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Abstract: To achieve a sophisticated and self-sufficient production environment that aims to optimize
a particular production sequence or direction, a combination of multiple interconnected IoT devices,
software, and decision-making expertise is required. This is nowadays referred to as “smart” systems
and can be related to almost any field. In the case of the poultry industry, “smart” stands for
automatic data gathering, in-depth processing, and decision-making support. The implementation of
a smart poultry concept introduces several challenges that are production related (e.g., productivity
forecasting); therefore, this study focuses on hen egg production forecasting with limited data sets.
Different methods and approaches used in the poultry sector for egg production forecasting were
investigated. A cross-comparison was made between different models in order to determine their
applicability. The models considered include a non-linear Modified Compartmental and several
machine learning (ML) models, such as, Long Short-Term Memory (LSTM), Convolutional Neural
Network (CNN), XGBoost, and Random Forest (RF). Selected models used only two data sets—one
for training and one for testing. Furthermore, the testing data set was significantly different than the
training data, therefore setting the forecasting task to be even more challenging. The ML models had
significantly more inputs that allowed them to adapt more flexibly to a changing environment in
comparison with the nonlinear model that expected only one input, e.g., the week of egg production.
The tests showed that the machine learning models proved to be overall more accurate than the
selected nonlinear model.

Keywords: smart poultry; curve fitting; nonlinear models; machine learning models; farm management

1. Introduction

Smart poultry progresses firmly following the industry 3.5 and 4.0 frameworks [1–3].
The current trends in smart poultry are focused on monitoring parameters (by using various
sensors) that affect egg/meat production, animal welfare, behaviour, and growth [4–7].
The objective of these observations is to increase the overall production’s quantity and
quality. In addition, according to various poultry-related regulations and directives of
the European Union [8–10], the maintenance of greenhouse gases should be one of the
primary tasks associated with achieving the said objective. Any successful activity with
observation analysis requires systematic data acquisition and processing. This can be solved
by implementing a smart poultry management system. There are various commercially
available solutions (such as [11,12]); however, they are designed for medium and large
farms, are typically expensive, and require assistance from the management of the solution
providers to be successfully used.

Our previous work includes the analysis and proposal of the smart poultry farm
management system’s design [13], the development of the cyber–physical model for data
acquisition and processing [14], and the evaluation of egg production process in regard
to production efficiency and greenhouse gas emissions [15]. The cyber–physical model in
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this context is a three-component system: a set of sensors to obtain measurements, data
exchange controllers that fulfil the role of an intermediary between sensors and data centre,
and a data centre as an analytical hub with decision making capabilities. The term cyber–
physical model can be used for almost any digitally and automatically driven production
system [3,16]. Our smart poultry management system’s design focuses on decision making
regarding the most appropriate feeding process while simultaneously optimising the levels
of CO2 and NH3. The cyber–physical model was built for the proposed management system
and includes three data groups—data to satisfy specific regulations, monitoring data and
business-related data. In this context, data were grouped according to their sources and
purposes. For example, regulations provide requirements and recommendations in the
form of minimal values for environmental parameters, such as CO2 and NH3, whereas
monitoring data encapsulates all data obtained using sensory equipment. The data of two
last groups underwent complementary data fusion processing. Lastly, the implementation
of the said cyber–physical model provided enough data to analyse the impact factors on
the hen eggs’ production.

During the phases of the research and development of the egg production fore-
casting solution, the focus shifted more on evaluating and predicting egg production.
Hen egg production by itself requires an in-depth understanding of the processes in-
volved in such aspects as food formula management [17,18] and animal welfare condition
management [19,20]. The egg production dynamics are typically expressed in a graphical
form as a curve. According to [21–23], the curve applied in egg production is nonlinear
and represents the number of eggs laid during a specific time frame.

In general, it is considered appropriate to apply nonlinear models in order to both
analyse the historical egg production data and to predict future trends. However, based on
literature analysis [4,24–26] and our previous work, it was concluded that the development
of a smart poultry management system must incorporate multiple functional interpreters
based on different types of models.

