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Abstract: Modelling both long- and short-term user interests from historical data is crucial for
generating accurate recommendations. However, unifying these metrics across multiple application
domains can be challenging, and existing approaches often rely on complex, intertwined models
which can be difficult to interpret. To address this issue, we propose a lightweight, plug-and-
play interest enhancement module that fuses interest vectors from two independent models. After
analyzing the dataset, we identify deviations in the recommendation performance of long- and
short-term interest models. To compensate for these differences, we use feature enhancement and
loss correction during training. In the fusion process, we explicitly split long-term interest features
with longer duration into multiple local features. We then use a shared attention mechanism to fuse
multiple local features with short-term interest features to obtain interaction features. To correct for
bias between models, we introduce a comparison learning task that monitors the similarity between
local features, short-term features, and interaction features. This adaptively reduces the distance
between similar features. Our proposed module combines and compares multiple independent
long-term and short-term interest models on multiple domain datasets. As a result, it not only
accelerates the convergence of the models but also achieves outstanding performance in challenging
recommendation scenarios.

Keywords: recommendation system; contrast learning; deep learning

1. Introduction

Recommendation systems play a critical role in accurately recommending items or
content that match users’ preferences in various fields, such as news [1], e-commerce [2,3],
video [4], online advertising [2], and so on. Traditional recommendation methods, such as
collaborative filtering [5], KNN [6], and matrix factorization [7], use user-item interaction
information, including clicks, follows, ratings, and purchase history, to find similar users or
items for recommendation. However, these methods use static information that is difficult
to capture the dynamic interests of users. Although matrix factorization technology was
later proposed to mine users’ potential interests, its performance in recommendation
is limited.

In recent years, deep learning technology has been widely used in various fields, such
as anomaly detection [8,9], data enhancement [9–11], and so on. In the recommendation
system field, based on the consideration of users’ long- and short-term interests [1–3,12–14]
over time, the core principle is to model user interests based on the order of interacting
items over a period of time. We can train long- and short-term interests separately based on
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the length of the sequence data and combine them to make recommendations that balance
between personalization and diversity.

Long-term interests: extracting stable interests from sequential data based on long-
term interests has always been a research focus. A common solution is to learn longer user
behavior sequences as much as possible and store user interest features offline. DIN [2]
considers that each user’s attention to the target item should be different and proposes a
model based on attention mechanism, which uses target objects and historical sequences
to calculate attention scores to update sequence information. MIMN [15] decouples user
interest memory storage units from recommendation modules. Long-term user interests do
not need to change in a short time, and offline storage can remember longer user sequence
data. SIM [16] proposes a method for quickly retrieving user behavior memory sequences
throughout the user’s life cycle, and improves the memory sequence to tens of thousands.
SURGE [17] integrates different types of preferences in long-term user behaviors into
clusters in the graph. Although longer sequence data can extract more stable user interests,
there are also problems with difficult updates, difficult training convergence, and high
data requirements.

Short-term interests: deep learning models based on time-series analysis have been
found to be effective for modeling short-term user interests [3,12,14,18,19]. Several notable
models, including GRU4REC [14] and DIEN [3], have integrated recurrent neural networks
and attention mechanisms to improve recommendation accuracy. More recent models
such as SDM [12] and CGNN-MHSA-AR [20] have further enhanced these approaches
by incorporating multi-dimensional information. However, short-term interest models
have limitations in dealing with noisy and incomplete data, which can lead to bias in
recommendation results when coordinated with long-term interest models.

LS-term interests: typically, recommendation systems rely on either long-term or
short-term benefits to generate recommendations. However, considering only one side
interest will lose the platform and user experience [21]. Recent methods [1,12,18,21–24] have
proposed solutions to this problem by dividing the model into two parts that separately
model the user’s long-term and short-term interests. The final recommendation is then
based on a fusion of these two models. The advantage of hybrid recommendation lies in its
ability to combine the strengths and weaknesses of different recommendation algorithms
and applicable scenarios, and then choose the most suitable ratio to fuse multiple algorithm
recommendations based on real-time data. Current feature combination methods can
be divided into three categories: summation [1], concatenation [24,25], and weighted
fusion [12,26]. However, these methods mainly consider the overall relationship between
independent features, even the latest practical industrial methods. When it comes to the
long-short interest model, it ignores the relationship between aspect-level interest and
short-term interest in long-term interest features. Therefore, we explicitly partition the
long-term interest features and use similarity and contrast loss to compensate for the
shortcomings of previous methods. In practical applications, more side information is often
introduced to enhance user and item features and reduce the bias of fusion features [27–29].
However, less research has been conducted on the enhancement of interest features. To
address this gap, we specifically designed a novel fusion enhancement module, and the
final experimental results demonstrate the effectiveness of our method.

