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Abstract: Human pose estimation refers to accurately estimating the position of the human body from
a single RGB image and detecting the location of the body. It serves as the basis for several computer
vision tasks, such as human tracking, 3D reconstruction, and autonomous driving. Improving the
accuracy of pose estimation has significant implications for the advancement of computer vision.
This paper addresses the limitations of single-branch networks in pose estimation. It presents a
top-down single-target pose estimation approach based on multi-branch self-calibrating networks
combined with graph convolutional neural networks. The study focuses on two aspects: human body
detection and human body pose estimation. The human body detection is for athletes appearing in
sports competitions, followed by human body pose estimation, which is divided into two methods:
coordinate regression-based and heatmap test-based. To improve the accuracy of the heatmap test, the
high-resolution feature map output from HRNet is used for deconvolution to improve the accuracy
of single-target pose estimation recognition.

Keywords: single-target pose estimation; graph convolutional neural network; deep learning;
target detection

1. Introduction

Computer vision (CV) is a thriving research area in machine learning, fueled by the
exponential growth of visual information and image data in various modern applications.
The advancements in deep neural network models and image processing techniques
have led to the widening of the applicable domain scenarios and the definition of new
problems in CV [1]. Human pose estimation, as a significant area in computer vision, has
wide-ranging applications in various fields. For instance, in the field of human-computer
interaction, customized gestures or movements can enable humans to control computers [2];
in the entertainment gaming industry, players can experience immersive gameplay by
physically controlling game characters [3]; in sports analysis, pose estimation systems can
provide insights into the technical movements of athletes from multiple perspectives [4]; in
autonomous driving, posture estimation can analyze driver and passenger behavior and
provide early warnings of abnormal driving conditions [5].

Convolutional neural networks, commonly used for image processing in deep learn-
ing, can also be applied to graph data processing. Kpif et al. [6] proposed graph convolu-
tional networks (GCNs), which introduced a novel approach to action recognition through
skeleton information. Yoon et al. [7] were the pioneers in applying graph convolutional net-
works to action recognition and developed the ST-GCN method for behavior classification,
demonstrating outstanding results on two large action data sets. Additionally, Simonovsky
et al. [8] designed a graph edge convolutional neural network (GECNN) that fused the
results of the graph edge convolutional neural network and graph convolutional neural
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network, yielding significant improvements in the performance of graph convolutional net-
works, computer vision, and human pose estimation are rapidly advancing fields that have
numerous applications in various domains. With the emergence of deep neural network
models and image processing techniques, the applicable domain scenarios are broadening,
and new research problems are being defined. The application of convolutional neural
networks in graph data processing, such as graph convolutional networks and graph edge
convolutional neural networks, has provided novel solutions to the challenges in action
recognition and pose estimation.

Human pose estimation is the process of detecting and locating the coordinate position
and orientation of human joints from images or videos. Human pose estimation plays a
very important role in areas such as action recognition [9], intelligent recognition [10], and
human-computer interaction [11]. It is in sports, as an important application area for the
application of human posture estimation, that can help to effectively assess the overall
ability of athletes in multiple dimensions by analyzing their movements and providing
an informed reference for athletes; research on body pose estimation in sports is develop-
ing very rapidly, with algorithms evolving from the process of analysis and modeling of
sporting events.Research on body pose estimation in sports is developing very rapidly,
with algorithms evolving from the original traditional methods of research to the current
deep learning approach [12]. Using neural networks, deep learning algorithms for human
body pose estimation models can extract sufficient target image features for accurate identi-
fication and detection of Sports video analysis-based training and match assistance systems
that have a wide range of applications both at home and abroad [13]. The Coach’s Eye ap-
plication, developed by TechSmith, records the state of the athlete through a mobile device
or camera and plays the video in slow motion. The Coach’s Eye application, developed by
TechSmith, records the state of the athlete through a mobile device or camera, plays the
video in slow motion and analyses it frame by frame, analyses comparative movements
side-by-side, uses advanced analysis tools such as stopwatches to mark time, The system,
due to the use of slow motion to analyze movements, is analysis efficiency needs to be
improved [14]; STATS’ SportVU (Player Tracking Analysis System) in the USA was one
of the first systems to apply video analysis technology to sports competitions [15]. In the
domestic sports video analysis system, Chuangbing DA-TA slices the second-level data of
each game, and uses the distributed computing platform to perform multi-dimensional
statistics on the cloud data, which is more accurate in the game data statistics, but lacks
the player’s action analysis [16]; the data acquisition and analysis system of Lingxin sports
events uses the football and player trajectory data provided by the high-speed camera to
collect the player’s movement information, and uses the template-matching method based
on the Lingxin sports system to track the players. The system records the data related to the
player’s movement. Through the data analysis of the player’s performance, in the football
game, the accuracy of the individual player’s action analysis needs to be improved [17].

