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Featured Application: The findings of this study can be applied in the design and experimental
investigation of line-start permanent magnet motors.

Abstract: Line-start permanent magnet synchronous motors (LSPMSMs) are of great interest to
researchers because of their high energy efficiency, due to the growing interest of manufacturers in
energy-efficient units. However, LSPMSMs face some difficulties in starting and synchronization
processes. The LSPMSM lumped parameter model is applicable to estimating the successfulness
of starting and further synchronization. The parameters of such a model can be determined using
computer-aided identification algorithms applied to real motor transient processes’ curves. This
problem demands significant computational time. A comparison between two algorithms, differential
evolution and Nelder–Mead, is presented in this article. The algorithms were used for 0.55 kW,
1500 rpm LSPMSM parameter identification. Moreover, to increase computational speed, it is
proposed to stop and restart the algorithms’ procedures, changing their parameters after a certain
number of iterations. A significant advantage of the Nelder–Mead algorithm is shown for the solving
of the considered problem.

Keywords: line-start permanent magnet synchronous motor; Nelder–Mead algorithm; differential
evolution algorithm; electric motors; energy efficiency class; energy saving; motor starting

1. Introduction

A significant share of industrial mechanisms, including pumps, fans, air blowers, and
compressors, are driven by electric motors, which are connected directly to a power grid
without intermediate power converters and are launched using a direct start [1–3]. The
vast majority of these motors are induction motors (IMs) [1–3]. Despite all the well-known
induction motors’ advantages, they expose significant losses during the rotor winding,
which diminishes their energy efficiency class [4].

Line-start permanent magnet synchronous motors (LSPMSMs) do not have noticeable
rotor winding losses at steady state, which increases their energy efficiency class in compar-
ison to induction motors. LSPMSMs are available on the market and mostly are employed
in pump and fan units [5–7]. Figure 1 shows a comparison of IM and LSPMSM designs.

LSPMSMs are of great interest to researchers because of their high energy efficiency
due to the growing interest of manufacturers in energy-efficient units [8–11]. The LSPMSM
model’s performance can be improved by using computer-aided design optimization
procedures [12–14].
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Figure 1. Sketches of electric motors. (a) Induction motor (IM); (b) synchronous motor with the di-
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There are studies investigating LSPMSM performance at unbalanced voltage [15].
In [16], the LSPMSM steady-state torque was evaluated by transient analysis using a neural
network. Article [17] is devoted to LSPMSM modelling, using a bond graph model [18].
Article [19] discusses the latest LSPMSM design techniques. Article [20] presents an
experimental comparison of a 4-pole 5.5 kW LSPMSM with axial and radial fluxes. There
are also studies on the effect of LSPMSM rotor design on additional losses [21].

LSPMSMs face some difficulties in starting and synchronization processes, espe-
cially with loads with a high moment of inertia [22–24]. An LSPMSM lumped param-
eter model [25] was applied to estimate the successfulness of starting and further syn-
chronization, which has been extremely beneficial for the experimental verification of
LSPMSM characteristics. However, experimental parameter identification is related to
significant obstacles.

Evaluation of electrical parameters can be done using a finite element model (FEM)
based on known motor constructive parameters [26]. However, this approach requires
knowledge of the geometrical details of the motor core, winding data, and the materials
it is composed of. This requires access to motor design documentation or irreversible
disassembly of motor parts for study purposes, which is not always possible.

In the case that the motor constructive parameters are unknown, there are several
approaches for determining equivalent circuits parameters applicable for IMs [27–33] and
LSPMSMs [25,26,34,35]: (1) steady-state experiments, such as no-load tests, locked rotor
tests, etc., allow individual motor parameters to be determined [25]; (2) computer-aided
identification algorithms make it possible to use the transient response to estimate multiple
motor parameters, as explained in [34].

Measurement techniques of individual LSPMSM parameters using steady-state ex-
periments include: the stator winding DC resistance estimation; the leakage inductance
estimation on sinusoidal voltage operation with rotor extraction; the locked rotor test for ro-
tor resistance and inductance estimation; the DC step-voltage test to estimate the LSPMSM
total inductances; and the open-circuit test used for the permanent magnet flux linkage
estimation [25]. However, such an approach demands a very high measurement accuracy
and relies on many assumptions. The presence of the mutual inductance of the stator
winding and the rotor squirrel cage makes it impossible to measure the total inductances at
a locked rotor. Further, the total inductances measurement using the DC step-voltage test
has low accuracy because of the nonlinear nature of the motor total inductances, which
is the result of the presence of main-path saturation and cross saturation in the motor
magnetic circuit.

