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Abstract: With the rapid development of science and technology, the living habits of people have
also changed from those in the past; the diet, living environment, various life pressures, etc., all
overwhelm the body and mind, meaning that, nowadays, more people are suffering from mental
illness and cardiovascular disease year on year. Therefore, a non-contact measurement of heart rate
and heart rate variability (HRV) is proposed to assist physicians in diagnosing symptoms related to
mental illness and cardiovascular disease. In this paper, continuous images are obtained by general
network cameras with non-contact, facial feature points and regions of interest (ROI) employed
to track faces and regional images; HRV parameters were analyzed with the green wavelength of
RGB color space. The artifact signal is eliminated by a hybrid algorithm of independent component
analysis (ICA) and particle swarming optimization (PSO). Finally, the values of heart rate and HRV
are obtained with signal processes of using band-pass filter, fast Fourier transform (FFT), and power
spectrum analysis in the time and frequency domains, respectively. The non-contact measurement
performance of the proposed method can effectively not only avoid infection doubts and obtain
heart rate and HRV quickly, but also provide better physiological parameters, root mean square error
(RMSE), and mean absolute percentage error (MAPE), than those of recent published papers.

Keywords: independent component analysis; heart rate variability; heart rate; particle swarm
optimization algorithm

1. Introduction

Heart rate and HRV are important vital signs. Clinical studies have confirmed that
heart rate is closely related to the occurrence and prognosis of cardiovascular diseases
(such as coronary heart disease, myocardial ischemia, hypertension, and heart failure).
Another study pointed out that heart rate variability can be used as an assessment tool for
autonomic nerve activity [1–3].

With the development of technology, the pressure on people now comes from life,
work, and social communication, and differs due to different encounters. When people
need to adapt to various changes in a short time or expect changes in something, even
slight changes in life, the long-term occurrence may still cause pressure. The pressure
stimulates the brain in the hypothalamus and enables the body to appear unstable through
the autonomic nervous system and endocrine system, resulting in symptoms in heart and
cardiac vessels, intestines and stomach, as well as other organs, which is dysautonomia.
Trimmel M. et al. [4] proposed heart rate variability (HRV) as a possible measurement of
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this pressure. Through analyses, they proved that HRV was not only an index parameter
related to perceived pressure and cardiovascular diseases but also an important tool index
for managing the autonomic nervous system of surgical patients, severe patients, and
COVID-19 patients [4]. Therefore, these parameters may be analyzed to provide doctors
with some information as assistance on patient treatments.

Photoplethysmography (PPG) is a non-invasive detection method that detects blood
volume changes in living tissue by recording video through a network camera, using an
active appearance model to determine facial landmarks and head [5,6]. Extracting biometric
information from face video images, pre-processing the images by low-pass (LP) filtering
and detrending processing, and then generating independent components and comparing
them, using FFT to calculate and select the component with a significant maximum in the
expected frequency range, is the method used to determine the heart rate [7,8]. Amjed S.
Al Fahoum used data mining techniques to combine the most critical features of the PPG
signal with other demographic information to tell the difference between healthy human
subjects and cardiovascular disease (CVD) patients [9].

Measuring physiological activity remotely can provide substantial advantages for
medical applications, and recent foreign studies have proposed different methods for
detecting heart rate (HR) using facial recordings. These methods are based on the analysis
of subtle color changes in the face caused by cardiovascular activity, which are invisible to
the human eye and can be captured by cameras and are tested by analyzing and comparing
algorithms using the public database MAHNOB-HCI performance for remote detection of
HR [10,11]. The rPPG BSS-ICA based was analyzed be robustness of subject motion in [12].

Using a standard RGB camera to record facial video, extract the signal of the key
area of the face and the background, and use the method of joint blind source separation
(JBSS) [13,14] to remove the common light component in the signal of the key area of the
face and the background, and obtain the new face ROI signal, using ICA to extract the pulse
signal from ROI signal, using the green channel signal to identify the pulse signal, using the
FFT to calculate HR, this method removes illumination changes in order to enhance pulse
information extraction and it also solves the problem of disordered output components after
ICA, effectively reducing the impact of low-intensity ambient illumination and illumination
changes [7,15]. Recently, a mathematical model for rPPG measurement which was based
on the optical and physiological considerations and the assumption of a single light source
with a constant spectrum has been proposed [16]. The analysis in [16] shows that combining
the models, e.g., plane-orthogonal-to-skin (POS) and chrominance-bass (CHROM) rPPG
with different assumptions enables the construction of various algorithms to extract the
pulse signal from a video.