Pose estimation can be divided into single-pose estimation and multi-person pose
estimation. Single-pose estimation predicts the body parts and joints of the human body
in the image that has been cropped and processed. In contrast, multi-person pose esti-
mation can be divided into top-down searches. In the early methods of single-body pose
estimation, the body parts were detected by using the artificially extracted Histogram.
In the early methods of single-body pose estimation, the body parts were detected by
using the artificially extracted Histogram of Oriented Gradient (HOG) features, and the
human pose structure was represented by using the probability model map (rather than
the tree model) [18]. After Toshev et al. [19] proposed DeepPose using AlexNet to regress
the coordinates of human node locations to proceed, deep neural network-based models
rapidly occupied the field of pose estimation. Tompson et al. [20] learned human pose
structure by combining depth features and graphical models. Carreira et al. [21] proposed
an iterative error feedback method (Iterative Error Feedback, IEF) to train Convolution
Neural Networks (CNNs), which will repeatedly feed the input into the network and
self-correct the network based on the prediction feedback. In recent years, the application
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of single-body pose estimation to athletes is mainly in the analysis of athletes’ movements
during competition. Farrukh et al. [22] proposed a yoga training system by integrating
computer vision techniques, and the system analyzes the trainer’s pose by extracting body
contours, skeleton, dominant axes, and feature points from the front and side views [23].
Then, based on the domain knowledge of yoga training, visualized posture correction
instructions were proposed with high accuracy in correcting the trainer’s posture. Asha
et al. [24] used a deep key frame extraction method for analyzing weightlifting sports train-
ing videos in order to monitor and analyze athletic poses of athletes training in professional
sports, and the proposed DKFE outperformed the comparison methods in terms of key
pose probability estimation and key pose extraction [25].

Pose estimation has become a popular research topic in sports movement analysis.
In this stage, researchers are using single static images as input to integrate similar im-
ages in neighboring pixel points and complete the local search of human parts through
superpixels [26]. They apply the variability part model to achieve human part recognition,
which reduces the interference of background on part recognition. Additionally, the super-
vised training convolutional network provided by the ordinal depth based on single human
joints can effectively improve the accuracy of remote mobilization detection in the scene.

This paper specifically addresses the following problems based mainly on graph
neural networks and single target pose estimation algorithms. The contributions of this
paper are as follows:

(1) The model combining graph neural network and HRNet can effectively improve the
accuracy and efficiency of pose estimation tests. This can help accurately identify
the limb movements of athletes in the game and provide an effective reference for
athletes’ movement analysis.

(2) Based on the end-to-end deep network for personnel detection and deconvolution
operation through multiple upsampling and HR-Net, the shallow layer in the fu-
sion neural network for human location information recognition improves single
target recognition. This can circumvent some inspection errors caused by over-
lapping or shading and, to a certain extent, reduce the occurrence of missed and
wrong inspections.

(3) The graph neural network-based human pose estimation method is further optimized
on the traditional graph structure-based method. This ensures adequate extraction
of human pose features while reducing the time required for extraction and further
improving the accuracy and efficiency of object detection and human pose estimation.

This paper aims to investigate the action recognition of athletes in sports competitions
using the skeletal point dataset and graph neural network. The paper begins by introducing
the current development of computer vision and highlighting the specific application of
single-body pose estimation in sports. The purpose and significance of the study are
also explained. In the second part of the paper, related work in the field is reviewed,
and some of the most commonly used single-body pose estimation algorithms are analyzed.
The third part of the paper introduces the algorithms used in this study and presents a
detailed technical roadmap for the entire paper. The fourth part of the paper describes the
experimental process, which involves applying the pose estimation algorithm to athlete
photo sampling recognition on the coco dataset, and verifying the validity and applicability
of the model on the validation set. Additionally, the performance of the proposed model is
compared with some of the current mainstream algorithms, and a comprehensive prediction
result is presented. Towards the end of the paper, some advantages and disadvantages
of the proposed model are discussed, and the entire study is summarized. Finally, future
work is outlined.

Overall, this paper follows a standard structure for a research study in computer
vision, which includes an introduction, related work, methodology, experiments, results,
and conclusions. The language used is academic, and the presentation of the content is
clear and concise.
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2. Related Work