In the following text, we will answer the following three main questions:

Q1. Why train the long and short interest models separately?
Q2. How does the integration module correct for interest bias?
Q3. What is the versatility of our approach?

In conclusion, the starting point of this paper is to connect the independent long and
short interest models and correct the deviation between each other to improve the perfor-
mance of the models. The main contributions of this paper are summarized as follows:

1. A plug-and-play user long and short interest fusion module is designed, which
can effectively and quickly fuse long and short interests using the shared attention
mechanism, thus improving the model accuracy;
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2. The sources of interest bias are analyzed experimentally, and an improved ternary
contrast loss function is introduced to accelerate the convergence of the model by
using the bias between features as the index of the loss function;

3. The effectiveness and generality of our proposed method is demonstrated by com-
bining and experimenting several different long and short interest models on several
different domain datasets with data of different sequence lengths as input.

2. Related Work
2.1. Entanglement Training

The long- and short-term user interest model is a crucial component of recommender
systems. It involves two stages: entangling long- and short-term interests for joint training
and decoupling them to enhance interpretability and reduce confusion. Various models
have been proposed for both stages, each with distinctive characteristics. For the entangling
stage, SASrec [30], LUTUR [1], RCNN [18], and DIEN [3] are some of the popular models
that employ complex neural network architectures to model the joint distribution of long-
and short-term interests. SASrec uses the Markov chain assumption to pass sequence
data through an attention network layer and a feed-forward network layer to predict the
action probability of the last click. LUTUR uses user ID to capture long-term interests and
long-term data to initialize short-term interest models. RCNN models long-term interest
preferences using RNN and short-term interests using CNN on the hidden state. DIEN
adds an improved GRU network layer with better temporal sensitivity to the lower layer of
the attention mechanism network.

2.2. Disentanglement Training

To address the problem of poor model interpretability and confusion of captured user
interests, researchers have proposed decoupling methods to separate long- and short-term
user interests. PLASTIC [19], GNewsRec [24], SDM [12], MA-GNN [31], and CLSR [21] are
some of the models that have employed different approaches for this stage. PLASTIC uses
a combination of multi-factorization machine and RNN to capture long- and short-term
interests separately and uses reinforcement learning to dynamically train fusion weight
coefficients. GNewsRec constructs a relationship graph based on user-item interaction
data to mine long-term interests and trains short-term interest using LSTM and attention
mechanism. SDM trains long-term interests using item labels and user attributes and uses
LSTM and multi-headed attention mechanism to obtain short-term interests. MA-GNN
uses GNN to model short-term interests and a multi-headed attention mechanism to model
long-term interests. CLSR proposes to use self-supervised signals to separate long- and
short-term interests to reduce the biased expression of user interests.

2.3. Feature Fusion

Feature fusion refers to the fusion of information from different feature sources into a
unified feature vector to improve the performance and robustness of a model in various
tasks. It includes feature-level fusion, modality-level fusion and feature correction. For
example, in image recognition tasks, features such as different scales and colors can be
extracted from the original image and then fused to form a new feature vector. Kaiming
He et al. [32] proposed a deep residual structure to fuse different levels of features across
scales, and Nitish Srivastava et al. [11] proposed a model using a deep Boltzmann machine
for training features from visual, text and speech data from different modalities for cross-
modal learning and feature fusion, and Albert Gordo et al. [33] proposed a convolutional
neural network based image retrieval method that integrates feature correction mechanisms
such as local voting and pooling in the network structure, which is used to improve retrieval
robustness and accuracy. Regardless, feature enhancement is a not an indispensable part of
feature fusion, which refers to the reconstruction or expansion of existing features, such
as data enhancement [10], transformation of features from different sources [11], gradient
selection [9] and feature reconstruction [34]. We borrowed the feature fusion ideas from the
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above papers and proposed the use of attention mechanism and global average residual
structure to fuse long and short interest features, and proved the effectiveness of our
method in the final feature fusion comparison experiments.