According to Newton’s second law, the rotor moment of inertia can be measured as
a coefficient between dynamic torque and angular acceleration. However, it demands a
laboratory test bench with a prime mover and a torque sensor or a frequency converter
with a specific testing algorithm, which are not always available [36].

These difficulties can be overcome by computer-aided identification methods that
require only phase currents and speed measurement during the motor start-up process.

There are many computer-aided identification algorithms; for example, the Kalman
filter, the model reference adaptive system, the least squares method, artificial neural
networks, the genetic algorithm, the differential evolution algorithm, particle swarm
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optimization, etc. [27,34,35]. For example, in [34], the identification of LSPMSM parameters
based on the time plots of current and speed during start-up using the differential evolution
algorithm is discussed.

It can be concluded that, due to the disadvantages of other methods, such as the need
to know the motor design parameters in the case of using FEA or a large number of as-
sumptions in the case of parameter estimation through steady-state experiments, computer
identification is a promising method for estimating the parameters of the LSPMSM model.
However, a detailed comparison of the effectiveness of various computer identification
algorithms for determining the parameters of LSPMSM has not yet been carried out.

This article presents a comparison between the differential evolution (DE) [37,38] and
Nelder–Mead (NM) algorithms [39,40] for lumped parameter LSPMSM model identifica-
tion. The novelty of this article lies in the results of comparing the DE and NM algorithms
for the considered specific problem. Moreover, it shows the advantages of the NM algo-
rithm over the DE algorithm. Its practical impact lies in revealing a more accurate and
computationally efficient algorithm for the identification of LSPMSM parameters.

The comparison was carried out on the example of transients calculated for the
LSPMSM model with given parameters. The results of the study show that the differ-
ential evolution algorithm demonstrates relatively low parameter identification accuracy
and longer computational time. However, it can be used to determine the initial approxima-
tion for the algorithms with better convergence. The Nelder–Mead algorithm is confirmed
as more computationally efficient for the considered problem.

Moreover, it is proposed to stop and restart identification procedures for both algo-
rithms, changing their tuning parameters, when the rate of convergence shows a signifi-
cant decrease.

The purpose for identifying the parameters of the LSPMSM in our study is to obtain a
tool that correctly predicts the success/failure of starting and synchronizing the LSPMSM
for various moments of inertia and for the various dependencies of the load torque on the
speed. We have added this explanation to the article.

2. Mathematical Model of the Motor

The transient processes for the LSPMSM start-up are calculated using the LSPMSM
mathematical model.

When modelling the LSPMSM, it is assumed that:

• The magnetic fields generated by the stator and rotor windings have a sinusoidal
spatial distribution;

• The magnetic permeability of the steel is constant;
• The stator and rotor windings are symmetrical;
• Each winding is powered by a separate source;
• The mains voltage phasor is constant throughout the entire starting process, and an

increase in the motor current does not cause a decrease in its amplitude;
• The magnetic core losses are not taken into account.

The system of ordinary differential LSPMSM equations to be solved is represented as:

dλsd/dt − p·λsq·dϕ/dt + Rs·Isd = Usd;
dλsq/dt + p·λsd·dϕ/dt + Rs·Isq = Usq;

dλ′rd/dt + r′d·I′rd = 0;
dλ′rq/dt + r′q·I′rq = 0;
I′rd = (λ′rd − λsd)/Lσd;

I′rq = (λ′rq − [λsq − λ′0])/Lσq;
Isd = λsd/Lsd − I′rd;

Isq = (λsq − λ′0)/Lsq − I′rq;
T = 3/2·Zp(λsd·Isq − λsq·Isd);

J·d2ϕ/dt2 = T − Tload,

(1)
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where Usd and Usq are the stator voltages along the d and q axes; Isd, Isq, I′rd, and I′rq are the
stator and rotor currents; Lsd, Lsq, Lrd, and Lrq are the stator and rotor total inductances; Lσd
and Lσq are the rotor leakage inductances; λsd, λsq, λ′rd, and λ′rq are the stator and rotor
flux linkages; λ′0 is the permanent magnet flux linkage; Rs is the stator resistance; Zp is
the number of motor pole pairs; r′rd and r′rq are the rotor resistances; ϕ is the mechanical
rotational angle equal to the integral of the motor speedω; T is the motor torque; Tload is
the loading torque; J is the total moment of inertia. All initial conditions are equal to zero,
except for the stator flux along the q-axis λsq 0 = λ′0.