The above-mentioned rPPG methods and ICA-based BSS method takes a long time to
converge, POS and CHROM need complex model operations, and focus on the analysis of
signal-to-noise ratio without discussing the response time and accuracy of heart rate and
HRV measurement. Avoiding the above-mentioned disadvantages, this paper provided a
non-constant estimation method of HR and HRV with low-cost, fast response time, and
better physiological parameters, using RSME and MAPE based on rPPG and ROI. A hybrid
ICA and PSO algorithm is employed to speed up the convergence. Therefore, signal
processing methods, i.e., waveform processing, BPF, detrended fluctuation analysis (DFA),
and FFT, are used to eliminate noise signal. Finally, the single green light is obtained for
estimating the values of HR and HRV.

The rest of this paper is organized as follows. In the subsequent sections, Section 2
illustrates methodology and system description. Experimental results are obtained and
described in Section 3. Section 4 discusses the findings of this study. Finally, conclusion is
given in the last section.
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2. Methodologies and System Description

In this paper, methodologies are described as follows.

2.1. Particle Swarm Optimization, PSO

PSO is a stochastic random optimization process which is inspired by the behaviors of
social animals, such as a swarm of fish or a flock of birds. It is one of the most powerful
evolutionary developments which is capable to optimize a non-linear equation with the
least number of solution parameters. The basic concept of PSO relies on the fact of social
sharing information. For each solution variable a swarm of particles are taken. The
movement of each particle is controlled by its current position and velocity. At each step
each particle remembers its local best position and global best position. For each variable,
the optimum position of the particle is denoted as the global best, while local best denoted
the last updated optimum position of the corresponding particle.

The optimality of a particle is checked according to the problem statement [17].
For a given particle Pij at the kth iteration position, the velocity updating formulae are
given below.

υκ+1
ij = ω.υκ

ij + C1R1

(
pκ

lij − pκ
ij

)
+ C2R2

(
pκ

gi − pκ
ij

)
(1)

pκ+1
ij = pκ

ij + υκ+1
ij (2)

Here, i and j varies from 1 to NP and 1 to NG, respectively. Where NP is number of
particles in the swarm and NG is the number of variables in the problem.

Here, υκ+1
ij = velocity of the ith particle of jth variable at iteration k + 1, pκ+1

ij = position
of the ith particle of the jth variable at iteration k + 1, w = inertia weight factor, C1 and C2
are acceleration constant, and R1 and R2 are random values.

2.2. Independent Components Analysis, ICA

The concept of ICA was introduced in the early 1980s by J. Herault, C. Jutten [18]
in order to solve the BSS problem. As can be seen in Equation (3), the observations are
considered as linear combinations of independent sources

x = As (3)

where x, s, and A are the observation vector, the vector of independent sources, and
the mixing matrix, respectively. The main goal is to find the separator matrix W, from
observation vector x to form the estimated sources vector, which is yield as follows

ŝ = Wx (4)

where ŝ is the vector of estimated sources. W is obtained by the PSO method with fast
convergence in this paper.

2.3. Signal Preprocessing

Using the dlib facial recognition algorithm to detect facial features, the system confirms
the presence of the subject’s face in the captured image. The webcam’s captured image
is displayed, and the system uses feature points to outline the XY axis, creating a region
of interest (ROI). The system then performs a segmentation of the detected area to reduce
noise interference when analyzing the image. After capturing the ROI, the system will
separate the RGB color channels and extract the green channel.

The system will measure for about 10 s and obtain an average by capturing the green
channel image through the system. It will accumulate a signal sequence for each captured
image, as shown in Figure 1.
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Figure 1. Signal waveform plot.

As shown in Figure 2, normalizing the signal sequence can reduce the offset affected
by head movement. Then, the signal is adjusted to level 0 by performing detrend analysis
of the signal fluctuation, as shown in Figure 3.
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2.3.1. Waveform Processing

The measurement of RPPG is often affected by ambient light. PSO-ICA is used here
to eliminate interference caused by light, as shown in Figure 4. Then, the noise is filtered
out and the signal is amplified by a band-pass filter with a range of 0.4~10 Hz, as shown in
Figure 5. Finally, peak-to-peak detection is performed, and the time difference between
peaks is calculated using the frame rate to determine the data processing time.
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2.3.2. Frequency Domain Transformation

As shown in Figure 6, the bandpass filtered waveform is transformed into the fre-
quency domain using FFT, and the heart rate is calculated using a formula. The HF and LF
frequency bands are filtered out using the bandpass filter, and then transformed into the
frequency domain using power spectral density, as shown in Figure 7. HRV parameters are
calculated using a formula.
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Calculating Heart Rate and HRV Parameters

The measured values need to be converted into values that we can understand through
some formulas and algorithms. The following time-domain parameters are defined as
Standard deviation of Normal to Normal intervals (SDNN) (5) and root mean square of
successive differences (RMSSD) (6).