3. Our Approach

The recommendation system operates by forecasting a user’s future actions based on
their past behavior. We denote the set of all users using the mathematical symbol U, and
the set of all items using the symbol I. The user interaction sequence has a fixed length
of N, denoted by Xu = xu

1 , xu
2 , . . . , xu

N , which represents the sequence of interaction items
ordered in time by user u. The time series model utilized in this study learns both the user’s
long-term and short-term interests from the first N − 1 items of the interaction sequence,
as well as the user’s ID data, to predict the probability of clicking on the Nth item in the
prediction model. To incorporate the latest sequence information, we draw inspiration
from the paper [23] and extract the most recent consecutive segment of sequence, Ñ, as
input to the short-term interest model. Embedding techniques have been widely utilized in
data processing phases of recommender systems. In our study, we apply the embedding
technique to represent user discrete data and item discrete data, where each user dimension
is represented by u and each item dimension is represented by i. This process can be
expressed as Equation (1).

pu∈U , qi∈X = Embed(U), Embed(X) (1)

pu∈U is the embedding vector of user u, qi∈X is the embedding vector of item i

3.1. LS Interest Modeling

The behavioral motivation of users is often complex. Even users with stable long-term
interests may occasionally click on popular items unrelated to their interests. As a result,
short-term user interests are considered unstable and contain a significant amount of noise
data. Zheng et al. [21] have emphasized that accurately predicting a user’s long-term
interests can increase click rates, while accurate short-term interest prediction is critical
for platform profitability and user experience. In sequence modeling, RNN structures
are frequently employed because they take into account the time factor of sequence data.
Although a user’s interests may differ significantly in a short period of time, they are still
linked, and the RNN structure captures the weight of the relationship between items before
and after.

Table 1 displays the prediction results of our DIN model on different types of users
with varying sequence lengths, trained on Amazon Electric data. The findings indicate that
when users have few click sequences, the model recommends more diverse item types and
popular items to explore their interests, resulting in fluctuating hit rates. As the number of
user interactions increases, the proportion of recommended item types matching the user’s
click history increases, and the proportion of popular items decreases, indicating that more
data can extract stable user interests. For users with diverse interests, the long-sequence
model has minimal impact on the diversity of recommended items, while users with
narrower interests experience the opposite effect, with longer models resulting in greater
bias. A long time span of item interaction can be fatal to a short-term sequence model,
leading to recommended popular items to compensate for the deficiency. However, the
long-term interest model has minimal effect on short-term interest prediction and should
be used judiciously to avoid impairing the prediction accuracy of the model.

In summary, we can answer the first question (Q1): long sequence models are more
suitable for users with diverse interests, while short sequence models are better for users
with less diverse interests. Long sequence models prioritize diversity over accuracy, while
short sequence models prioritize accuracy over diversity. To overcome these challenges, we
propose decoupling the short-length interest model, redesigning the feature enhancement
module, and introducing a loss function to account for differences in interests.
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Table 1. Table of prediction results of different length sequence models for different users. “Class”
represents the number of categories, “popu” represents the proportion of popular items, and “cross”
represents the proportion of recommended results crossed with historical items categories.

DIN Model User Histories Sequences Categories Time Span

Length Thread ≤5 ≥50 ≤2 ≥20 ≤1 ≥3300

10
class 31 34 2 67 41 39
popu 0.016 0.005 0.000 0.008 0.010 0.005
cross 0.027 0.333 0.384 0.176 0.015 0.034

20
class 67 87 52 41 47 64
popu 0.010 0.008 0.004 0.016 0.032 0.012
cross 0.027 0.276 0.014 0.208 0.040 0.120

40
class 145 165 164 144 201 193
popu 0.014 0.005 0.007 0.010 0.003 0.005
cross 0.064 0.202 0.014 0.096 0.026 0.082

50

class 189 98 202 89 141 133
popu 0.018 0.001 0.008 0.010 0.009 0.012
cross 0.025 0.330 0.011 0.173 0.028 0.085

3.2. Fusion Module

The fusion module workflow is detailed in Figure 1. Firstly, the user interest features
from the long-term interest model are divided into four equal parts. This was inspired by
Feng et al. [35], who suggested that user behavior consists of short sessions with varying
interest points. After segmentation, multiple local features are cross-fused with short-term
interest features through a shared attention mechanism, capturing the correlation between
short-term features and local features. The aim is to identify the correlation between short-
term feature fusion and local features to account for differences between long-term interests
and short-term interests.

ai =
exp( f (pu

s , pu,i
l ))

∑n
j=1 exp( f (pu

s , pu,j
l ))

(2)

att(pu,i
l , pu

s ) = ai p
u,i
l (3)

pu,i
l refers to the ith feature part equally divided into n parts. f is the fusion enhancement

function. ai calculates the attention fraction between the short-term and local features. The
att is obtained as a result of fusion of individual local features with short-term features.