Human pose estimation, which can also be called human keypoint detection, is a rela-
tively basic task compared to other fields in machine vision, such as target detection, image
segmentation, image enhancement, image generation, and face classification recognition,
whose main purpose is to estimate the human pose by correctly connecting the detected
human joints in the picture [27,28]. According to whether it contains three-dimensional
depth information, human keypoint detection algorithms can be divided into 2D keypoint
detection and 3D keypoint detection, and in 2D and 3D keypoint detection can be divided
into single and multi-person keypoint detection. In 2016, Wei et al. merged convolutional
networks into a pose machine to learn image features and image-dependent spatial mod-
els for pose estimation [29], and Newell et al. proposed hourglass-type convolutional
networks [30]. Both methods perform the process of detecting people first and then key
points for each person. In 2017, a researcher proposed the OpenPose measure, which first
detects all keypoints in an image and then associates keypoints in groups by affinity to
obtain the corresponding individual person. In 2019, a researcher proposed an improved
version of OpenPose, proposing a real-time method for detecting 2D poses of multiple
people in an image, which learns how to associate body parts with individuals in the
image. OpenPose is applicable to both single- and multi-person scenes and has both better
robustness and real-time performance. Compared with 2D skeleton points, 3D skeleton
points contain richer skeleton features, such as stereo angle information between joints and
depth information around bones.

There are three main methods to obtain 3D skeletal points. The first one is to obtain
the (x, y, z) coordinates of the joints by the subject wearing a motion tracking sensor. This
method is accurate and robust in estimating results, and does not introduce estimation
errors due to background occlusion. However, the data acquisition process is tedious,
and the sensor equipment is expensive. The second one uses a depth camera and a color
camera with a skeletal point estimation algorithm for estimation [31], which is more
accurate and easier to use. However, it is sensitive to occlusion and requires the use of
algorithms to process the occluded points that are incorrectly predicted, and the portability
and higher price affect the large-scale use of depth cameras. The third one is RGB video-
based pose estimation, which only needs a general camera to obtain 3D skeletal points,
the method is more suitable for large-scale use and promotion, but the accuracy rate is
currently inferior to the second method because of the lack of accurate depth information.
The RGB video-based human pose estimation algorithm is a hot topic at present and has
the potential for large-scale application, so the third method is used in this thesis to extract
3D skeletal points. Based on RGB video 3D key point extraction, the early method of
convolutional neural network was used to estimate 3D pose directly from RGB images,
and then with the development of deep learning technology, many methods for 3D pose
estimation were generated. 2019 Pavllo et al. proposed a full convolutional model for
3D human pose prediction [32], which only needs to do temporal convolution of 2D key
points to achieve human 3D keypoint prediction. Erik et al. proposed PoseDRL [33],
a trainable active pose estimation architecture based on deep reinforcement learning, which
has high performance for pose estimation in multi-person complex scenes. The analyzed
and compared VideoPose3D model can achieve high accuracy with fewer parameters and
can be trained and inferred quickly.

Human keypoints are the most important information when describing human pose
and detecting human movement. As shown in Figure 1 below, Keypoints Detection is
the main technique for the human pose estimation task, which aims to accurately find
the location of each key node of the human body contained in an image or a video frame.
The number of keypoints is determined by the dataset used, and the number of keypoints
and their locations vary slightly from dataset to dataset.
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Figure 1. Human skeleton diagram composed of key points.

Recently, graph convolutional neural networks (GCNNs) have become increasingly
popular due to their ability to model local structures and node dependencies on graphs.
The first GCNN was proposed by vila et al. in 2013, which defined graph convolution in
the spectral space based on graph theory [34]. However, the initial spectral method had the
drawback of high time and space complexity [35]. Subsequent methods such as ChebNet
and GCN parametrized the convolution kernel in the spectral method [36], which greatly
reduced the space-time complexity.

Inspired by these methods, spatial methods were applied, and attention mechanisms
and serialization models were used to model the weights between nodes in the node domain.
With the improvement in convolutional operators, researchers began to consider various
graph characteristics such as how to model higher-order information on the graph, and fine-
grained design for graphs with features on edges and heterogeneous graphs. In addition,
the scalability of models to large-scale graphs and the speed of training have also received
wide attention. In 2019, Sun et al. proposed a High-Resolution Network (HRNet), a network
model that distinguishes itself from previous low-resolution networks by connecting
convolutional group networks of different resolutions together in a parallel way. This
network uses parallel connections to maintain the input resolution from beginning to end
and allows for multi-scale information fusion. By fusing feature information from different
resolutions, HRNet effectively extracts feature information from the target and allows
for better estimation of a single pose. In human pose estimation, the general process of
HRNet involves target detection, which is used to detect the approximate location of the
human body [37]. This location is then used to detect all keypoints of the human body,
and a regressor is used to predict the individual key locations. After the estimation of
all keypoints, the key points are returned to the original map in the form of a heatmap,
achieved by adding a convolutional layer to the last layer of the high-resolution network
model. This converts the key point locations into a full-resolution heatmap [38].
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Overall, HRNet represents an advancement in GCNNs for human pose estimation,
allowing for effective multi-scale information fusion and feature extraction. Future research
may focus on further improving the scalability and efficiency of GCNNs for large-scale
graph [39].