SDNN =

√√√√∑N
i=1

(
RRi − RR

)
N

(5)

In which RR is the duration between two consecutive R-peaks of heartbeats, N is the
number of RR intervals, RRi is the duration of the RR interval, and RR is the mean duration
of all RR intervals.

RMSSD =

√√√√ 1
N − 1

N

∑
i=1

(RRi+1 − RRi)
2 (6)

The definition of frequency domain parameters includes the trapezoidal formula
f (x) (7), as shown in Figure 8, to calculate the area under the power spectral density
spectrum in the frequency domain range. The abbreviations of the frequency domain pa-
rameters are defined as follows, Heart Rate (HR) (8), Very Low Frequency (VLF) represents
power within the extremely low frequency range (9), Low Frequency (LF) represents power
within the low frequency range (10), and High Frequency (HF) represents power within the
high frequency range (11).

∫ b

a
f (x)dx = (b− a)

f (a) f (b)
2

(7)

HR = 60 ∗ frequency (8)

VLF =
∫ 0.04 Hz

0.003 Hz
f (x)dx (9)

LF =
∫ 0.15 Hz

0.04 Hz
f (x)dx (10)
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HF =
∫ 0.4 Hz

0.15 Hz
f (x)dx (11)
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This study uses normalized HF, LF, and LF/HF ratio for validation, which are defined
as follows, normalized low frequency power (nLFP) (12), normalized high frequency power
(nHFP) (13), and the ratio of low to high frequency power (14).

nLFP =
LF

LF + HF
× 100% (12)

nHFP =
HF

LF + HF
× 100% (13)

LF
HF

=
nLFP
nHFP

(14)

2.3.3. Bandpass Filter

The main purpose of the Bandpass filter is to eliminate waveform noise and reduce
feature space. The heart changes its frequency almost every heartbeat, which is reflected
as a carrier frequency variation. This paper uses the Bandpass filter to isolate the carrier
frequency of the heartbeat. According to reference [19], Kohler proposed that the typical fre-
quency component range of the QRS complex is approximately 0.4 Hz to 10 Hz. Therefore,
in this study, the filter is set at 0.4~10 Hz, and two frequency bands of HRV are defined,
(1) the LF band is from 0.045 to 0.15 Hz and (2) the HF band is from 0.15 to 0.4 Hz.

Fast Fourier Transform, FFT

FFT is a method for calculating the Discrete Fourier Transform (DFT) faster, and it
is usually used for frequency analysis. FFT analysis transforms the signal from the time
domain to the frequency domain. According to reference [20], the difference between FFT
and DFT lies in time complexity, which is O(Nlog2(N)) iterations. In Equation (15), N
represents the number of samples in the sequence.

xn =
1
N

N−1

∑
k=0

Xke12πk n
N n = 0, . . . , N − 1 (15)

The FFT is used in this paper for frequency analysis. It converts a signal from the time
domain to the frequency domain. According to reference [20], the difference between FFT
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and Discrete Fourier Transform (DFT) lies in their time complexity, with FFT having an
iterative time complexity of Nlog2(N) times. In Equation (15), N represents the number of
samples in the sequence. To achieve visualization, the Hanning window method is used
to estimate the FFT, as shown in Figure 9. The Hanning window function is defined as
W(t) (16) and is used to reduce spectral energy leakage. In this paper, the sequence is
subjected to a Fourier transform at a frequency of 10 Hz with a uniformly distributed rate.
The PSD is integrated into the very-low-frequency (VLF: 0 to 0.2 Hz), low-frequency (LF:
0.20 to 0.75 Hz), and high-frequency (HF: 0.75 to 3.0 Hz) bands, with a spectrum estimated
by the Hanning window for each band. Finally, the area is calculated using the trapezoidal
formula, and the LF/HF ratio is calculated to evaluate the balance of the sympathetic and
parasympathetic nervous systems.
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2.3.4. Power Spectral Density, PSD