The short-and long-term interest model incorporates an attention mechanism that
calculates weights between historical serial goods and target goods, providing a direct inte-
gration of global information while ignoring one-sided interest. Meanwhile, the attention
module in the fusion module leverages shared parameters to calculate weights between
each local feature and short-term features, thereby avoiding an overly large number of
parameters. While this approach can effectively integrate local features with short-term
features and obtain part of the global long-term interest features, it still lacks the ability
to fully integrate global information. To address this limitation, we propose the use of an
MLP and sigmoid to calculate the weights of each interaction feature, and then stitch all
interaction features together as user interest features.

Multiple output feature vectors contain the evolution direction of user interest, and
effectively integrating them is a crucial problem. Inspired by the channel attention mecha-
nism in SE-Net for images, we propose a lightweight fusion unit that treats each feature
as a channel. This unit dynamically adjusts the weights using the attention mechanism.
Unlike the SDM model, our fusion unit is computationally efficient and adheres to the
plug-and-play principle. The fusion process can be expressed as follows:

pout = ou + ou · σ( f (maxpool(pu) + avgpool(pu))) (4)
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maxpool and avgpool represent maximum pooling and average pooling, respectively, f
is the multilayer perceptron, σ is the sigmoid function, and ou is the output result set
interaction feature of the attention mechanism. The output pu is obtained by splicing the
output of a multi-head attention mechanism. The fully connected layer f is followed by a
sigmoid function.

Figure 1. The fusion module is the main component of our model, which requires both long-term
and short-term user interest features as input, and the user interest model can be replaced according
to actual needs. GRU is a variant of recurrent neural networks, but with fewer parameters, which
alleviates the gradient problem in long-term memory and back propagation. attention is the attention
mechanism. Multi split splits longer long-term interest features into multiple copies.

Based on the fusion module’s content, we will address the second question (Q2):
although pu

l and pu
s are explicitly separated, the disentanglement between them cannot

be fully guaranteed, and there is no corresponding label to supervise the learning of
their differences. To address this limitation, we propose a new contrast learning task that
dynamically adjusts the similarity between the interactive feature and the original feature.
The recommendation for different types of users varies in the ratio of long-term and short-
term interest. For example, in the case of cold startup, local features should be more similar
to short-term features, while regular users require the opposite. The goal of this task is to
minimize the similarity between features and maximize features with large differences.

3.3. Dynamic Decouple Loss

The fusion module incorporates an attention mechanism to integrate local features
and short-term features. The binary loss function adjusts the difference between the output
and input. However, the model may face challenges with slow convergence and instability
due to large model parameters and diverse user types. To overcome these issues, we use
the attention scores obtained from the attention mechanism to represent the contribution
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of each local feature in the interaction feature of the output. We introduce a ternary
comparison loss function that uses the feature similarity differences as an index to sum to
the final loss value. The final loss function is reformulated as follows:

Loss = LBCE +
n

∑
i=1

aiLtri,i (5)

The loss function used in this study is a combination of binary cross entropy loss
(LBCE) and triplet loss (Ltri), where a represents the attention fraction. The traditional triplet
loss function is defined as follows:

L =
n

∑
i=1

max(d(oi
u, pu,i

l )− d(oi
u, ps) + margin, 0) (6)

d(oi
u, pu,i

l ) computes the Euclidean distance between interaction features and local features,
d(oi

u, ps) counts the Euclidean distance between interaction features and short-term features,
and margin is a custom constant. However, the default setting is dominated by local
features, which may reduce the weight of short-term features and lead to biased results.
This shortcoming can be attributed to the traditional triplet loss function, which calculates
the difference between the anchor sample and the positive and negative samples, and
the result is mandatory. To account for varying user preferences in prediction results,
constraints are incorporated into the loss function and dynamic parameters are introduced
through attention scores. The formula for this is as follows:

simmin, simmax = sorted(s(ou,i, pu,i
l ), s(oi

u, pu
s )) (7)