In essence, these studies lead to the necessity to assess the usefulness of generally
accepted nonlinear and novel machine learning (ML) models in order to (1) determine the
potential level of knowledge acquired in result of their application and (2) to incorporate the
appropriate models into the framework of a developed smart poultry management system.

The framework itself includes: the monitoring of production-related data, a solution
for data processing and analysis that incorporates adaptable database design for data
storage, and a collection of models for data analysis and decision support mechanism to
optimise the production processes. As stated previously—the concept of a cyber–physical
model (see Figure 1a) as a basis is built upon the idea of data fusing, whereas the result of
data fusion should be used for analysis of historical data and forecasting of the following
short- and long-term trends in production. However, it was found [14] that current data
fusion solutions on the market cannot be implemented into a framework as is, and, as a
result, a multi-level data fusion approach must be taken. The architecture of the system, in
turn, dictates the requirements for the number and types of such levels. Therefore, the smart
poultry management system must use a data structure that (1) is sophisticated enough to
encapsulate all possible data needs and (2) has a level of adaptability that is convenient
for both management and farm owners. A previously proposed data structure [14] has a
simplified centralised design based on one single main register and various production-
related satellite tables containing parameters contributing to the final result.

The collection of multiple models is meant to provide an appropriate choice—either
algorithmic, i.e., decided by the system when the data are loaded in, or manual—by a
system operator—both in order to address the cases when the number of parameters
between training and testing sets differ. This also partly alleviates the issues caused
by imperfect data—when one model does not provide satisfactory performance and/or
output, this model can be substituted with other implemented models. This assumes that
all models are trained or fitted on the same data. For the purpose of encapsulating different
kinds of factors and the potential results of their processing, two main types of models
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are included—nonlinear models and machine learning models. These types of models
are further analysed in detail using scientific literature and practical experiments with
real data.
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The aim of this study was to cross-compare multiple models that could be used in
scenarios with limited data sets to provide forecasting of egg productivity of laying hens at
a sufficient level to timely point farmers towards accurate decision making.

This paper is structured as follows: first, we provide a literature review about the
methods and techniques (mostly focusing on traditional nonlinear and modern machine
learning models) used in the poultry industry to forecast egg production; then we describe
the data sets used for practical experiments, the selected methods for hen egg production
forecasting, and the training process of the selected models; after which, we describe the
metrics used for evaluation and depict the results of performance cross-comparison. Finally,
we discuss the obtained results and potential improvements.

2. Materials and Methods
2.1. Literature Review

Different methods can be used in order to forecast egg production rates, from models
that use a small number of inputs to models that require a complex set of parameters. The
further review is dedicated to nonlinear and machine learning approaches found in the
literature, resulting in the selection of multiple models used for practical implementation
and validation.

The application of nonlinear regression models for fitting a poultry egg production
curve has been popular for several decades—a variety of nonlinear models (the incom-
plete gamma model by Wood [27], modified gamma model by McNally [28], model by
Adams and Bell [29], Compartmental model by McMillan [30], Modified Compartmental
(also called Logistic-Curvilinear [23,31]) model by Yang, Wu, and McMillan [32]) have
been proposed.

Several authors have analysed and compared the traditional nonlinear models for egg
production curve fitting:

• Faridi, Mottaghitalab, Rezaee, and France’s [33] research demonstrated the applicabil-
ity of three Narushin–Takma models (NT1, NT2, NT3) to fit several poultry-related
characteristics (such as egg production, egg weight, feed conversion ratio, etc.) of
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broiler breeder flocks. The performance of these models was compared with 5 others—
Gompertz, Modified Compartmental, Richards, Adams–Bell, and Lokhorst. It was
concluded that the NT3 model showed the best performance, measured by 4 goodness
of fit criteria (MSE, R2, AIC, and BIC).

• Savegnago et al. [34] in their study selected 7 models to determine their applicability
to fit weekly egg production curves in order to compare production between different
selection lines of laying hens. The results of this study stated that several nonlinear
models—Logistic, Persistency, Segmented Polynomial, and the Modified Compart-
mental model, specifically, had adequate fitting qualities and, therefore, could be
applied for the egg production curve, whereas the rest of the evaluated models’, i.e.,
Compartmental (I and II) and McNally, performances were lacking in comparison.