In this paper, FFT was used with the Hanning window method to achieve visualization,
as shown in Figure 9. The Hanning window function is defined as W(t) (Equation (16)),
and it was used to better reduce spectral energy leakage. The signal was transformed using
a sampling rate of 10 Hz, and PSD integration was used to divide the signal into three
frequency bands, Very Low Frequency (VLF: 0–0.2 Hz), Low Frequency (LF: 0.20–0.75 Hz),
and High Frequency (HF: 0.75–3.0 Hz). Each band has a spectrum estimated by the Hanning
window, and the area was calculated using the trapezoidal rule. Finally, the LF/HF
ratio was calculated to evaluate the balance between sympathetic and parasympathetic
nervous systems.

W(t) = 0.5
(

1− cos
2πt

N − 1

)
, t = 1, . . . , N (16)

2.4. System Architecture

The system structure is as shown in Figure 10. First, through the charge-coupled com-
ponent image sensor on the webcam, when the light was projected onto the sensor surface,
a charge signal was generated and then converted into a voltage signal to produce and
output an image according to the timing. Second, the analog voltage signal was converted
into a digital signal through the analog-to-digital converter (ADC) and transferred to the
PC through the USB. Afterwards, image recognition and digital signal processing were
used for data calculation and analysis to obtain the user’s physiological signal and calculate
the physiological parameters for the heart rate and HRV. The purpose of this study was to
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provide the system to physicians as a diagnostic tool to improve efficiency and reduce the
rate of misdiagnosis.
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System:

� Operation System: WindoWs 10 Professional (×64);
� CPU: Intel Core i5-4570 (4C4T@3.2 GHz);
� Memory: 16 GB DDR3 1333 MHz;
� Developer Interface: TensorfloW-Keras (Spyder4.2.0);
� Program: Python3.6;
� WebCam: E-books E-PCC072 (1080 p/30 fps);
� Dynamic Resolution: 1920 × 1080.

2.5. Spyder Compile Software

The system was developed using the Spyder compiler software in an environment
based on the Python language. Based on an interactive development environment for
algorithm development, data analysis, and numerical computation, Spyder is an inte-
grated development environment (IDE) that uses an open-source code for cross-platform
scientific computing based on the Python language. It provides functions such as ad-
vanced code editing, interactive testing and debugging, computational science, data pro-
cessing, and predictive analysis, and it supports multiple programming languages and
operating systems.

2.6. Experimental Procedure

The flowchart of the experimental steps is depicted in Figure 11. The system was
divided into pre-signal processing, waveform processing, frequency conversion, and calcu-
lation of physiological parameters.

(1) This study obtained images through a webcam, used dilb’s 81-point face recognition
algorithm to set up a region of interest to reduce the impact of the subject’s head
shaking, separated the images from the region of interest into three RGB channels
and extracted the green channel, and averaged the extracted green channels for each
image to form a sequence.

(2) This study conducted a detrended fluctuation analysis (DFA) of the signal and nor-
mally adjusted the signal level, removed the waveform artifacts through ICA com-
bined with particle cluster optimization, and, finally, used a band-pass filter to sort
the bandwidths for heart rate and HRV.

(3) The waveform filtered by the band-pass filter was transformed through the FFT algo-
rithm to convert the time sequence of the heartbeat signals into a frequency domain
to find and output the highest peak of the waveform. The heart rate variabilities of
very low frequency, low frequency, and high frequency were presented according to
their power spectral density (PSD).

(4) Finally, the physiological signals measured were converted into understandable values
through formula calculations.
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3. Results
3.1. Participants

This study tested 20 males and females ranging in age from 20 to 30 years old.
Seven conditions, namely, 50 cm and 100 cm in distance; the area of interest covering the
forehead and the forehead plus cheeks; an illumination level below 200 lumens; an illumina-
tion level of 350 to 550 lumens; and an illumination level over 600 lumens at 50 cm from the
area of interest covering the forehead plus cheeks, were divided to provide test data for this
study. This chapter presents the accuracy evaluation indicators, the study results, and the
data analysis of the seven conditions, and discusses the experimental results and analyzes
the discrepancies.