Ltri = max(
1
n

n

∑
i=1

ai(1− simmax) + simmin + margin, 0)) (8)

For each set of triplet features, we sort the similarity between the remaining interaction
features and the two features. The similarity is calculated using the formula s, which is
the reciprocal of the Euclidean distance between the features. The group of features with
the highest similarity is considered dominant. n is the number of interaction features and
ai represents the attention weights of each interaction feature. 1− simmax and simmin will
gradually increase the distance between dissimilar features during the iterative learning
process, which can serve to regulate the ratio of long-term interest to short-term interest
contribution to the final result.

To summarize, we propose an enhanced triplet loss function that incorporates an
attention score to regulate the influence of local interests, a similarity term to measure
the difference between local and short-term interests, and an indexing mechanism to
incorporate these factors into the overall loss function. In our comparative experiments, we
demonstrate that this loss function efficiently accelerates model convergence.

4. Experiments

In this section, we present a comprehensive overview of our experimental process and
results. First, we describe the multiple field datasets used in our experiments and the user
interest model employed for comparison. Next, we explore and analyze the performance
of our fusion module by addressing three main research questions:

• RQ1: How do our modules perform in practice?
• RQ2: What is the individual contribution of each component in our model?
• RQ3: Can our model effectively handle the complexity of sequence data with varying

lengths across different scenarios?

We provide detailed answers to these questions and present our experimental findings
in a structured and rigorous manner.
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4.1. Datasets and Experimental Setup

To simulate various recommendation scenarios, we have selected four publicly avail-
able datasets in the domain. Table 2 provides detailed information about each dataset. For
instance, the Amazon and Douban datasets have opposite user interest breadth, the Taobao
dataset has longer user click sequences and richer data, and the Yelp dataset has fewer user
clicks, which can effectively simulate the cold-start situation. In order to measure the effect
of the model, three metrics are selected, namely Accuracy (ACC), Area Under Curve (AUC)
and F1-score (F1). The higher the number of the three, the better the effect.

Table 2. The number of users and items in the four datasets. Average click sequence indicates the
average number of items clicked by users; average click categories indicates the average number of
items clicked by users; average click time span indicates the average time span clicked by users.

Datasets Users Items
Average

Click Sequence
Average

Click Categories
Average

Click Time Span

Amazon 19,240 63,001 8.780 8.780 1.050
Taobao 104,693 1,592,919 102.170 24.385 0.009
Douban 52,539 140,502 6.321 2.726 0.418

Yelp 1,542,656 209,393 3.956 3.025 0.324

4.2. Competitors

In the experiment, the long and short interest model and the mixed training model were
compared, respectively, including DIN [2], DIEN [3], NARM [13], PACA [36], RCNN [18],
SLiRec [37], FMLP [38], CLSR [21], GRU4REC [14], LUTUR [1], CASER [39]. Among them,
LUTUR, SLiRec and CLSR are hybrid models, which also share our model architecture.

4.3. Experimental Metrics

The experimental metrics include Accuracy, AUC and F1. The CTR task is a binary
classification task, which represents the proportion of the total number of correct model
predictions, and the accuracy is calculated as:

Accuracy =
TP + TN

N
(9)

TP, TN denotes the number of positive samples predicted correctly and the number of
negative samples predicted correctly, respectively, and N represents the total number
of samples.

AUC is a measure of the ranking performance of a recommender system. The ROC
curve is a curve with FPR (False Positive Rate) as the horizontal axis and TPR (True Positive
Rate) as the vertical axis, and AUC is the area under the ROC curve. The AUC is calculated
as follows:

AUC =
∑ I(ppositive, pnegative)

P× N
(10)

I(ppositive, pnegitive) =


1, ppositive > pnegitive

0.5, ppositive = pnegitive

0, ppositive < pnegitive

(11)

P is the number of positive samples, N is the number of negative samples, ppositive is the
positive sample prediction score, and pnegative is the negative sample prediction score. The
F1 score is a composite of accuracy and recall and can be calculated by the following formula:

F1 = 2 ∗ Precision× Recall
Precision + Recall

(12)
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Precision and recall denote accuracy and recall, respectively. The F1 score is a combi-
nation of precision and recall, while the AUC score is a combination of TPR and FPR.