Figure 2 shows the implementation of equation system (1) in Simulink. According
to Figure 2a, the LSPMSM fed directly from the mains (“Discrete 3-phase Source”), was
mechanically coupled to the load. The load was simulated as a summation of a constant
torque Tc and componentω·F that represented a bearings frictional torque, which depended
on speed linearly, as is shown in Figure 3b.
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Figure 3. Simulink model of the LSPMSM motor fed from 3-phase 380 V, 50 Hz grid. (a) General
view; (b) load torque model.

The LSPMSM parameters (rated power 550 W, rated speed 1500 rpm) given in Table 1
were taken as the motor parameters.

Table 1. The LSPMSM parameters (rated power 550 W, rated speed 1500 rpm).

Parameter Value

Motor rated power, kW 0.55
Motor rated line-to-line voltage, V 380

Root-mean-square (RMS) rated stator current, A 1.11
Rated power factor 0.85

Rated frequency f, Hz 50
Pole pair number Zp 2

Stator phase resistance Rs, Ohm 15.3
Total direct inductance Ld, H 0.26

Total quadrature inductance Lq, H 0.15
Leakage direct inductance Lσd, H 0.038

Leakage quadrature inductance Lσq, H 0.051
Rotor direct resistance r′d, Ohm 9.24

Rotor quadrature resistance r′q, Ohm 10.1
Permanent magnet flux linkage λ′0, Wb 0.76

Motor inertia moment J, kg·m2 0.003
Bearing friction and windage coefficient F, N·m/(rad/s) 10−4

It is known that the operating temperature significantly affects the resistance and
rotational speed of induction motors [41]. At the same time, the heating of the LSPMSM is
much less due to lower losses, and it does not have any slip. This makes it possible to not
consider the influence of temperature when identifying its parameters [34].

Figure 4 represents the LSPMSM phase currents and angular frequency transient
processes at Tc = 0 N·m and F = 10−4 N·m/(rad/s). Figure 4a shows the time plots of the
components of the stator current along the direct (d) and quadrature axis (q) in a coordinate
system fixed relative to the rotor. Figure 4b shows the time plot of the mechanical angular
frequency of the rotor. Figure 5 shows the directions of the d and q axes relative to the
magnetization direction of the permanent magnets. The transient waveforms were selected
for the study because these values (phase currents and angular frequency) can be easily
measured in experiments with the real LSPMSMs. Figure 4 shows that the LSPMSM starting
time was 0.7 s. The steady-state phase current amplitude was 1.58 A. The starting inrush
current was 15.8 A. During the starting process, the motor reached the synchronous speed
of 157.09 rad/s (1500 rpm) at 0.06 s for the first time; however, further, it accelerated to a
higher speed because of inertia. Later, the motor decelerated as a result of synchronous
torque action. These oscillations were repeated several times with the decreasing amplitude
caused by dumping factors such as asynchronous torque and load frictional torque.
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3. General Algorithm of the Motor Parameters Identification

The flow chart of the motor parameters identification algorithm is shown in Figure 6. It
is valid for both DE and NM. During the initialization stage, a set of identifiable parameters,
their constraints and initial conditions, parameters of the objective function that do not
change during optimization (amplitude and frequency of the supply voltage, number
of poles, stator resistance, etc.), as well as a settings identification algorithm (number of
iterations, maximum optimization function execution time, coefficients that impact the
optimization process, number of individuals in a population for DE, etc.) were defined.
Since the Nelder–Mead method is an unconstrained method, the constraints were applied
only if DE was used. DE is a bound-constrained global search algorithm that requires setting
up quantities and names of the variables, their constraints, and an initial approximation, as
well as accuracy if the solving problem demands it.

In the basic identification loop, using the identification algorithm (DE or NM), the next
estimate of the identified parameters was calculated, which was the input of the objective
function. In the objective function, the simulation of the Simulink model was called using
the function “sim” [42], whose inputs were the name of the model, its initial state, etc., and
the output was the vector of simulation results of the Simulink model.