3.2. Experimental Protocol

The experimental purpose of the study is an auxiliary diagnostic tool, so the final
judgment result can only be obtained based on the analysis of the pathology report and the
professional experience of the physician, so this study uses RMSE and mean absolute error
percentage (MAPE) is the accuracy evaluation index, and the calculation method is shown
in Formulas (17)–(19). Therefore, the accuracy of the system can be obtained by observing
the above two indexes in this study.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (17)

MAPE =
1
N

N

∑
i=1

|ŷi − yi|
yi

(18)

R2 = 1− ∑i(ŷi − yi)
2

∑i

(−
yi − yi

)2 (19)

where yi is the actual value of the i-th sample, ŷi is the measured value of the i-th sample,
and n is the total number of test samples.

In order to analyze the accuracy of the system and the effect of ambient light on the
system, this study measured the heart rate and HRV of the 20 subjects measured by the
statistical system and the instrument against the calculated error. The performance of the
system at the following two measurement distances was as shown in Table 1.

Table 1. Comparison of forehead and cheek performance between 50 cm and 100 cm.

Measuring Distance
Measurement Items

Measurement Standard
RMSE MAPE R2

50 cm

Heart Rate 1.968 bpm 2% 0.83594449
SDNN 1.85 ms 4.87% 0.87628321

LF 1.77% 2.425% 0.92371321
HF 1.77% 3.95% 0.92371321

100 cm

Heart Rate 3.32 bpm 3.875% 0.71267363
SDNN 2.8 ms 8.9% 0.68062499

LF 4% 6.375% 0.73977200
HF 4% 8.9% 0.73977200

The error of each parameter was recorded at a distance of 100 cm, as shown in Table 1.
According to the above results, it could be seen that the measurement at 50 cm was more
accurate than that at a distance of 100 cm. Therefore, the following measurements on the
forehead and the forehead plus cheeks were measured from 50 cm.
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3.3. Capture Area

Since this research experiment uses the extracted face area to analyze the heart rate
and HRV parameters, the forehead and forehead plus cheek tests are used, respectively,
and the following measurements and statistics are made with five men.

As shown in Table 2, by comparing the RMSE and the mean absolute error percentage
of the forehead and forehead plus cheeks, it is found that the error of the forehead is higher
than the error of the forehead and cheeks. The forehead and cheeks, which can respond
physiologically, can also reduce the interference of picking up hair.

Table 2. Comparison of measuring forehead and forehead plus cheek performance at 50 cm.

Measurement Area Measurement Items
Measurement Standard

RMSE MAPE R2

the forehead
cheek

Heart Rate 2.09 bpm 2.092.6% 0.823737
SDNN 1.18 ms 3.33% 0.63904

LF 2.11% 2.86% 0.909543
HF 2.11% 4.133% 0.909543

forehead

Heart Rate 5.01 bpm 6.13% 0.284089
SDNN 2.804 ms 9.4% 0.76545001

LF 4.96% 7.26% 0.6345715
HF 4.96% 15.2% 0.6345715

3.4. Illumination

The experimental method of this research is the principle of light reflection, so the
intensity of light will indirectly affect the experimental value. The following statistics are
mainly used to test the performance of the system under various lighting conditions, where
the illuminance is below 200 lumens, 350~550 lumens, and above 600 lumens; the forehead
and cheek measurements were taken at a measurement distance of 50 cm for analysis. The
heart rate measured below represents the performance of this research on various light
levels, and the data are expanded, as shown in Appendices 13 to 15, and its error statistics
are shown in Table 3.

Table 3. Measuring performance comparison of different lights.

Illumination Measurement Items
Measurement Standard

RMSE MAPE R2

Below 200 lumens Heart Rate 5.84 bpm 6.4% 0.2843022
350~550 lumens Heart Rate 1.73 bpm 1.66% 0.7890768

600 lumens or more Heart Rate 6.58 bpm 7.4% 0.1442480

As the experimental method used in this study was based on the principle of light
reflection, the intensity of the light would indirectly affect the value of the experiment.
The following statistics were mainly used to test the performance of the system under
various illumination conditions, including below 200 lumens, 350 to 550 lumens, and
above 600 lumens, respectively. The forehead and the forehead plus cheeks were measured
at a distance of 50 cm for analysis. The following measured heart rates represent the
performance of the system under different illumination conditions, and the error statistics
are shown in the table.

As shown in Table 3, it can be seen that the measurement is better in an environment
with an illuminance of 350–550 lumens. In other environments with more extreme light, it
is realized by turning off the lights and supplementing the light of the table lamp. It may
be a deliberately created environment, so the error presented is relatively large.