3. Method

This paper proposes an algorithmic framework for motion capture, which includes
several parts as depicted in Figure 2. Firstly, a human pose estimation algorithm is utilized
to extract the skeletal information from the video. Specifically, this paper adopts a graph
neural network-based algorithm for human action recognition, which models the skeletal
data into a fixed topological graph structure to extract spatiotemporal features of the
skeleton using graph convolutional networks, including both graph convolutional neural
networks and adaptive graph convolutional networks [40].

Figure 2. Framework diagram of human posture estimation.

Secondly, a video-based human pose estimation algorithm is proposed. This algorithm
consists of several steps. Firstly, the human pose is estimated using the OpenPose algorithm
for still images. Then, a human tracking model is established based on inter-frame pose
distance metric, and UltraPixel segmentation is performed on the images to locate the
UltraPixel where skeletal joints are located. The UltraPixel is connected with the box
centered on the joint point, and the intersection between the UltraPixel and the box is
considered as the minimum candidate joint point set. Forward and backward searching
for better joint points is conducted based on optical flow and human motion continuity to
establish the candidate joint point set and the reference joint point [41]. Finally, the optimal
global human pose is generated for each frame by reorganizing these body parts, and the
key points with lower confidence are generated in each frame to generate a better candidate
joint point set [42].

3.1. OpenPose-Based Human Pose Estimation Algorithm

The OpenPose algorithm represents the latest advances in human pose estimation
for static images. This two-dimensional pose estimation algorithm is highly effective
at detecting multi-target human bodies in images [43]. One of its key advantages is its
bottom-up approach, which allows it to efficiently identify and track individuals even in
images with a large number of people [4]. At the heart of this algorithm is an explicit non-
parametric representation of skeletal joint point associations that encodes the orientation
and position of human limbs [44]. This representation is used to detect jointly learned
body parts and to identify associations between them. The algorithm also employs a set of
frameworks for detecting body part associations and employs greedy analysis algorithms to
estimate human body pose accurately [45]. Taken together, these features enable OpenPose
to achieve outstanding performance in human pose estimation [46]. The algorithm’s ability
to detect multiple individuals in a single image, its high accuracy, and its versatility make
it a valuable tool for a wide range of applications, including computer vision, robotics,
and human-computer interaction.
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Figure 3 illustrates the complete network architecture of OpenPose, which comprises
two distinct branches. The upper branch network, depicted in orange, is responsible for
producing the confidence map L, which indicates the likelihood of the presence of skeletal
joints. The lower branch network, shown in blue, is responsible for generating the partial
affinity vector field S [47]. Prior to processing, the input image undergoes convolutional
neural network (CNN) processing, which involves the use of the first 10 layers of VGG-19
for initialization and fine-tuning. This step allows for the extraction of a collection of feature
maps F.

Figure 3. OpenPose network architecture diagram.

As shown in Figure 3, the general flowchart of the OpenPose algorithm, the algorithm
requires an input color image of size w × h (Figure 4a), and first predicts the set of part
confidence maps S (as in Figure 4b) from the input image through a feedforward network,
and also predicts the part affinity vector fields L (Part Affinity Fields (PAFs) (Figure 4c),
which encode the association between each skeletal joint in the human body, are predicted
for subsequent association matching of skeletal joints. The set (S1, S2, . . . , SJ) denotes
each skeletal joint point with J body part confidence maps, where SJ ∈ R × h, j ∈ 1 . . . J.
Set the combined L = (L1, L2, . . . , LC) with C site affinity vector fields for each limb
site, where L ∈ R × h × 2, c ∈ 1 . . . C, and L encodes a 2D vector for representing
the position in the image [20]. Finally, the part confidence map and the part affinity vector
field are resolved by the greedy algorithm to output 2D human skeletal joint points for all
people in the image. Algorithm 1 is the pseudo-code of IEF, a generic framework for pose
estimation used for feature extraction.

Figure 4. Flowchart of OpenPose algorithm.
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Algorithm 1: Learning Iterative Error Feedback with Fixed
Path Consolidation

1: procedure FPC-LEARN
2: Initialize y0
3: E←{}
4: for t← 1 to (Tsteps ) do
5: for all training examples (I, y) do
6: εt ← e(y, yt)
7: end f or
8: E← E ∪ εt
9: for j← 1 to N do
10: Update Θ f and Θg with SGD, using loss and target corrections E
11: end f or
12: end for
13: end procedure

In the first stage, the network outputs a set of confidence maps S = ρl(F), and a
set of partial affinity vector fields L, l = ϕl(F), where ρ(F) and ϕl(F) are product of the
Convolutional Neural Networks (CNN) inferred in the first stage, and each branch can be
iterated. When iterating, the output of the branch network in the previous stage will be
mapped with the features of the original image F as the input of the branch network in the
current stage, which is used to produce more refined predictions. As in Equations, ρ and ϕt

are the intermediate results of step t.