An objective function, Fvalue, that should be minimized during the basic identification
cycle was calculated as an integral of the squared deviations of the angular frequency ωm

and the currents id and iq for separated time samples, calculated at the current values of the
identifying parameters of reference transient processes functions shown in Figure 4:

Fvalue = kid · qid + kiq · qiq + kω · qω, (2)



Appl. Sci. 2023, 13, 7586 7 of 16

where kid = 20, kiq = 20 and kω = 1 are the weight coefficients according to [34]; qid, qiq and
qω are the error functions. These error functions are defined as follows:

qid =
1

t2 – t1

t2∫
t1

[im
d (t) – id(t)]

2dt; (3)

qiq =
1

t2 – t1

t2∫
t1

[
im
q (t) – iq(t)

]2
dt; (4)

qω =
1

t2 – t1

t2∫
t1

[ωm(t) –ω(t)]2dt, (5)

where idm
, iqm andωm are simulation results of the d- and q-axis stator currents and angular

frequency, respectively, obtained using motor parameters given in Table 1.
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The basic identification loop ended after the specified number of iterations had been
completed. The parameter estimate obtained after this was the result of identification.

4. Identification Algorithms

As was stated earlier, the implementation results of the two algorithms (DE and NM)
were compared for the LSPMSM parameter identification problem. DE is a multidimen-
sional optimization algorithm which belongs to the stochastic optimization algorithms
group. DE is the result of further development of the genetic algorithm [38]. According
to the original definition, DE can be described as follows. Initially, a set of vectors called
generation is created. N-dimensional points where a minimized objective function f (x) is
determined are considered as vectors. The algorithm creates a new generation of randomly
combined vectors from the previous generation. The number of vectors is the same for
each generation, and this is one of the algorithm parameters.

A new generation of vectors Is generated as follows. For each previous generation
vector xi, three different random vectors, v1, v2, and v3, are selected among the previous
generation except vector xi itself. As a result, a mutated vector (6) is generated:

v = v1 + Fv (v2 − v3), (6)
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where Fv is one of the method parameters, which is a positive real number in the range
(0, 2). It is recommended to vary this value when an objective function approaches a
minimum [31].

Then, the crossover procedure is implemented on mutated vector v. The procedure
consists of the replacement of some of the vector’s coordinates by initial vector xi coordi-
nates. Each replacement is performed with some probability, which is another parameter of
the algorithm. The result after the crossover procedure vector is called a trial vector. If this
vector is «better» than the initial vector xi, which means that an objective function value
was reduced, then xi is replaced by the trial vector in a new generation. Otherwise, the
previous xi vector remains as an initial vector.

The NM is an unconstrained optimization algorithm applicable to the function of
several variables [40]. The algorithm searches for a local optimum and can «stick» in one
of the local optima. Different initial simplex shapes can be changed to find the better
minimum if necessary.

The NM is used to find the unconstrained minimum of a function of n variables
defined elsewhere in Rn.

The algorithm parameters are listed below:

- Reflection coefficient α > 0.
- Contraction coefficient 0 < β < 1.
- Expansion coefficient γ > 1.

Usually, units α = 1, β = 0.5, and γ = 2 are selected.
The algorithm contains the following steps enumerated to highlight function calls:

1. Preparation. Initially, n + 1 points are selected: xi = (xi
1, xi

2, . . . , xi
n), i = 1 . . . (n + 1),

where x1 = (x1
1, x1

2, . . . , x1
n) is an initial parameter vector, x2 = (x1

1·(1 + δ), x1
2,

. . . , x1
n), x3 = (x1

1, x1
2·(1 + δ), . . . , x1

n) . . . , xn+1 = (x1
1, x1

2, . . . , x1
n·(1 + δ)), δ

is the initial simplex coefficient. These vectors constitute the n-dimensional space
simplex. Objective function values are calculated at the points f 1 = (x1), f 2 = f (x2), . . . ,
fn+1 = f (xn+1).

2. Sorting. Three points are selected among simplex vertices: xh where function value
fh is the greatest, xg where fg is the next to the greatest, and xl where fl is the least
function value. The further steps’ aim is at least the diminishing of fh.

3. A centroid of the aforementioned points of the simplex excluding xh is determined as
xc = 1/n ∑(i 6= h)(xi). Calculation of fc = f (xc) is not mandatory.

4. Reflection. The reflection xr = (1 + α)xc − αxh of xh with respect to xc with coefficient
α and the value of the function fr = f (xr) at xr is to be calculated.