4.4. Overall Performance Comparison (RQ1)

Table 2 details the overall performance of all models on the four datasets, from which
the following four results can be observed:

• The overall performance of the short-term interest model is better. From the overall
results, the short-term interest model is better overall than the long-term interest
model because it can capture the actual by-sequence information of user interaction
well. The results from DIN, PACA, and RCNN show that the length interest features
are more informative, and if more effective methods can be used to fit the long-term
interest features, the improvement of the models’ effectiveness is significant.

• The long-term interest model has the advantage of playing in two situations: a
large variety of products and a long time span of user clicks. Although the short-
term interest model is generally better, the short-term model does not necessarily
outperform the long-term model for the two cases of large variety of items and long
click time span. The RCNN and CASER models also use CNN networks, but CASER
is slightly less effective than the RCNN model, but there is a large gap between them
and FMLP, which indicates that the user’s pre-click data helps the model to capture
long-term interest, but the short-term interest weight is generally larger than the long-
term interest weight. The cold start problem is a difficult problem for both models,
and the best results for the Yelp dataset are lower than the remaining three datasets,
and there is a large gap between the long-term and short-term models, which verifies
that fitting to the length of the sequence data and effective extraction of the sequence
data are the keys to improve the performance.

• Joint modeling of long and short interests is a generally effective approach. Joint
modeling of models somewhat alleviates the poor performance of independent models
in cold starts, large span of user clicks, and many types of user clicks, but it is not
always effective. NARM, LUTUTR, and SLIREC are trained by entangling long and
short interests with each other, which somewhat increases the redundancy of the
models, and the performance of SLIREC in ACC and F1 which are inadequate. In
contrast, CLSR decouples the calculation of long and short interests, and the adaptive
weighting fuses the long and short interest weights, which alleviates the training
volume of the model, which makes up for the lack of realizations of SLIREC on Taobao.

• Contrast learning and feature enhancement can effectively improve model perfor-
mance. Our model differs slightly from the best comparison model CLSR on the data-rich
dataset Taobao, but improves AUC by almost 0.01 on Douban, which has a much smaller
variety of products, and for the cold-start case, our model leads CLSR in all metrics,
and has into 1.3% improvement on the long time span Taobao dataset. The results from
Table 3 also show that CDF-LS achieves a better balance in terms of computational cost.
These all validate the effectiveness of contrast loss and feature enhancement.

Table 3. Comparison of computational cost of LS-term model on Taobao and Yelp datasets. Params
represents the number of parameters of the model, FLOPs represents the floating point computation
of the model, and the unit G = 1,000,000 for the above two metrics. Throughput represents the
throughput of the model, and the unit Samples/s represents the maximum number of samples
processed per second.

Model
Taobao Yelp

Params (G) FLOPs (G) Throughput
(Samples/s) Params (G) FLOPs (G) Throughput

(Samples/s)

LUTUR 29.02 1.28 250,246.81 52.79 0.64 248,976.63
SLIREC 28.98 2.37 64,913.81 52.75 2.54 70,198.13
CLSR 29.0 1.62 98,586.71 52.77 1.62 102,487.96

CDF-LS 31.57 1.20 79,161.06 54.84 1.21 84,611.67
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Figure 2 depicts the decline diagram of training loss value of four mixed models on all
datasets. The zigzag curve is due to mild overfitting. CDF-LS can rapidly decline iteration
according to the difference index between features in the early stage of training, and it is
also applicable in difficult recommendation scenarios. This verifies that the introduction of
contrast loss between short and long features is effective.

Figure 2. LUTUR, SLIREC, CLSR and CDF-LS on four datasets with loss descent plots.

4.5. Results of Ablation Experiments(RQ2)
4.5.1. Contrast Loss

Contrast learning facilitates model fitting and interpretability by learning the simi-
larity between long and short features, combined with dynamic weight assignment. We
conducted ablation experiments on contrast loss, we compared the performance of two
models LUTUR, SLIREC with and without contrast loss, and replaced the contrast loss
function of CLSR. The experimental effects of dynamic assignment of weights were also
compared, and Table 4 shows all the comparison results in detail.

Table 4. The red font indicates the best results, and the LS-term models all use the RCNN and FMLP
user vector weights for the best results.