From the above, it can be seen that the light intensity is 350~550 lumens, the mea-
surement distance is 50 cm, and the measurement of the forehead and cheek is the best
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environment for this research. The accuracy of various physiological parameters is RMSE
of heart rate 1.968 bpm and MAPE 2%, SDNN’s RMSE is 1.85 ms, MAPE is 4.87%, HF’s
RMSE is 1.77%, MAPE is 3.95%, LF’s RMSE is 1.77%, and MAPE is 2.425%. As a result,
an illumination condition of 350 to 550 lumens was suitable for measurement. The other
extreme light conditions were implemented by turning off the lights and supplementing
them with reading lamps. It was possible that because the environment was deliberately
created, the errors were relatively large. From the above, an illumination level of 350 to
550 lumens and a measuring distance of 50 cm was optimal for this study to capture the
forehead and cheeks for measurement, and the accuracy of each physiological parameter
was the RMSE of the heart rate.

4. Calculation of Measurement Time

The calculation time data were presented in the form of a histogram of the average
time spent per frame for FastICA and PSO-ICA. As the initial values of the hybrid ICA
matrix were random, the initial values affected the difficulty of the calculation and led to
higher time consumption in calculation. Therefore, the time needed for the computing of
five iterations via the two algorithms using the same initial value was compared.

According to Figure 12, the method proposed in this study could shorten the calcula-
tion time under initial values with a certain complexity, whereas the FastICA method had
no advantage over the method proposed in this study. It is also worth noting that the total
time taken to measure all physiological parameters once was 30 s for FastICA and 10 s for
PSO-ICA, indicating a total time saving of 33%.
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5. Discussion

This study improved many methods of the algorithm flow, as shown in the comparison
table of performance algorithm flow, which compared the algorithm flow for the extracted
physiological signal of this study with that of Mannapperuma et al. [5] and Zhang et al. [7].
This paper adjusted the wavefront levels through a detrended fluctuation analysis, which
could improve the accuracy of the heart rate and HRV. Additionally, the proposed PSO-ICA
could substantially reduce the computing time of the system and improve the problem of
ICA iterating locally optimal solutions in the case of poor initial values. In the meantime,
expanding the ROI from capturing the forehead to the forehead plus cheeks confirmed that
the measurement accuracy could be improved by capturing the forehead plus cheeks. The
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results showed a heart rate error of 2%, indicating a decline of 4.038% from the error of the
previous forehead measurement.

Nowadays, physiological parameters are mainly measured with contact light volume
descriptors using electrocardiograms, ultrasonic sensors, or piezoelectric sensors. In recent
years, the research literature has explored the performance and error of non-contact mea-
surements and the comparison with the above techniques. As shown in Table 4, compared
with the study results of other scholars, the mean absolute percentage error of the heart rate
measurements proposed in this study was validated by a medical device licensed by the
Ministry of Health and Welfare in Taiwan at 2%, less than the error values of the methods
proposed by other scholars. In addition, the time required for taking a measurement using
the method put forward by this study was shorter than those proposed by other scholars.

Table 4. Algorithm process comparison table.

Function Present Study Mannapperuma K. [5] Zhang B. [7]

Take out the face part Partial full face
(Without facial features)

full face
(Without facial features)

Signal Adjustment Level YES NO NO

ICA PSO-ICA JBSS-ICA JADE-ICA

Bandpass filter 0.4~10 Hz NO 0.7~4 Hz

HRV Formula YES NO NO

Continuous measurement of
physiological parameters YES NO NO

Remark 1 This paper only takes the staff and students of a university in the south as the
experimental data objects.

Remark 2 The experimental distance in this paper is 50 cm~100 cm, if it exceeds the range,
it will affect the experimental value.

Remark 3 Since the light in this research will affect the experimental results, the research
is only carried out in a bright place under the illumination of 350~550 lux.

Remark 4 During the measurement process of this paper, try to keep still and breathe
spontaneously, and do not shake excessively, turn the face or shift the detection
angle, which will cause misjudgment.

Currently on the market, the signal of the contact optical volumetric descriptor is
combined with the electrocardiogram, ultrasonic sensor, or piezoelectric sensor to measure
physiological parameters. In recent years, research literature discusses non-contact mea-
surement. The measurement performance and error, as well as the comparison with the
above-mentioned related technologies, as shown in Table 5. The research results of this
paper are compared with that of other scholars. The heart rate measurement proposed in
this paper is verified by the medically licensed instrument of the Taiwan Department of
Health. The MAPE is 2.2%. The error value of the method proposed by other scholars is
smaller, and the time required for its measurement is shorter than the method proposed by
other scholars.