5. Expansion. Then fr is compared with the values fh, fg, and fl:

If fr < fl, the selected search direction is successful, and the search step can be increased
using the expansion operation. A new point xe = (1 + γ) xc − γxr and the function
value fe = f(xe) are to be calculated.
If fe < fr, the simplex expands up to this point: set xh equal to xe and fh equal to fe, and
then finish the current iteration (go to Step 6).
However, if fr < fe, an expansion is too wide: set xh equal to xr and fh equal to fr, and
then finish the current iteration (go to Step 6).
If fl < fr < fg, the point selection is acceptable; the new one is better than the two
previous points. Set xh equal to xr and fh equal to fr, and then finish the current
iteration (go to Step 6).
If fg < fr < fh then set xh equal to xr and fh equal to fr.

6. Contraction. Determine the point xs = βxh + (1 − β) xc and the function value at this
point fs = f(xs). If fs < fh set xh equal to xs and fh equal to fs, then go to Step 6.

7. Shrinking. If fs > fh, that means that the initial points were more successful. Per-
form simplex global contraction (homothety) to the point with the least value of
xi = xl + (xi − xl)/2, I 6= l. The function values at these points are to be calculated.
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8. The last step is the convergency check-up. It can be done by simplex vertices disper-
sion evaluation. The mutual proximity of the simplex vertices assumes their proximity
to the searching objective function minimum. If the desired accuracy is not reached,
the algorithm can be continued from Step 2.

5. Comparison of the LSPMSM Parameters Identification Results Obtained by DE
and NM

The results of the DE and NM implementation are described in this section. The
implementation was performed for the considered LSPMSM lumped-parameters identifica-
tion problem.

It is known that it is recommended to change optimization algorithm coefficients when
approaching the minimum. This was coefficient Fv for the DE and coefficient δ for the NM.
This made it possible to speed up the identification process, and also to get out of local
minima. Considering that the NM algorithm tends to a local optimum, it is advisable to
restart the algorithm after it gets stuck. Due to this reason, when the algorithms reached
a certain number of iterations, the algorithms were stopped and restarted with the new
initial approximation. Further in the article, we describe how the optimization stage means
a stage during which the algorithm works from start to intermediate or end stops.

Figure 7 shows the three-stage optimization flow chart. The internal structure of the
“Initialization” and “Basic identification cycle” blocks is shown in Figure 6. NM-3 stands for
the Nelder–Mead optimization in three stages. The DE-3 stands for differential evolution
in three stages. One stage for the NM consisted of 400 iterations, and the coefficient δ
was equal to 0.3, 0.01, and 0.005 for the first, second, and third stages, accordingly. One
stage for the DE consisted of 18 iterations with 120 individuals in each generation, and the
coefficient Fv was equal to 0.8, 0.4, and 0.04 for the first, second, and third stages, accordingly.
The δ and Fv values were determined experimentally. The boundary conditions, initial
approximation and required accuracy for the DE are presented in Table 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 17 
 

 

Figure 7. Three-stage identification algorithm flow chart. 

It should be noted that the DE created an initial population according to the normal 

distribution in the range represented in Table 2 where the number of individuals was 

equal to the number of initial parameters. The initial population was the same for both DE 

and DE-3.  

The DE algorithm supposes the generation of random numbers. Therefore, to esti-

mate the results’ repeatability, the identification was performed six times. Table 3 shows 

the results for six consecutive runs of the DE and DE-3. At the same time, the NM and 

NM-3 were started only once, because random number generation is not supposed in 

these algorithms. 

Table 3. Final values of the objective function/number of iterations for different algorithms. 

Number of a DE Run DE DE-3 NM NM-3 

1 3.473/5383 0.423/3323 

0.0095/2661 0.0016/1200 

2 11.973/5399 0.627/3314 

3 10.974/5398 0.388/3457 

4 7.525/5399 0.462/3475 

5 16.68/3996 0.177/3547 

6 3.288/5135 0.196/3942 

Mean deviation 8.986 0.379 - - 

RMS deviation 5.236 0.17 - - 

Based on Table 3, it can be concluded that the NM algorithm provides the final value 

of the objective function 3.28/0.0095 = 345 times fewer than DE. In addition, NM demands 

the number of iterations 5383/2661 ≈ 2 times fewer than the DE. The NM-3 algorithm pro-

vides the final value of the objective function 0.379/0.0016 = 237 times fewer than DE-3. In 

addition, NM-3 demands the number of iterations 3332/1200 ≈ 3 times fewer than the DE-

3. Table 4 represents the LSPMSM parameters’ values determined by the considered algo-

rithms and real parameters. The best result out of six performed repetitions for the DE 

and DE-3 is shown in Table 4. 