Category Long-Term Short-Term LS-Term

Dataset Model DIN PACA NARM RCNN CASER GRU4REC DIEN FMLP LUTUR SLIREC CLSR CDF-LS

Amazon
ACC 0.7148 0.7057 0.7364 0.7698 0.7665 0.7747 0.7805 0.7881 0.7924 0.8002 0.8046 0.8014
AUC 0.8095 0.8154 0.8340 0.8465 0.8415 0.8574 0.8636 0.8716 0.8786 0.8773 0.8857 0.8824

F1 0.7167 0.7096 0.7310 0.7668 0.7633 0.7789 0.7774 0.7830 0.7911 0.7973 0.8077 0.8096

Taobao
ACC 0.6895 0.7033 0.7021 0.7174 0.7122 0.7189 0.7296 0.7374 0.7561 0.7543 0.7607 0.7724
AUC 0.7624 0.7761 0.7723 0.8084 0.7096 0.8087 0.8390 0.8389 0.8391 0.8318 0.8388 0.8392

F1 0.6941 0.7097 0.7029 0.7218 0.7145 0.7187 0.7279 0.7448 0.7719 0.7693 0.7691 0.7710

Douban
ACC 0.8549 0.8440 0.8699 0.8740 0.8710 0.8811 0.8951 0.8941 0.9066 0.9018 0.9132 0.9134
AUC 0.8974 0.8838 0.9174 0.9281 0.9204 0.9168 0.9286 0.9378 0.9454 0.9463 0.9481 0.9567

F1 0.8577 0.8369 0.8787 0.8817 0.8763 0.8837 0.8938 0.8869 0.9010 0.9086 0.9047 0.9079

Yelp
ACC 0.6566 0.6610 0.6834 0.7093 0.7307 0.7399 0.7524 0.7580 0.7630 0.7719 0.7818 0.7907
AUC 0.7035 0.7271 0.7319 0.7504 0.7809 0.7807 0.8036 0.8073 0.8098 0.8122 0.8164 0.8204

F1 0.6589 0.6683 0.6803 0.7017 0.7393 0.7271 0.7513 0.7515 0.7641 0.7783 0.7730 0.7943

As can be seen from Table 5, the contrast loss adaptation can effectively improve the
performance of the LS-term model and is applicable to difficult recommendation scenarios.
The assignment of dynamic weights can serve to effectively assign the weights of long
and short features. We replaced the contrast loss in the CLSR model, which outperformed
our model by 0.35% on the Amazon dataset and by 0.13% in the cold start case. This
indicates that the decoupling framework in CLSR is applicable to most domains and can
effectively improve model performance, and that self-supervised decoupling on how to do
so effectively is a future direction for improvement.
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Table 5. Contrast stands for using the comparison loss function, Weights stands for using dynamic
weights to update the length of interest, and CLSR itself has dynamic weights, so only the new loss
function is compared. The gray numbers indicate the increase relative to the original model results.

Model Contrast Weights
Amazon Yelp

AUC F1 AUC F1

LUTUR " 0.8804 + 0.0018 0.8013 + 0.0102 0.8149 + 0.0051 0.7736 + 0.0095
" " 0.8820 + 0.0034 0.8049 + 0.0136 0.8157 + 0.0059 0.7746 + 0.0105

SLIREC " 0.8853 + 0.0080 0.8051 + 0.0078 0.8166 + 0.0044 0.7804 + 0.0021
" " 0.8861 + 0.0088 0.8064 + 0.0091 0.8171 + 0.0049 0.7847 + 0.0063

CLSR " " 0.8859 + 0.0002 0.8101 + 0.0024 0.8217 + 0.0053 0.7881 + 0.0151

4.5.2. Feature Fusion

To illustrate that our model is suitable for most short and long interest models and easy
to debug and add, we combined four sets of short and long interest models and conducted
exploratory experiments on more difficult prediction datasets. Table 6 shows the results of
the comparison experiments in detail, from which we can find that for DIN and CASER, the
worst-performing group of individual models, the performance improvement is obvious,
especially for DIN, which improves the AUC metric on Yelp by 15.4%. This is attributed
to the high-weighted short-term features and the effective fusion method. As for the best
performance combination RCNN and FMLP, its performance approaches CLSR on Amazon
and even surpasses CLSR by 0.02% on Yelp, which strongly validates that there is still room
for progress in the extraction of user interest, the enhancement of features with long and
short term interest can effectively play the performance of the respective models, and the
effectiveness of our module for feature fusion.