• A. Safari-Aliqiarloo et al. [23] compared three nonlinear models (Compartmental,
Modified Compartmental and Adams–Bell) with an Artificial Neural Network ap-
proach to fit the egg production curve of broiler breeders. Based on the evaluation
criteria, the authors concluded that the ANN model had the best performance, but
the Modified Compartmental model outperformed the rest in fitting the egg produc-
tion curve between the selected traditional nonlinear models. This also increased the
credibility of results published by Savegnago et al. [34].

• Görgülü and Akilli [21] in their study analysed the performance of four traditional
nonlinear regression models (Adams–Bell, Compartmental, McNally, and Logistic
model [35] together with the least square support vector machine (LSSVM) model). It
was concluded that LSSVM had the best performance followed by the Adams–Bell
model from the selected nonlinear model category, but its performance was better
only by a narrow margin, and, as stated by the authors, all of the tested models fit the
laying hens’ production curve quite well.

• Emam [36] compared the performance of four nonlinear models (Wood, McNally,
Compartmental, Modified Compartmental) focusing on how well they fit the produc-
tion curve of Fayoumi layers. The results of the study suggested that the Modified
Compartmental model proved to have the best fit.

• Morales-Suárez et al. [18] in their research investigated the effects of different diets
(focusing on variation in concentrations of three essential amino acids) on egg produc-
tion of laying hens. To evaluate the egg production, authors applied three groups of
models—traditional nonlinear models (Adams–Bell, McNally, Logistic, Compartmen-
tal, Modified Compartmental, Modified Gompertz, Modified Logistic), multivariate
polynomial models (second and third order), and ANN models (with feed-forward
and cascade-forward architectures). Based on the evaluation criteria, overall, the ANN
outperformed all models. Relating to the group of nonlinear regression models, the
authors stated that these models all fit the production curve well, but the Modified
Logistic model had the highest goodness-of-fit scores.

• Sharifi, Patil, Yadav, and Bangar [37] compared 8 models (Logistic, Morgqan Mercer
Flodin, Polynomial Fit, Rational Function, Sinusoidal Fit, Quadratic Fit, Gompertz
function, Modified Compartmental) in respect to how well these models fit the egg
production and egg weight curves of laying hens. The evaluation showed that Ratio-
nal Function, Modified Compartmental, Sinusoidal Fit, and Polynomial Fit models
performed the best in fitting the egg production.

It should be emphasised that these nonlinear models were meant to process only
one factor, i.e., the age of birds (or the week of laying) as input, and to base the egg
productivity completely on it. While this meant that models were applicable in cases where
only one factor was available, it also revealed the limitations these models had—there
was no adaptability to environmental changes. The environment was determined by such
factors as outside and inside temperature, humidity, CO2 and NH3 concentration, air
ventilation, etc. These factors could also influence egg production, either individually or in
combination [38].
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However, often, due to the inability to monitor all of these parameters as a complex
system, only some of them are available. Therefore, the models that can make use of
different parameter combinations should be assessed, similar to the models within the
machine learning (ML) field.

Advances in the artificial intelligence (AI) field have led to the development of several
ML models that possess nonlinearity and can also be used to forecast egg production and
identify production-related problems in a timely manner. Some of the applications of the
ML models in the poultry industry are described in the following studies:

• Morales, Cebrián, Fernandez-Blanco, and Sierra [39] in their study tested an SVM
model with the aim to timely detect problems in egg production. The model’s accuracy
was high (≈0.985) when predicting problems a day in advance.

• An ANN approach to detect early problems in egg production was presented in [40]
research. In comparison with the SVM model, the ANN technique proved to be
very accurate as well when predicting egg production problems a day in advance.
In addition, it showed improvement in several performance evaluation metrics in
comparison with the LSSVM model.

• Ahmad [4] in his research compared three different ANN architectures and traditional
models for egg production forecasting. From the results of the experiment, the author
concluded that the ANN models outperformed the traditional nonlinear models.