Table 4. Identification results obtained by the considered algorithms and real motor parameters. 

Parameter Real Value DE DE-3 NM NM-3 

Ld, H 0.26 0.244 0.253 0.256 0.257 

Lq, H 0.15 0.162 0.155 0.150 0.15 

Lσd, H 0.038 0.039 0.038 0.038 0.038 

Lσq, H 0.041 0.042 0.044 0.041 0.041 

r′d, Ohm 9.24 10.23 8.90 9.24 9.26 

r′q, Ohm 10.1 9.70 9.69 10.09 10.1 

Figure 7. Three-stage identification algorithm flow chart.

Table 2. The boundaries, accuracy, and initial approximation of the identified parameters.

Parameter Lower
Boundary

Upper
Boundary

Accuracy for DE-Based
Algorithms

Initial
Approximation

Ld, H 0.1 1 0.001 0.513
Lq, H 0.1 1 0.001 0.301
Lσd, H 0.01 0.1 0.001 0.0762
Lσq, H 0.01 0.1 0.001 0.0814

r′d, Ohm 5 12 0.01 8
r′q, Ohm 5 12 0.01 9
λ′0, Wb 0.5 1 0.01 0.5
J, kg·m2 0.001 0.01 0.001 0.006
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It should be noted that the DE created an initial population according to the normal
distribution in the range represented in Table 2 where the number of individuals was
equal to the number of initial parameters. The initial population was the same for both DE
and DE-3.

The DE algorithm supposes the generation of random numbers. Therefore, to estimate
the results’ repeatability, the identification was performed six times. Table 3 shows the
results for six consecutive runs of the DE and DE-3. At the same time, the NM and
NM-3 were started only once, because random number generation is not supposed in
these algorithms.

Table 3. Final values of the objective function/number of iterations for different algorithms.

Number of a DE Run DE DE-3 NM NM-3

1 3.473/5383 0.423/3323

0.0095/2661 0.0016/1200

2 11.973/5399 0.627/3314
3 10.974/5398 0.388/3457
4 7.525/5399 0.462/3475
5 16.68/3996 0.177/3547
6 3.288/5135 0.196/3942

Mean deviation 8.986 0.379 - -
RMS deviation 5.236 0.17 - -

Based on Table 3, it can be concluded that the NM algorithm provides the final value
of the objective function 3.28/0.0095 = 345 times fewer than DE. In addition, NM demands
the number of iterations 5383/2661 ≈ 2 times fewer than the DE. The NM-3 algorithm
provides the final value of the objective function 0.379/0.0016 = 237 times fewer than DE-3.
In addition, NM-3 demands the number of iterations 3332/1200 ≈ 3 times fewer than the
DE-3. Table 4 represents the LSPMSM parameters’ values determined by the considered
algorithms and real parameters. The best result out of six performed repetitions for the DE
and DE-3 is shown in Table 4.

Table 4. Identification results obtained by the considered algorithms and real motor parameters.

Parameter Real Value DE DE-3 NM NM-3

Ld, H 0.26 0.244 0.253 0.256 0.257
Lq, H 0.15 0.162 0.155 0.150 0.15
Lσd, H 0.038 0.039 0.038 0.038 0.038
Lσq, H 0.041 0.042 0.044 0.041 0.041

r′d, Ohm 9.24 10.23 8.90 9.24 9.26
r′q, Ohm 10.1 9.70 9.69 10.09 10.1
λ′0, Wb 0.76 0.76 0.75 0.76 0.76
J, kg·m2 0.003 0.003 0.003 0.003 0.003

Objective function value - 3.288 0.177 0.0095 0.0016
Number of iterations - 5135 3547 2661 1200

Figure 8 shows the objective function values for the considered optimization algo-
rithms with the number of objective function calls, starting from the 120th NM call (1st
generation for DE). Table 5 shows the mean values and RMS deviation of identified param-
eters obtained using the DE and DE-3 algorithms.
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Table 5. Identification results obtained by the considered algorithms in comparison with real motor
parameters.

