uses AI algorithms to provide personalised feedback and
treatment recommendations. https://cardihab.com/ accessed on 5 April 2023. In the
meantime, the Personalized Heart Failure Management with AI project will develop a
personalised treatment plan for heart failure patients based on individual factors such as
genetics, lifestyle, and health history. Another promising project is the continuous monitor-
ing of patient devices in critical scenarios, such as for example the coaxial intraventricular
pump, supporting the circulation in patients with severe failure of cardiac function. As
an example of how this technology might be used in future clinical practice, Abiomed
has already trained an AI algorithm to predict the next five minutes of a patient’s arterial
pressure based only on the prior five minutes of console data and has also developed AI
algorithms to predict other parameters, such as stroke volume, left ventricular pressure and
cardiac output. (https://www.abiomed.com/about-us/news-and-media/press-releases/
fda-approves-data-streaming-impella-console-setting-stage-artificial-intelligence accessed
on 5 April 2023, ref. [70] Among the major randomised trials, the TIM-HF2 trial evaluated
the usefulness of a multicomponent system comprising a three-channel ECG, in HF patients
with NYHA class II–III and a left ventricular ejection fraction (LVEF) under 45 per cent
(PhysioMem PM 1000, GETEMED Medizin und Informationstechnik AG, Germany), a
BP device, a weight scale, and an oxygen saturation device. The intervention, compared
with usual care, was associated with an improvement of the clinical condition, measured
as a lower number of days lost from unplanned HF-related hospital admissions and had
lower all-cause mortality (HR 0.70, 95 per cent CI 0.50–0.96) [71]. The TEMA-HF1 trial
demonstrated that the use of telemonitoring during follow-up in patients with HF re-
duced all-cause mortality (an absolute reduction of 12.5 per cent), with a lower number
of follow-up days lost to death, hospitalisation, or dialysis [72]. Interesting results are
those coming from a study by Gelman et al., which demonstrated that the randomisation

https://cardihab.com/
(https://www.abiomed.com/about-us/news-and-media/press-releases/fda-approves-data-streaming-impella-console-setting-stage-artificial-intelligence
(https://www.abiomed.com/about-us/news-and-media/press-releases/fda-approves-data-streaming-impella-console-setting-stage-artificial-intelligence
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of diuretic regimens guided by a second-generation personalised AI algorithm improves
the response to diuretic therapy with a significant reduction in NT-proBNP and serum
creatinine values [73]. Therefore, a novel, machine learning-derived model was validated
also by Segar et al. to predict the risk of heart failure (HF) among patients with type 2
diabetes mellitus (T2DM). The cumulative 5-year incidence of HF increased in a graded
fashion from 1.1 per cent in patients with WATCH-DM score of 7 to 17.4 per cent in patients
with a WATCH-DM score of more than 14 [74]. Among ongoing studies, HeartMan project
aims to develop a personal health system that would comprehensively address CHF self-
management by using sensing devices and artificial intelligence methods with significantly
improved self-care behaviour and reduction of depression and anxiety [75]. The role of
deep-learning-based echocardiography in the diagnosis and evaluation of the effects of
routine anti-heart-failure Western medicines was investigated in elderly patients with acute
left heart failure (ALHF). The study demonstrated a reduction in rehospitalisation and
mortality rate [76].

7. Limitation

Since AI is a “newborn”, rapidly evolving topic, some limitations can be identified.
First, a standardised protection system that guarantees the security and privacy of patients’
data is strongly needed. Second, the application of AI-powered technologies is not within
reach of all patients. As a matter of fact, there are still remarkable differences in internet
services and technological deficiencies among the various countries. Moreover, there is
great heterogeneity in technological adherence from both patients and caregivers. From
a perspective view, AI tools should be available for the entire population, without socio-
economic distinctions. Third, data about the application of AI in CHF mostly derives
from observational studies, whereas randomised controlled trials (RCTs) are still scanty.
In addition to scientific evidence, some ethical issues still need to be fully addressed. For
example, some AI-computational models imply the use of an inscrutable layer of analysis,
also known as the “black box”, which represents a source of ethical concern. A further issue
is the need for cross-speciality education and training to promote technical knowledge
among healthcare personnel and healthcare literacy among AI experts.

8. Future Perspectives

Artificial intelligence will dramatically improve the usefulness of new and upcoming
“smart” technologies, such as wearable devices, mobile health, and a number of different
sensors. Leveraging on a large amount of reliable and precise data AI algorithm will process
these data together with other data obtained through traditional methods (anamnesis,
clinical reports, medical examination, subject’s history) to obtain a more precise and reliable
diagnosis and prognostic prediction, allowing a truly tailored approach to therapy. Multiple
applications can be envisioned, ranging from health risk assessment for the development
of heart failure, continuous monitoring of the health status and state of progression of
CHF, smart interactive planning of clinical visits and examinations, early recognition of
“red flags” announcing acute complications, prediction of the likelihood of responding to
a particular treatment, and many more. Foremost, the new avenues opened up by the
new possibilities brought about by AI solutions will need a change in our paradigm of
clinical research, shifting from research models focused on testing a single experimental
intervention to the utilisation and evaluation of protocols and approaches to a specific
health issue. This would put the patients at the centre of focus and will allow us to evaluate
truly personalised interventions. Integrating multiple data sources will allow a holistic
view, data standardisation and real-time monitoring of heart failure patients, enabling early
detection of changes in health status and triggering early intervention. Finally, AI tools
will be very helpful to support the discovery and development of new therapies for heart
failure, improving our understanding of the underlying mechanisms of the disease, and
integrating large amounts of data from various sources. AI-powered tools will drive a
dramatic improvement of in silico tools in drug development research.
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