In retrospect, the results of these studies, in addition to the semi-related works [18,21,23],
concluded that AI techniques were viable for application in egg production forecasting
and could also lead to performance improvements (measured by several goodness-of-fit
criteria) when compared to traditional, nonlinear models.

Based on the literature review on the application of nonlinear models in the poultry
industry, the Modified Compartmental model’s performance proved to be consistently
adequate for egg production evaluation, and it used a relatively small number of parameters
that could be biologically and mathematically interpreted [32]. Therefore, the Modified
Compartmental model was selected for practical experiments. From the ML group, several
models were chosen since their performance stood out, as reported by several articles
(described in previous chapter). For the purpose of this research, the following models
(including both models previously reported by other authors and those that have not been
used in egg production forecasting) were selected:

• Long Short-Term Memory (LSTM)—is a model based on recurrent neural network
that has been used in precision agriculture [41] and, regarding poultry industry, for
laying rate prediction [42] as well.

• Convolutional Neural Network (CNN)—is a deep learning architecture. In poultry, it
has been applied with the aim to detect and classify eggs [43].

• Random Forest (RF)—a technique that generates a single model based on a combi-
nation of multiple decision trees [44]. The usage of RF for egg weight prediction is
described in [2].

• XGBoost—a “tree boosting system” [45] based on decision trees and the gradient
boosting approach. This model was used for feature selection in order to predict the
laying rate of waterfowl [42].

The comparison and evaluation between the Modified Compartmental model and the
ML models is covered in Section 3.

2.2. Development of Egg Production Forecasting Models

One of the Baltic farms was used as the location for sensor installation and integration
of the developed smart poultry management system. Due to privacy and market competi-
tion concerns, the name and location of this particular farm is not specified. The laying egg
production data for model comparison and evaluation were gathered from layer house,
where hens (Lochman brown breed) were kept in enriched battery cages. The laying house
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used a belt-type manure removal system that was operated daily. The laying hens were
moved to the battery cages at 16 weeks of age and were kept until 80–90 weeks of age. At
20 weeks of age, the hens started to lay eggs. The daily egg production was calculated
as the ratio of the total number of eggs produced in a day to the total number of hens on
that day [15].

Due to the nature of data availability, data sets were limited and for this research,
egg production data for a 61-week period (data collected from 22 November 2019 to 9
February 2021) were used for model training, and a 46-week period (data collected from
23 March 2021 to 3 March 2022) of production data was used for testing (see Figure 2).
The test data set was noticeably different from the one used for training and also from
the usual egg production rate pattern. The reasons for such differences, according to the
information provided by the farmers, could be explained by inconsistencies in data input
management—whereas the number of gathered eggs was counted automatically, and the
final value was inputted manually. This could be performed multiple times per day or not
performed at all, for example, on weekdays or due to technical reasons. The training and
testing sets, i.e., how they were split, differed for nonlinear and ML-based models and are
described further.
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Figure 2. Egg production curves used for training (1st cycle) and testing (2nd cycle).

During the egg laying periods, various types of poultry- and environment-related
data were recorded, providing information about microclimate (temperature, humidity,
CO2, NH3) and also data about bird feeding (water and feed consumption and their
compositions, i.e., macro/micronutrients and microelements). The sensors for temperature
and humidity monitoring were placed at the centre of the henhouse. The CO2 (IR-2 sensor,
GDS Technologies Garforth, Leeds, UK) and NH3 (NH3/MR-100 sensor, Membrapor AG,
Wallisellen, Switzerland) concentrations were measured continuously every 10 min, but
the average values were calculated each hour afterwards [15].

The winsorization technique was applied to deal with outliers in the collected data. In
order to guarantee that vital information was kept in the dataset, 99% winsorization was
applied, meaning that all the values below 1 percentile were set to 1 percentile, and all the
values above the 99th percentile—to 99th percentile.