Parameter Real Value DE Identified
Value

DE RMS
Deviation

DE-3 Identified
Value

DE-3 RMS
Deviation

Ld, H 0.26 0.301 0.111 0.264 0.012
Lq, H 0.15 0.142 0.017 0.156 0.0022
Lσd, H 0.038 0.04 0.0047 0.04 0.0015
Lσq, H 0.041 0.039 0.0104 0.045 0.0015

r′d, Ohm 9.24 10.12 0.99 8.79 0.138
r′q, Ohm 10.1 10.52 0.78 9.86 0.286
λ′0, Wb 0.76 0.748 0.017 0.7433 0.0052
J, kg·m2 0.003 0.003 0.00 0.003 0.00

The faster convergence of DE-3 compared to DE and NM-3 compared to NM confirms
the effectiveness of the “stop and restart” technique used.

6. Identification with a Random Initial Approximation

The results of the considered identification algorithms were estimated at a random
selection of the initial approximation. To perform that, the identification with six different
random initial approximations was conducted. The random values were selected from the
parameter ranges shown in Table 2.

Table 6 presents the results, such as the final values of the objective function and the
number of iterations for the considered identification algorithms at six different initial
approximations. Furthermore, Table 6 shows the mean and RMS deviations of the objective
function values, calculated for six different initial approximations. Tables 7 and 8 show
the mean and RMS deviations of the parameters calculated by the considered algorithms.
Figure 9 represents the dependencies of the objective function values on the number of
objective function calls (iterations) for the best initial approximation.

With a fortunate choice of the initial approximation, when using the NM and NM-3
algorithms, the final value of the objective function deviated from the minimum value by a
negligibly small amount (as a result of the identification, the objective function was reduced
by four or more orders of magnitude). Using NM-3 required 2–3 times fewer function calls
than NM (see Figure 7, Table 6).
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Table 6. The results of 6 executions for the considered identification algorithms with a random initial
approximation: the objective function final values and the number of iterations.

Execution No. DE DE-3 NM NM-3

1 3.3/5399 0.4/3891 7.8 × 10−10/3002 6.5/1203
2 6.4/5396 0.61/3511 7.7× 10−13/2674 6.5× 10−4/1203
3 4.1/5396 0.4/3891 8.3× 10−13/2195 2.1× 10−4/1203
4 10.6/5398 0.34/3951 4.7× 10−12/2809 1.8× 10−10/1203
5 5.4/5395 0.61/3511 8× 10−13/2770 5.5× 10−3/1203
6 4.8/5400 24/2878 8× 10−13/2650 1.7× 10−9/1203

Mean deviation 5.8 4.4 1.3× 10−10 1.1
RMS deviation 2.6 9.6 3.2× 10−10 2.7

Table 7. Deviations of the LSPMSM parameters obtained using the NM identification algorithm with
a random initial approximation.

Parameter Real Value NM Identified
Value

NM RMS
Deviation

NM-3 Identified
Value

NM-3 RMS
Deviation

Ld, H 0.26 0.256 0.06 0.253 0.0093
Lq, H 0.15 0.15 0.01 0.159 0.02
Lσd, H 0.038 0.038 0.07 0.039 0.0023
Lσq, H 0.041 0.041 0.03 0.043 0.0067

r′d, Ohm 9.24 9.24 4.9 8.99 0.59
r′q, Ohm 10.1 10.09 6 9.6 1.2
λ′0, Wb 0.76 0.76 0.21 0.75 0.023
J, kg·m2 0.003 0.003 0.00 0.003 0.0001

Table 8. Deviations of the LSPMSM parameters obtained using the DE identification algorithm with
a random initial approximation.

Parameter Real Value DE Identified
Value

DE RMS
Deviation

DE-3 Identified
Value

DE-3 RMS
Deviation

Ld, H 0.26 0.272 0.056 0.29 0.12
Lq, H 0.15 0.143 0.017 0.147 0.012
Lσd, H 0.038 0.042 0.0064 0.035 0.0011
Lσq, H 0.041 0.035 0.0104 0.042 0.0005

r′d, Ohm 9.24 10.03 0.98 9.1 0.055
r′q, Ohm 10.1 11.1 1.2 10.03 0.97
λ′0, Wb 0.76 0.76 0.014 0.77 0.012
J, kg·m2 0.003 0.003 0.00 0.003 0.00

With successful parametric identification, the objective function was reduced by about
an order of magnitude when using DE and by two orders of magnitude when using DE-3.
In addition, DE-3 required about two times fewer function calls than DE.