Table 6. Four combinatorial models comparing the simple splicing method with our fusion method.
The gray numbers represent the relative increase compared to the results of the original model. The
maximum increase reached 0.0314.

Model Fusion
Amazon Yelp

AUC F1 AUC F1

DIN + CASER % 0.8640 + 0.0225 0.7811 + 0.0178 0.7988 + 0.0179 0.7439 + 0.0046
" 0.8715 + 0.0300 0.7866 + 0.0233 0.8123 + 0.0314 0.7501 + 0.0118

NARM + DIEN % 0.8695 + 0.0059 0.7854 + 0.0008 0.8101 + 0.0065 0.7613 + 0.0100
" 0.8763 + 0.0127 0.7878 + 0.0104 0.8160 + 0.0124 0.7729 + 0.0216

PACA + GRU4REC % 0.8641 + 0.0067 0.7811 + 0.0022 0.8010 + 0.0203 0.7684 + 0.0413
" 0.8720 + 0.0146 0.7869 + 0.0080 0.8103 + 0.0296 0.7700 + 0.0429

RCNN + FMLP % 0.8740 + 0.0024 0.7846 + 0.0016 0.8074 + 0.0001 0.7517 + 0.0002
" 0.8809 + 0.0093 0.7903 + 0.0073 0.8166 + 0.0093 0.7624 + 0.0109

Based on the findings presented in Tables 1 and 3, we can address the third research
question on universality (Q3) raised in the introduction. Our results indicate that the
CBF-LS approach can effectively be applied across multiple datasets and models in various
fields. This is achieved by dynamically adjusting the contribution ratio of short and long-
term interest features based on the attention weight score and leveraging the differences
between features in the process of reverse optimization. The clear theoretical foundation of
our approach can be easily extended to other domains, and the faster iterations result in
reduced time and costs. Our results demonstrate that the wide applicability and training
efficiency of our approach support its universality.

4.6. Robustness Test Experimental Results (RQ3)

To demonstrate the versatility of our designed module for various models and sce-
narios, we conducted experiments on two challenging recommendation datasets using
different models with varying sequence lengths for training the long and short interest
models. The fusion module was utilized for pairing the models. Table 7 shows that the
combination of the longest sequence model and the shortest sequence model outperforms



Appl. Sci. 2023, 13, 7627 12 of 14

the baseline model. However, when using similar models, the results were poorer. This
is mainly due to the lack of compensating measures in similar models, which prevents
the optimization of contrast loss based on differences between the two models. This can
even result in interference, as evidenced by smaller results for 20 and 30 sequence lengths
compared to 40 and 50 sequence lengths. Our tabular results demonstrate that our mod-
ule significantly improves model performance in cases where there are large differences
between long and short interest models. However, it is less effective for similar models,
highlighting the limitations of contrast learning.

Table 7. Underline represents the baseline model for the combination, bolded represents the best
result. The longer sequences in each row are used to train the long-term interest model, and the
shorter sequences are used to train the short-term interest model.

Model
Sequences Amazon Yelp

20 30 40 50 AUC F1 AUC F1

DIN + CASER

" " 0.8427 0.7696 0.7909 0.7415
" " 0.8715 0.7866 0.8123 0.7501
" " 0.8753 0.7917 0.8149 0.7553

" " 0.8631 0.7898 0.8077 0.7430
" " 0.8649 0.7910 0.8083 0.7431

" " 0.8548 0.7704 0.7905 0.7257

FMLP + RCNN

" " 0.8701 0.7792 0.8075 0.7547
" " 0.8809 0.7903 0.8166 0.7724
" " 0.8847 0.7953 0.8189 0.7764

" " 0.8703 0.7765 0.8086 0.7561
" " 0.8761 0.7846 0.8137 0.7704

" " 0.8602 0.7739 0.8060 0.7433

5. Conclusions

In this paper, we present an experimental analysis of the differences in recommen-
dation outcomes between long and short user interest models. To address this gap, we
propose a novel interest fusion module that assimilates both long and short user inter-
ests. Our module is designed as a plug-and-play feature that employs a shared attention
mechanism to fuse the long and short interest features. Additionally, we incorporate a
comparison task to assess the similarity between the two interest representations and the
fused interest representations. Finally, we evaluated the effectiveness of our proposed
module for recommendation results on multiple datasets.
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