St = ρt
(

F, St−1, Lt−1
)

, ∀t ≥ 2 (1)

Lt = ϕt(F, St−1, Lt−1), ∀t ≥ 2 (2)

To enable iterative network structure and outcome prediction for each branch, a loss
value is assigned at the end of each stage [48]. The upper and lower branch networks
incorporate a loss function, which measures the discrepancy between the predicted and true
values [49]. Spatial weighting of the loss functions is applied to address practical challenges,
such as incomplete labeling in some datasets. Specifically, in the T-phase, the two branch
networks utilize distinct loss functions. Refining the language and adopting a more formal
tone yields the following revised paragraph:

To facilitate iterative network structure and outcome prediction for each branch, a loss
value is assigned at the end of each stage. The upper and lower branch networks incorporate
distinct loss functions, which quantify the dissimilarity between the predicted and ground
truth values.

f t
s =

J

∑
j

∑
P

W(P) ∗ ||St
j(p)− S∗j (p)||22 (3)

f t
L =

C

∑
c=1

∑
P

W(P) ∗ ||Lt
c(p)− L∗c (p)||22 (4)

The OpenPose network consists of a body part confidence map, denoted as S∗, and a
vector field of part affinities, denoted as L∗, which are associated with the true label.
A binary mask W is applied to avoid error penalties in certain circumstances, such as when
the network predicts part confidence maps and affinity vector fields for an image location
p that lacks a label. This mask W is used to prevent penalties in such cases. To ensure that
gradients do not vanish during the training process, the OpenPose network is supervised
at each intermediate stage by periodically replenishing the gradients. The final objective
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function is a combination of the body part confidence map and the vector field of part
affinities, which is:

f =
T

∑
t=1

( f t
S + f t

L) (5)

3.2. Graph Convolutional Neural Network

Convolutional neural networks (CNNs) have achieved remarkable success in extract-
ing local features from Euclidean data possessing regular spatial structures, such as in
image analysis. The utilization of translation invariance, local connectivity, and image
structure enables CNNs to extract shared local features from entire datasets. However,
when applied to complex domain data without regular spatial structures, such as social net-
works in social sciences, distributed interconnected sensing networks, knowledge graphs,
and networks of interacting protein molecules, CNNs are not as effective. This has led to
an increasing focus on graph-structured convolutional neural networks (GCNNs) as a deep
learning method suited for graph-structured data.

GCNNs involve the construction of convolutional and pooling operators. Convolu-
tional operators aim to capture local node structures, while pooling operators aim to learn
hierarchical representations and reduce parameters. For node-level tasks, the primary focus
is on enhancing the expression of each node. In practical applications, pooling operators
may not be required, and early work has concentrated on constructing convolution oper-
ators on the graph. Pooling operators are typically employed for graph-level tasks. The
key challenge in GCNNs is developing convolution operators on the graph that capture
the local connectivity of nodes. The graph structure determines the adjacency matrix,
which represents node connectivity. Various convolution operators have been proposed,
including spectral-based and spatial-based methods. In summary, GCNNs provide a pow-
erful tool for analyzing complex domain data represented by graphs. The construction of
convolution and pooling operators is critical to develop effective GCNN models. GCNNs
have a broad range of applications, including social network analysis, protein interaction
analysis, and knowledge graph analysis. A common CNN algorithm pseudocode example
is presented in the following Algorithm 2.

Algorithm 2: ID-GNN embedding computation algorithm
Input: Graph G(V ; E), input node features {xv, ∀v ∈ V} ; Number of layers K
trainable functions MsG(k)

1 (·) for

nodes with identity coloring, MSG(k)
0 (·) for the rest of nodes;

EGO (v, k) extracts the K -hop ego network centered at node
v , indicator function 1[s = v] = 1 if s = v else 0
Output: Node embeddings hv for all v ∈ V
1: v ∈ V do
2: G(K)v ← EGO (v, K), h(0)

u ←xu,∀u ∈ G(K)v
3: for k = 1, . . . , K do
4: for u ∈ G(K)v do
5: h(k)

u ← AGG(k)

6: hv ← h(K)
v

Existing graph convolutional neural networks are divided into two categories: spectral
methods, which use the convolution theorem on the graph to define the graph convolution
from the spectral domain, and spatial methods, which start from the node domain and
aggregate each central node and its neighboring nodes by defining an aggregation function.
The absence of translation invariance on the graph poses difficulties in defining convolu-
tional neural networks in the nodal domain, and spectral methods use the convolution
theorem to define the graph convolution from the spectral domain, and we first give the
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background knowledge of the convolution theorem convolution theorem: the Fourier
transform of the signal convolution is equivalent to the product of the Fourier transforms
of the signal:

F( f ∗ g) = F( f ) ∗ F(g) (6)

where f, g denotes the two original signals, F(f ) denotes the Fourier transform off, - denotes
the product operator, and * denotes the convolution operator. Doing the Fourier inverse
transform on both ends of equation, we can obtain:

f ∗ g = F−1(F( f ) ∗ F(g)) (7)

where F−1 ( f ) denotes the Fourier inverse transform of the signal f. Using the convolution
theorem, we can multiply the signal in the spectral space and then use the Fourier inverse
transform to convert the signal to the original space to realize the graph convolution, thus
avoiding the difficult problem of defining the convolution caused by the graph data not
satisfying the translation invariance. The Fourier transform on the graph depends on the
Laplace matrix on the graph, and in the following, we will give the definition of the Fourier
transform on the graph. The definition of the Fourier transform on the graph depends on
the eigenvectors of the Laplace matrix. Using the eigenvectors as a set of bases under the
spectral space, the Fourier transform of the signal x on the graph is: x = Ux̂. Using the
Fourier transform and the inverse transform on the graph, we can implement the graph
convolution operator based on the convolution theorem:

x∗Gy = U((UTx))� (UTy) (8)

where G∗ denotes the graph convolution operator, x, y denotes the signal of the node
domain on the graph, and � refers to the Hadamard multiplication, which denotes the
multiplication of the corresponding elements of two vectors. We replace the vector UTy
by a diagonal array gθ , then Hadamard multiplication can be transformed into matrix
multiplication. By acting the convolution kernel gθ on the signal, the graph convolution
can be expressed in the following form: Ugθ , UT x. The convolution theorem provides a
way to define convolution on a graph by Fourier transform. Based on this definition of the
convolution operator, a number of graph convolution neural networks have emerged at
home and abroad.

4. Experiment
4.1. Introduction to the Dataset

In this paper, we chose the COCO dataset for training and validation. The COCO
dataset is a dataset specifically used for object detection, human keypoint detection, se-
mantic segmentation, and other research experiments. In this paper, 118,287 human pose
images from COCO2017 were used as the training set for training, 5000 as the validation
set for verification. There are 17 annotated keypoints for a human instance in the COCO
dataset, and the annotation order is shown in Table 1 .

In addition, a number of images of standard basketball games were collected for
calibration tests for stance identification and movement analysis of players in standard
basketball games, as shown in Figure 5. The footage of a regular NBA game, with the
following footage of the real part of the game, had 10 players on the court and each player
in the frame was of medium size. This paper focused only on the stance of the players, so
when marking the test set joints and bounding boxes, only the players were marked, not
the spectators and referees, while masking marks were added to the spectators and referees
in the training set, and no losses were counted in the masking range. The images currently
available for calibration are around 2000, of which the test data is 400, and the image below
shows an intercepted video of an NBA game.
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Table 1. The dataset characteristics on COCO VAL 2017.

Marking Number Name Marking Number Name

0 Nose 9 Right knee

1 Neck 10 Right ankle

2 Right shoulder 11 Left hip

3 Right elbow 12 Left knee

4 Right wrist 13 Left ankle

5 Left shoulder 14 Right eye

6 Left elbow 15 Left eye

7 Left wrist 16 Right ear

8 right hip 17 Left ear

Figure 5. Screenshot of the NBA game used for this research.

4.2. Experimental Platform

In this paper, we used Pytorch 1.10.0 deep learning framework, the operating system
environment was Windows 10, the GPU was GTX 1080 Ti, the system memory size was
12 G, and the programming language was Python 3.8.1. The initial learning rate was 0.001,
which decreases to 0.0001 at 200 rounds and decays to 0.00001 at 260 rounds. A total of
260 rounds of training were performed with a batchsize of 32 per GPU. Since the images in
the dataset are not of the same size, image pre-processing is used to modify the images.
In this paper, we experimented to crop the images in the COCO dataset to 256 × 192 size,
and then achieved data enhancement by random flipping and random scaling.

4.3. Evaluation Criteria

The performance evaluation of the model in this paper is based on the Object Keypoint
Similarity (OKS) evaluation metric. The OKS measures the similarity between the predicted
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keypoint locations and the ground truth keypoint locations. The OKS is defined as follows:

OKS =
∑i exp( −d2

i
2s2k2

i
)δ(vi > 0)

∑i δ(vi > 0)
(9)

where di represents the Euclidean distance between the detected keypoint and the corre-
sponding ground truth label, vi is an indicator variable that denotes whether the keypoint
is visible or not, s is the target scale size, and ki is a constant controlling the decay of the
OKS for each keypoint.

The paper reports several performance metrics, including the Average Precision (AP)
and Average Recall (AR) scores. Specifically, AP50 denotes the AP score at OKS = 0.50,
AP75 denotes the AP score at OKS = 0.75, and AP denotes the average score of AP at various

OKS thresholds ranging from 0.50 to 0.95, as well as other 10 positions. Additionally, APM

and APL denote the AP scores for medium and large-sized human targets, respectively.
The AR score is calculated similarly to the AP score, but is based on recall instead of
precision. The AR score is reported for OKS thresholds ranging from 0.50 to 0.95, as well as
other 10 positions. In summary, the OKS evaluation metric and the various performance
metrics reported in this paper provide a comprehensive and rigorous evaluation of the
model’s performance on human pose estimation.