The environmental and feeding data for 1st and 2nd production cycle in a laying house
with enriched battery cages are depicted in Figure 3.
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2.3. Structure and Training of Selected Models
2.3.1. Modified Compartmental (Nonlinear)

The selected Modified Compartmental model [32] could be expressed mathematically
by the following Equation (1):

y(t) = (ae−bt)/[(1 + e−c(t−d))], (1)

where:
yt—egg production rate at t weeks of laying;
a—scale parameter;
b—rate of production decrease after the peak;
t—the number of weeks laying;
c—the reciprocal indicator of the variation in the sexual maturity;
d—the mean age of the hens at sexual maturity.
The values of these parameters were then determined/evaluated by using a suitable

computational approach (described in Section 3).

2.3.2. Machine Learning Models (LSTM, CNN, XGBoost, RF)

The selected ML models were built using Keras framework [46] (LSTM and CNN)
and scikit-learn library [47] (RF and XGBoost). The models were tuned (hyperparameter
selection) by using library extensions, such as keras-tuner and sklearn.model_selection.
There were no modifications made to the selected ML models regarding their base archi-
tectures. The models were compared by varying hyperparameter values of each model.
In order to find the best hyperparameter configuration, the LSTM and CNN models were
tuned using the Hyperband algorithm [38], but the decision tree-based models—using
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Random Search [48]. The search spaces of the hyperparameters for each model are shown
in Tables 1–4.

Table 1. Hyperparameters and their considered values for LSTM model.

Hyperparameter Range of Considered Values

Input size 32, 48, 64, 80, 96, 112, 128

Dropout rate 0, 0.1, 0.2, 0.3, 0.4, 0.5

Optimizer Adam

Learning rate 0.01, 0.001, 0.0001

Activation function ReLU, sigmoid

Early stopping patience 10

Loss function Mean Squared Error

Table 2. Hyperparameters and their considered values for CNN model.

Hyperparameter Range of Considered Values

Filter size 32, 48, 64, 80, 96, 112, 128

Kernel size 2, 3, 5

Max Pooling size 2

Activation function ReLU, sigmoid

Early stopping patience 10

Loss function Mean Squared Error

Table 3. Hyperparameters and their considered values for XGBoost model.

Hyperparameter Range of Considered Values

Max depth 3, 6, 10

Learning rate 0.01, 0.05, 0.1

Number of estimators 100, 500, 1000

Colsample bytree 0.3, 0.7

Table 4. Hyperparameters and their considered values for RF model.

Hyperparameter Range of Considered Values

Bootstrap True

Max depth 90, 100, 110

Min samples leaf 4, 5, 6

Min samples split 8, 10, 12

Number of estimators 100, 500, 1000

Early stopping technique (with a patience value 10) was used for LSTM and CNN
models to potentially decrease the overfitting problem. The early stopping was also used
in XGBoost hyperparameter search and training phase but the cross-validation technique
in the RF case.

Refer to Appendix A for the summarised results regarding sliding window sizes and
the best hyperparameter values.

The training of the models was performed using factors that were monitored daily in
the poultry farm and production-related data with varying input sequence lengths, e.g.,
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using the sliding window approach. When using such a technique, an important step is
to determine the size of the window, as this defines the additional requirement for model
input—the number of past productivity values, e.g., egg production in this case. If a sliding
window of size 1 is chosen, it means the inputs require production data from the previous
day. During the initial development stage, multiple feature selection approaches were
considered, and it was determined that forward feature selection would be appropriate for
usage for general ML algorithms based on the data obtained from the farm.

The selected ML models were trained on the first production cycle (that was further
split into 90% train and 10% validation set in order to avoid data leakage [49] and overfitting
problems [50]) and tested on the second production cycle to forecast productivity for
the next day. The models’ input was formed from 12 parameters (see Figure 4) (and,
additionally, the historical production data depending on the sliding window size).
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2.3.3. Evaluation Metrics

Performances of the models were evaluated by different statistical criteria (see Table 5):
Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Root Mean
Squared Percentage Error (RMSPE). The lower the value (error) of the criteria, the better
the model fit the data.

Table 5. Criteria used for model evaluation.