Although NM is a local search algorithm, and DE is a global one, in both cases, being
stuck in a local minimum was possible (for example, see NM-3, start 1 and DE-3 start 6 in
Table 6). Further, DE and DE-3 required more objective function calls compared to NM
and NM-3.

From the above, we can conclude that in the considered application the Nelder–
Mead method provides significant advantages over differential evolution. Therefore, it is
preferable to run NM multiple times to find the best initial approximation rather than using
DE. This does not preclude the use of DE to automatically find an initial approximation
for NM.

The faster convergence of DE-3 compared to DE and NM-3 compared to NM confirms
the effectiveness of the “stop and restart” technique used in the case of a random initial
approximation, as well. Furthermore, even though NM is an unrestricted method, the
results of identification using NM and NM-3 satisfy the conditions that all identified
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parameters (Ld, Lq, Ldσ; Lqσ; r′d; r′q, λ’0; J) are greater than zero; Ld > Lq; Ld >> Ldσ; Lq >> Lqσ,
which confirms the ability of NM to successfully solve the problem under consideration.
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7. Conclusions

The study is devoted to the comparative analysis of various computer-aided iterative
identification methods based on optimization algorithms such as the differential evolution
(DE) and the Nelder–Mead (NM) in LSPMSM lumped-parameter model identification. The
comparison was carried out on the example of transients calculated for the LSPMSM model
with given parameters.

Comparing the DE and NM algorithms at the same initial approximation, it can be
concluded that the NM algorithm provided the final value of the objective function, propor-
tional to the deviation of the identified parameters, 345 times fewer than DE. In addition,
NM demanded the number of iterations to be two times fewer than DE. Comparing the DE
and NM algorithms with a random initial approximation, it can be concluded that the NM
provided the final value of the objective function 4.5·1010 times fewer than DE.

It can be concluded that, even though NM is an unrestricted local search method, it is
able to successfully solve the problem under consideration, being more computationally
efficient and accurate than DE. In this case, the DE method can be used at the initial stage
of identification to find a suitable initial approximation for the NM. For a more accurate
identification of the parameters, when a suitable initial approximation has already been
found, the NM should be used.

In addition, in this study, it is proposed to stop and restart the considered identification
procedures with a change in the algorithm parameters after a certain number of iterations
and use the previously obtained results as a new initial approximation. Such multistage
optimization (three stages have been found to be enough) leads to an increase in the
computational speed and accuracy for both DE and NM. In this case, the NM algorithm
provided the final value of the objective function 237 times fewer and required the number
of iterations to be three times fewer than the DE with the same initial approximation. With a
random initial approximation, in this case, the NM provided the final value of the objective
function four times fewer than DE.

Although the article demonstrates the validity of the presented results only in the
case of identifying the parameters of the LSPMSM model based on the results of simulated
transients, in the future, the results will be used, and the conclusions will be verified when
solving the problem of parametric identification of a real LSPMSM based on real transients.
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Glossary

List of Abbreviations
DE Differential evolution
DE-3 Differential evolution (three stages)
IM Induction motor
LSPMSM Line-start permanent magnet synchronous motor
NM Nelder–Mead method
NM Nelder–Mead method (three stages)
List of Mathematical Symbols
f Mains voltage frequency, Hz
F Bearing friction and windage coefficient, N·m/(rad/s)
Fv Parameter of differential evolution
Fvalue Objective function value
iabc Mains phase currents, A
Isd, Isq Stator currents, A
I′rd, I′rq Rotor currents, A
J Moment of inertia of the motor, kg·m2

kid, kiq, kω Weight coefficients of the objective function
Lsd, Lsq Stator total inductances, H
Lσd, Lσq Rotor leakage inductances, H
qid,qiq, qω Error terms in the objective function
r′d, r′q Rotor resistances, Ohm
Rs Stator resistance, Ohm
t Time variable
T Motor shaft torque, N·m
Tc Constant component of the loading torque, N·m
Tload Loading torque, N·m
Uabc Mains phase voltage, V
Usd, Usq Stator voltages along d and q axes, V
v Mutated vector of differential evolution
v1, v2, v3 Random vectors of differential evolution
x Previous generation vector
Zp Number of motor poles
α, β, γ, δ Parameters of Nelder–Mead method
λ′rd, λ′rq Rotor flux linkages, Wb
λsd, λsq Stator flux linkages, Wb
λ′0 Permanent magnet flux linkage, Wb
ϕ Mechanical rotational angle, rad
ω Angular frequency of the rotation of the motor shaft, rad/s
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