4.4. Analysis of Experimental Results

For the recognition of a single person, this study used the multi-person pose method,
whose target-tracking method is a variant of SiamRPN, and in practice the tracking point
was more fixed relative to the target, but the size of the bounding box from which it obtained
the target was not constant and sometimes. As shown in Figure 6 below, the tracking was
not able to keep up due to the larger movements.

Figure 6. Single-tracking detection frame that does not contain some key points.

Figure 7 illustrates the impact of bounding box size on pose-based motion recognition.
Specifically, in the normal situation shown in Figure 7a, all movement joints were included
in the bounding box. However, during running, passing, and throwing, as shown in
Figure 7b–d, the tracker might fail to include all joints, thereby compromising the accu-
racy of pose-based motion recognition. To address this issue, this paper proposes a fixed
bounding box size of 256 * 192 centered on TrackPoint, which reduces image size varia-
tion relative to network input size, enhances model input efficiency, and speeds up pose
estimation. When there are multiple people, a multiple person approach is used, which
avoids the significant impact of using a single person estimation method. However, this
approach raises the problem of multiple people wrapping up, which requires identifying
the target being tracked. To address this issue, the target is identified as the person in
the centre of the box with the fullest number of joints and the largest relative response
size, and the response values are accumulated for the heatmap position corresponding
to each person’s joints in the box. This approach enhances the accuracy and reliability of
pose-based motion recognition.
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Figure 7. Detection of tracking frame monoblocks.

As shown in Figure 8 below, the location of the Tracking Framework is obtained,
the centre point is selected as the location of the target, fed into the gesture estimation
network for estimation, and the nodal data is output. In addition, for the later screen
convolution action recognition, in order to make gesture estimation out of 200 frames the
network runs first. In addition, the nodal point results are entered in the loop array (the
loop array length is the space required for 200 frames). When the loop count is detected
group is full of 200 frames, the system will take 200 frames of data from the latest video
frames obtained from the loop array, and then reverse the sequence.The video frames are
entered into the input cache of the network and inferred by the graph convolutional neural
network, which eventually starts the graph convolutional network as a category. The new
video frames are then overwritten with the oldest frames in the recurrent array, and then
200 frames are taken from the most recent video. Then the video frames are inverted and
sent to the convolutional network for inference, and this is repeated until the video ends or
tracking fails.

Figure 8. Overall detection of the tracking frame.

Figure 9 shows the application effect of the improved OpenPose model in a realistic
environment. The prediction index of the improved lightweight OpenPose model decreases
slightly compared with the original model, by about 3. However, the APL value of the
lightweight model is not much different from the original model when detecting a larger
size human body. This is because in this paper, the large size 7 × 7 convolutional kernel is
replaced by a small size 3 × 3 convolutional kernel, and the small convolutional kernel can
map the larger size object more nonlinearly in the feature extraction process, so it performs
better in this aspect.
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Figure 9. Model application effect chart and video frame rate comparison chart.

In this paper, we compare the experimental results of GNNet with other advanced
human pose estimation networks, and Table 2 shows the validation results of GNNet
with other advanced networks on the COCO 2017 validation set. The proposed GNNet
network structure is based on HRNet, and the GCTblock is used to model the channels more
efficiently, thus enabling the Gateblock module and the Gateneck module extracts channel
features more accurately, and improves the fusion module between different resolution
subnets of each stage by using the Non-local block. This paper adds the Non-local block
before the fusion of different resolution representations, which can extract more useful
spatial feature information from different resolution representations, thus enabling better
information fusion between multi-resolution representations.

Table 2. The results on COCO VAL 2017.

Method Input Size GFLOPS AP50 AP75 mAP AR

CPN [50] 256 * 192 6.20 - - 68.6 -
CPN + OHKM [50] 256 * 192 6.20 - - 69.4 -

HRNet-32 [51] 256 * 192 7.10 89.5 80.7 73.4 78.9
SimpleBaseline-50 [52] 256 * 192 8.90 88.6 78.3 70.4 76.3

SimpleBaseline-101 [52] 256 * 192 12.40 89.3 79.3 71.4 77.1
SimpleBaseline-152 [52] 256 * 192 15.70 89.5 79.8 72.0 77.8

Ours 256 * 192 8.1 91.2 81.5 74.3 79.3

This table shows the performance comparison of several different methods on the
COCO VAL 2017 dataset for human pose estimation. The input size of all the methods
is 256 * 192, and the GFLOPS (floating point operations per second) metric is used to
measure the computational efficiency of each method. The evaluation metrics used are
AP (average precision) at IoU thresholds of 0.5 and 0.75, mAP (mean average precision),
and AR (average recall) at a fixed false positive rate.