Table 5. Heart rate error comparison table.

Published Scholar Present Study Mannapperuma K. [5] Zhang B. [7]

Measure time 10 s 30 s 60 s
Heart rate MAPE 2.2% 5% 2.5%
heart rate RMSE 1.968 bpm 6.28 bpm 2.68 bpm
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6. Conclusions

The results of the proposal methods are obtained with the accuracy of various phys-
iological parameters RMSE 2 bpm, MAPE 2.2%, and R2 0.9366 of heart rate under the
conditions of 350~550 lumens, 50 cm measurement distance, and 10 s measurement time.
This paper realized the non-contact measurement of heart rate and HRV with real-time
images based on ICA and PSO. It also provided a low-cost system for measuring physio-
logical parameters using a regular webcam face shooting to assist physicians in making
appropriate diagnoses according to the patient’s current physical condition during the
consultation process and reduce the rate of misdiagnosis. The analyses of rPPG studies
will serve as our future research work.

Author Contributions: Conceptualization, W.-H.L.; Methodology, Y.-C.H.; Software, T.-S.P.; Valida-
tion, S.-M.W.; Formal analysis, S.-M.W.; Investigation, Y.-C.L.; Data curation, T.-S.P.; Writing—original
draft, Y.-C.L.; Writing—review & editing, T.-J.S.; Visualization, Y.-C.H.; Supervision, T.-J.S.; Project
administration, W.-H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This paper is supported financially in part under No. 111-2222-E-230-001, National Science
and Technology Council, ROC.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This paper is supported financially in part under No. 111-2222-E-230-001,
National Science and Technology Council, ROC. We would like to express our sincere gratitude
to Feng-Chun Lee for her valuable contribution to this manuscript. Her expertise, insights, and
significant contributions greatly enhanced the quality of our research. Once again, sincerely thank
Lee for her significant contributions, and we are honored to have had the privilege of working with
her on this project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kleiger, R.E.; Miller, J.P.; Bigger, J.T.; Moss, A.J. Decreased heart rate variability and its association with increased mortality after

acute myocardial infarction. Am. J. Cardiol. 1987, 59, 256–262. [CrossRef] [PubMed]
2. Liao, D.; Cai, J.; Brancati, F.L.; Folsom, A.; Barnes, R.W.; Tyroler, H.A.; Heiss, G. Association of vagal tone with serum insulin,

glucose, and diabetes mellitus—The ARIC Study. Diabetes Res. Clin. Pract. 1995, 30, 211–221. [CrossRef] [PubMed]
3. Duanping, L.; Mercedes, C.; Gregory, W.E.; Wayne, E.C.; Gerardo, H. Lower heart rate variability is associated with the

development of coronary heart disease in individuals with diabetes: The atherosclerosis risk in communities (ARIC) study.
Diabetes 2002, 51, 3524–3531.

4. Trimmel, M. Relationship of Heart Rate Variability (HRV) Parameters Including pNNxx with the Subjective Experience of Stress,
Depression, Well-Being, and Every-Day Trait Moods (TRIM-T): A Pilot Study. Ergon. Open J. 2015, 8, 32–37. [CrossRef]

5. Mannapperuma, K.; Holton, B.D.; Lesniewski, P.J.; Thomas, J.C. Performance limits of ICA-based heart rate identification
techniques in imaging photoplethysmography. Physiol. Meas. 2015, 36, 67–83. [CrossRef] [PubMed]

6. Allen, J.; Overbeck, K.; Stansby, G.; Murray, A. Photoplethysmography assessments in cardiovascular disease. Meas. Control.
2006, 39, 80–83. [CrossRef]

7. Zhang, B.; Li, H.; Xu, L.; Lin, Q.; Yao, Y.; Greenwald, S.E. Noncontact Heart Rate Measurement Using a Webcam, Based on Joint
Blind Source Separation and a Skin Reflection Model: For a Wide Range of Imaging Conditions. J. Sens. 2021, 2021, 9995871.
[CrossRef]

8. Wang, C.; Pun, T.; Chanel, G. A Comparative Survey of Methods for Remote Heart Rate Detection from Frontal Face Videos.
Front. Bioeng. Biotechnol. 2018, 6, 33. [CrossRef] [PubMed]