Criteria Equation

Mean Squared Error MSE = 1
n

n
∑

i=1
(yi − ŷi)

2

Mean Absolute Percentage Error MAPE = 100
n

n
∑

i=1

|yi−ŷi |
yi

Root Mean Squared Percentage Error RMSPE = 100

√
1
n

n
∑

i=1

(
yi−ŷi

yi

)2

where: yi—observed value; ŷi—predicted value; n—number of records.
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3. Results

The parameters (see Table 6) of the Modified Compartmental model were estimated
using R programming language [51] to fit the egg production curve (1st cycle). From Table 6,
all parameters are significant (p < 0.001, represented with three ’*’ in the last column of the
table) and are applicable for this forecasting task.

Table 6. The estimated parameter values of Modified Compartmental model.

Parameter Estimate Std. Error T Value Pr (>|t|)

a 0.13099 0.01316 9.954 4.45 × 10−14 ***

b −0.90414 0.03927 −23.024 <2 × 10−16 ***

d 2.24435 0.04658 48.182 <2 × 10−16 ***

c −0.90766 0.03923 −23.139 <2 × 10−16 ***

The model parameters then can be filled with the estimated values (2), where the only
input parameter is t, representing the number of weeks laying:

ŷ(t) = 0.13099e−(−0.90414)t/(1 + e−(−0.90766)(t−2.24435)), (2)

The fitted curve on the test egg production data set using the Modified Compartmental
model can be seen in Figure 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 17 
 

Table 5. Criteria used for model evaluation. 

Criteria Equation 

Mean Squared Error 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − ŷ𝑖)

2

𝑛

𝑖=1

 

Mean Absolute Percentage Error 𝑀𝐴𝑃𝐸 =
100

𝑛
∑

|𝑦𝑖 − ŷ𝑖|

𝑦𝑖

𝑛

𝑖=1

 

Root Mean Squared Percentage Error 𝑅𝑀𝑆𝑃𝐸 = 100√
1

𝑛
∑(

𝑦𝑖 − ŷ𝑖
𝑦𝑖

)
2𝑛

𝑖=1

 

where: yi—observed value; ŷi—predicted value; n—number of records. 

3. Results 

The parameters (see Table 6) of the Modified Compartmental model were estimated 

using R programming language [51] to fit the egg production curve (1st cycle). From Table 

6, all parameters are significant (p < 0.001, represented with three '*' in the last column of 

the table) and are applicable for this forecasting task. 

Table 6. The estimated parameter values of Modified Compartmental model. 

Parameter Estimate Std. Error T Value Pr (>|t|) 

a 0.13099 0.01316 9.954 4.45 × 10−14 *** 

b −0.90414 0.03927 −23.024 <2 × 10−16 *** 

d 2.24435 0.04658 48.182 <2 × 10−16 *** 

c −0.90766 0.03923 −23.139 <2 × 10−16 *** 

The model parameters then can be filled with the estimated values (2), where the only 

input parameter is t, representing the number of weeks laying: 

ŷ(t) = 0.13099e−(−0.90414)t/(1 + e−(−0.90766)(t−2.24435)), (2) 

The fitted curve on the test egg production data set using the Modified Compart-

mental model can be seen in Figure 5. 

 

Figure 5. Fitted curve and observed egg production rate. 
Figure 5. Fitted curve and observed egg production rate.

As Figure 5 shows, the result of the model shows only the trend in the production
rate, based on the previously trained data, but does not incorporate input values that
could influence the prediction and point to potential problems. This production cycle
demonstrates that it is not enough to base conclusions only on the week of egg production
alone to achieve high accuracy, rather it allows the farmers to see the deviations from
the trend.

The ML model’s results and observed egg production rate with a sliding window of
size two are depicted in Figure 6.