Among the methods, CPN and CPN+OHKM do not have reported results for AP at ei-
ther threshold, while HRNet-32, SimpleBaseline-50, SimpleBaseline-101, and SimpleBaseline-
152 achieve AP values ranging from 88.6 percent to 89.5 percent at IoU threshold of 0.5,
and from 78.3 percent to 79.8 percent at IoU threshold of 0.75. Our method outperforms
all the other methods with an AP of 91.2 percent at IoU threshold of 0.5 and 81.5 percent
at IoU threshold of 0.75, achieving the highest mAP of 74.3 percent and the highest AR
of 79.3 percent. Compared with several other recent research methods, the method used
in this paper has a better performance in AP50, AP75, mAP and AR metrics, which are
generally better than other methods, and is also better represented in publicly available
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datasets, which can show that the proposed method based on graph convolutional neural
network and single body pose estimation has a better application in human pose estimation.

5. Discussion

In this paper, we present a rigorous analysis of existing models for human action
recognition based on graphical convolutional networks. Specifically, we propose a novel
approach that combines top-down single target pose estimation based on multi-branch
self-calibration networks with graphical convolutional neural networks for human action
recognition of skeletal data. This approach is designed to ensure adequate extraction of
human pose features while reducing the time required for extraction, thereby improving
the accuracy and efficiency of object detection and human pose estimation.

To evaluate the performance of our proposed approach, we conducted experiments on
both a standard dataset and a custom basketball game dataset. The results show that our
approach outperforms existing models, such as the spatiotemporal graph convolutional
network and spatial transformation network, in terms of accuracy. Moreover, our approach
significantly improves the performance on the custom basketball game dataset relative to
existing methods.

Despite the success of our approach, we acknowledge that there are still some limita-
tions and challenges that need to be addressed in future research. For instance, collecting
“negative sample” data for special poses, such as falls and rollovers, is expensive but nec-
essary in some fields. Additionally, labeling a 3D pose is more challenging than labeling
a 2D pose. There is a need for further research to improve the sequence model of con-
volutional networks. To address these challenges, we propose that deep convolutional
neural networks, such as the “Inception” structure, and extended convolutional networks,
could accommodate growing datasets and reduce training time. Furthermore, Park’s ap-
proach of learning the relative 3D positions between the joints of the human body through
convolutional networks could improve the accuracy of 3D pose estimation from images.

In conclusion, this paper provides a rigorous analysis of existing models for human ac-
tion recognition based on graphical convolutional networks and proposes a novel approach
that combines top-down single-target pose estimation with graphical convolutional neural
networks for human action recognition of skeletal data. Our approach shows promising
results in improving the accuracy and efficiency of object detection and human pose esti-
mation. However, future research is needed to address the challenges and limitations of
human pose estimation, and we suggest deep convolutional neural networks and extended
convolutional networks as potential solutions.

6. Conclusions

The field of sports artificial intelligence (AI) has received significant attention, with the
importance of human pose estimation and its potential applications widely recognized.
However, the research also reveals certain challenges and obstacles that must be addressed.
To this end, this paper proposes a new approach that employs graph neural network
combined with high resolution network (HRNET) as the base network model, introducing a
linear transformation to generate redundant feature maps to reduce the network parametric
size and network complexity. Additionally, an in-depth analysis of the GAFF module
is incorporated into the feature attention fusion module to improve the feature fusion
capability of the network. Experimental results on self-collected and MSCOCO2017 datasets
demonstrate that the proposed approach reduces the network’s covariance and complexity
while improving its accuracy for human pose estimation.

However, the proposed method still has some shortcomings. For example, 3D pose
estimation based on RGB video lacks auxiliary information such as depth information,
making the calculation method less accurate. Additionally, the method of mapping 2D
to 3D joint points is not yet perfect. While theoretically, 3D skeletal points contain richer
inter-joint skeletal features for human action recognition, the study found that 2D joint
points are more accurate than 3D skeletal points in action recognition. In future studies,
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multiple extracted 2D skeleton points from pictures taken from different angles could be
used to train the 2D to 3D skeleton mapping relationship.

The research on sports AI involves human wearable devices and computer vision
technology analysis, including action recognition, training monitoring and feedback, game
performance evaluation, and sports injury recovery. The theoretical aspect focuses on more
efficient and convenient algorithms, with competitive sports as the main focus, particularly
team sports such as soccer, supplemented by popular sports such as fitness. The research
trend is toward combining algorithm theory with engineering for more practical appli-
cations. The future direction of sports AI research is to find more efficient and practical
AI algorithms and models by continuously improving and matching, developing smarter
wearable sensors, and enhancing the deep learning capability of visual analysis systems.
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