9. Al Fahoum, A.S.; Abu Al-Haija, A.O.; Alshraideh, H.A. Identification of Coronary Artery Diseases Using Photoplethysmography
Signals and Practical Feature Selection Process. Bioengineering 2023, 10, 249. [CrossRef] [PubMed]

10. Kleiger, R.E.; Stein, P.K.; Bigger, J.T. Heart rate variability: Measurement and clinical utility. Ann. Noninvasive Electrocardiol. 2005,
10, 88–101. [CrossRef] [PubMed]

11. Li, X.; Chen, J.; Zhao, G.; Pietikainen, M. Remote heart rate measurement from face videos under realistic situations. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 4264–4271. [CrossRef]

https://doi.org/10.1016/0002-9149(87)90795-8
https://www.ncbi.nlm.nih.gov/pubmed/3812275
https://doi.org/10.1016/0168-8227(95)01190-0
https://www.ncbi.nlm.nih.gov/pubmed/8861461
https://doi.org/10.2174/1875934301508010032
https://doi.org/10.1088/0967-3334/36/1/67
https://www.ncbi.nlm.nih.gov/pubmed/25501390
https://doi.org/10.1177/002029400603900303
https://doi.org/10.1155/2021/9995871
https://doi.org/10.3389/fbioe.2018.00033
https://www.ncbi.nlm.nih.gov/pubmed/29765940
https://doi.org/10.3390/bioengineering10020249
https://www.ncbi.nlm.nih.gov/pubmed/36829743
https://doi.org/10.1111/j.1542-474X.2005.10101.x
https://www.ncbi.nlm.nih.gov/pubmed/15649244
https://doi.org/10.1109/CVPR.2014.543


Appl. Sci. 2023, 13, 7605 16 of 16

12. de Haan, G.; Jeanne, V. Robust Pulse Rate From Chrominance-Based rPPG. IEEE Trans. Biomed. Eng. 2013, 60, 2878–2886.
[CrossRef] [PubMed]

13. Li, X.L.; Adalı, T.; Anderson, M. Joint blind source separation by generalized joint diagonalization of cumulant matrices. Signal
Process. 2011, 91, 2314–2322. [CrossRef]

14. Kranjec, J.; Beguš, S.; Geršak, G.; Drnovšek, J. Non-contact heart rate and heart rate variability measurements: A review. Biomed.
Signal Process. Control. 2014, 13, 102–112. [CrossRef]

15. Julian, F.T.; Shelby, S.Y.; Jos, F.B. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk
factors. Int. J. Cardiol. 2010, 141, 31–122.

16. Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Algorithmic Principles of Remote PPG. IEEE Trans. Biomed. Eng. 2017, 64,
1479–1491. [CrossRef] [PubMed]

17. Herault, J.; Jutten, C. Space or time adaptive signal processing by neural network models. In Neural Networks for Computing; AIP
Publishing: College Park, MD, USA, 1986; pp. 206–211.

18. Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell 2007, 1, 33–57. [CrossRef]
19. Köhler, B.U.; Hennig, C.; Orglmeister, R. The Principles of SoftWare QRS Detection-RevieWing and Comparing Algorithms for

Detecting this Important ECG Waveform. IEEE Eng. Med. Biol. 2002, 21, 42–57.
20. Joo, T.H.; Oppenheim, A.V. Effects of FFT coefficient quantization on sinusoidal signal detection. IEEE Acoust. Speech Signal

Process. 1988, 3, 1818–1821.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TBME.2013.2266196
https://www.ncbi.nlm.nih.gov/pubmed/23744659
https://doi.org/10.1016/j.sigpro.2011.04.016
https://doi.org/10.1016/j.bspc.2014.03.004
https://doi.org/10.1109/TBME.2016.2609282
https://www.ncbi.nlm.nih.gov/pubmed/28113245
https://doi.org/10.1007/s11721-007-0002-0

	Introduction 
	Methodologies and System Description 
	Particle Swarm Optimization, PSO 
	Independent Components Analysis, ICA 
	Signal Preprocessing 
	Waveform Processing 
	Frequency Domain Transformation 
	Bandpass Filter 
	Power Spectral Density, PSD 

	System Architecture 
	Spyder Compile Software 
	Experimental Procedure 

	Results 
	Participants 
	Experimental Protocol 
	Capture Area 
	Illumination 

	Calculation of Measurement Time 
	Discussion 
	Conclusions 
	References