The ML models tended to follow an abnormal decrease in production (see Figure 6),
thus indicating their ability to adjust to these kinds of situations. The possible reasons
for the egg production variations in the 2nd production cycle were described in Section 3.
Although further data inspection showed that the environmental factors did not change
dramatically to have an impact on production decrease, the models forecasted the drop,
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due to the fact that the previous day (depending on the sliding window size) production
data served as inputs.
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Regarding the ML models, several window sizes were tested to determine the one that
provided best prediction results. The window sizes of 1, 2, 3, 5, 7, and 14 were considered.
The results of model performance per different window sizes to predict egg production for
the next day are presented in Table 7. Regarding the size of the sliding window, the results
showed that the LSTM performed best when using a sliding window size of two, having
the smallest MAPE and RMSPE values 5.390% and 7.751%, respectively. There was also not
a large difference between the models’ performances when using the window size lengths
three and five, except for the CNN model that performed the worst and could be explained
as potential model overfitting.

Table 7. Machine learning model performance by different sliding window sizes.

Windows Size Error Metric LSTM CNN XGBoost RF

1 MSE 1.710 4.111 1.225 0.944

1 MAPE 13.909 14.224 9.994 6.907

1 RMSPE 15.439 16.258 11.708 10.242

2 MSE 0.272 1.884 1.060 0.726

2 MAPE 5.390 15.200 10.272 6.331

2 RMSPE 7.751 18.314 12.178 9.284

3 MSE 0.203 1.384 0.877 0.664

3 MAPE 6.501 39.319 9.086 6.158

3 RMSPE 8.828 39.993 10.875 9.110

5 MSE 0.358 0.843 0.767 0.604

5 MAPE 6.218 13.479 7.415 6.077

5 RMSPE 8.781 15.537 9.223 9.016

7 MSE 0.198 0.443 0.863 0.546

7 MAPE 5.484 13.300 9.619 6.188

7 RMSPE 7.845 14.555 11.350 9.168

14 MSE 0.153 0.308 0.719 0.453

14 MAPE 6.433 6.633 6.114 6.273

14 RMSPE 8.982 9.718 8.158 9.221

Best results per window size are highlighted in bold.
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Table 8 summarizes the best results obtained from the model evaluation. We can
conclude that the LSTM, RF, and XGBoost models overall showed the best performances.
The results of the evaluation, taking the best metric values for different sliding window sizes
(for machine learning models), showed that the performances varied. In general, all models
provided accurate enough results to detect problems and make changes in the production
process; however, the results suggested that some models, LSTM for instance, showed a
competitive performance across all sliding window sizes while having the best results when
using a smaller number of historical production data. It could be concluded that machine
learning models, especially LSTM, proved to be better than Modified Compartmental.

Table 8. The best results of model evaluation.

Model MSE MAPE RMSPE Sliding Window Size

Modified Compartmental 0.011 9.134 14.809 n/a

LSTM 0.272 5.390 7.751 2

CNN 0.308 6.633 9.718 14

XGBoost 0.719 6.114 8.158 14

RF 0.604 6.077 9.016 5

During the development stage, the developing models were implemented into the
existing poultry management platform Aihen as a submodule for hen egg production
forecasting [52]. Figure 7 depicts the example of an implementation when the data were
actively gathered and analysed, including the testing phase of the model’s development.
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4. Discussion

The egg production cycle used for model testing was atypical in terms of data quality
characteristics—uniformity and completeness for instance—thus adding more complexity
in the process of selecting the most viable model and forecasting egg production based on
such data.

Regarding the importance of data quality, various measures can be taken. Applied
techniques include outlier detection and removal and missing value generation (by inter-
polating neighbour values or association with another parameter). In general, data quality
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must take place as one of the steps of pre-processing: the distribution of data must be
analysed, and either normalization or standardization might be applied; the data must
be checked for noise (mostly sensor related data) and addressed accordingly. Therefore,
additional duplicate sensors can be included in the farm. Unless the quality is at its lowest,
the general techniques for improvement should be sufficient to reduce impact on ML
prediction, and, whereas minor imperfections may affect ML parameters, the trendline
of outcome should be roughly the same. All of this would require the re-training and
re-testing of the model with different levels of data quality.

It must be noted that forecasting was performed for 1 day upfront only, which relatively
limited the requirements for precision target. Additionally, while it was possible to forecast
the production rate for longer periods, the results may have seen a rapid decrease in
precision; thus, the appropriate forecasting length should be long enough to implement
appropriate changes (i.e., adapt the ventilation algorithm for temperature changes) to the
production process. In addition, the choice of forecasting only 1 day upfront was dictated
by the consistency in the available training data. This also included differences between
data of two separate cycles (as demonstrated in Figure 2).

Another aspect that should be researched more is the number of factors needed to
provide a reliable prediction. This could be important for smaller farms that might not
have multi-sensor equipment to measure various parameters that affect hen egg production
(such as CO2, NH3). A study carried out by [42] was aimed to determine the environmental
factors that influence the egg production of laying waterfowls’ (lion-head goose). The
authors found that the optimal number of parameters was equal to four (i.e., laying rate,
carbon dioxide, temperature, and dust) when forecasting, using a combination of LSTM
and RF. While it may have some differences, the general guidelines of having limited
parameters, which can be observed consistently, may be projected to laying hens as well,
but further studies (larger datasets) and practical evidential assessments are still required
to confirm this.

In the process of finding the optimal set of parameters, a lot of redundant and unim-
portant factors may be introduced that may lead the model astray; thus, we can assume
that convoluting models with multiple parameters not only increase the difficulty for the
data gathering step but may also lead to a decrease in the overall performance in regard to
accurate forecasting.

5. Conclusions

The test data set that was significantly different demonstrated the limitations of
the nonlinear model that used only one parameter (the number of weeks laying) and
did not adjust to changes that also resulted in MAPE and RMSPE values—9.134% and
14.809%, respectively.

Although the calculated errors (MAPE and RMSPE) of the ML models were within
the range of 5% to 10%, it was observed that they could better adjust to production changes
than the tested nonlinear regression model.

As the ML models also used environmental data as inputs, sudden changes in those
factors (e.g., temperature, CO2, NH3) affected productivity, which could be predicted in a
timely manner.

The results showed that the ML models (LSTM, RF, and XGBoost, with a sliding
window size of two) were able to forecast the drop-in production rate (2nd production
cycle) at a satisfactory level.

The results suggested that the proposed solutions may also be applicable within farms
that have limited production data sets and do not have large volumes of historical egg
production data.

Depending on the available historical data for model training, the farm could also
employ a multi-model approach, where different models could be run according to the
farmer’s needs (forecasting length). Furthermore, this also keeps an option to apply the
nonlinear model in situations where no environmental or other productivity-affecting data
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are recorded. In this case, the nonlinear model could be used either as a separate solution
or complementary evidence to follow the production curve dynamics.
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Appendix A

Model Hyperparameter
Window Size

1 2 3 5 7 14

LSTM

Input size 128 112 96 128 64 32
Dropout rate 0.1 0.1 0.4 0.3 0.2 0.3
Dense activation function Sigmoid Sigmoid ReLU ReLU Sigmoid Sigmoid
Learning rate 0.01 0.01 0.01 0.01 0.01 0.01

CNN

Filter size 64 32 128 48 32 64
Kernel size 2 5 3 2 3 5
Number of hidden layer inputs 64 96 80 48 32 48
Learning rate 0.01 0.001 0.001 0.01 0.001 0.001
Dense activation function Sigmoid Sigmoid ReLU Sigmoid Sigmoid Sigmoid

XGBoost

Maximum depth 7 2 2 7 2 7
Learning rate 0.1 0.01 0.01 0.1 0.01 0.1
Number of estimators 1000 1000 1000 100 1000 1000
Colsample bytree 0.6 1.0 1.0 1.0 1.0 1.0
Subsample 0.5 0.5 0.5 0.7 0.5 0.5
Gamma 0.1 2.0 1.5 0.5 2.0 1.0
Alpha 0.5 0.0 0.5 1.0 0.0 1.0
Lambda 4.5 2.0 3.0 4.5 4.5 1.0
Minimum child weight 1 1 3 1 1 3

RF

Maximum depth 110 110 100 100 100 90
Minimum number of sample leaf 5 5 4 5 5 5
Minimum number of sample split 8 10 8 8 10 10
Number of estimators 100 100 100 100 500 100

Best hyperparameter values for selected sliding window sizes.
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