
Citation: Wei, L.; Qu, J.; Wang, L.;

Liu, F.; Qian, Z.; Zareipour, H. Fault

Diagnosis of Wind Turbine with

Alarms Based on Word Embedding

and Siamese Convolutional Neural

Network. Appl. Sci. 2023, 13, 7580.

https://doi.org/10.3390/

app13137580

Academic Editors: Galih Bangga and

Martin Otto Laver Hansen

Received: 13 May 2023

Revised: 21 June 2023

Accepted: 26 June 2023

Published: 27 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Fault Diagnosis of Wind Turbine with Alarms Based on Word
Embedding and Siamese Convolutional Neural Network
Lu Wei 1, Jiaqi Qu 2, Liliang Wang 2, Feng Liu 1, Zheng Qian 2,* and Hamidreza Zareipour 3

1 School of Electronics and Information Engineering, Beihang University, Beijing 100191, China;
weilu@buaa.edu.cn (L.W.); liuf@buaa.edu.cn (F.L.)

2 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
qujiaqi@buaa.edu.cn (J.Q.); wangliliang@buaa.edu.cn (L.W.)

3 Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB T2N1N4, Canada;
hzareipo@ucalgary.ca

* Correspondence: qianzheng@buaa.edu.cn

Featured Application: When applied to online condition monitoring, the proposed method can
assist wind turbine operators in quickly identifying the types of faults that trigger alarms. There-
fore, it can reduce operation and maintenance costs and downtime losses.

Abstract: Alarms generated by a wind turbine alarm system indicate the need for emergency action
by operators to protect the turbine from running into risky conditions. However, it can be challenging
for operators to identify the fault types that trigger alarms, particularly with few labeled fault
samples. This paper proposes a novel fault diagnosis method for wind turbines with alarms that
collaboratively uses labeled and unlabeled alarms to improve diagnosis accuracy. First, the proposed
method distinguishes different alarm sequences using a designed Siamese convolutional neural
network with an embedding layer (S-ECNN) model. Then, the fault category of an unknown alarm
sequence is diagnosed based on similarity scores. Specifically, the Skip-gram model is used to mine
potential relationships among alarms in unlabeled alarm sequences, and pretrained alarm vectors
are obtained. In the S-ECNN model, the pretrained alarm vectors are further optimized and trained
using labeled alarm sequences. The similarity scores are calculated based on the distance between
the extracted discriminative features of alarm sequences. The effectiveness of the proposed method is
validated using actual alarm data from a wind farm.

Keywords: wind turbines; alarms; fault diagnosis; Siamese convolutional neural network; word
embedding

1. Introduction

The installed capacity of wind power in the global market in 2021 was 93.6 GW,
bringing the global total capacity to 837 GW [1]. As wind turbine technology continues to
evolve, sophisticated multi-MW wind turbines have been applied for onshore and offshore
wind farms [2]. However, larger wind turbines have proven to develop more failures
than small ones [3]. Moreover, wind farms are generally located in remote areas with a
harsh operational environment, the limited accessibility of which leads to high costs for
operation and maintenance (O&M). Statistics show that the O&M costs account for 10–15%
of total onshore wind farm project costs [4]. For an offshore wind farm, the O&M costs
account for up to 14–30% [5]. Therefore, it is vital to reduce O&M costs for enhancing the
competitiveness of wind farms.

Condition monitoring and fault diagnosis of wind turbines aiming at detecting incipi-
ent faults can improve the reliability of wind turbines and reduce O&M costs [6]. Recently,
many techniques have been presented and achieved some success. Vibration analysis [7–9],
oil analysis [10], and strain measurement [11] have been widely studied, and are mainly
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used to monitor the highest-cost subcomponents of wind turbines, (e.g., main bearing,
gearbox, and electric generators) due to the costs associated with mounting additional
sensors and maintaining. On the other hand, supervisory control and data acquisition
(SCADA) systems have become a standard installation on large wind turbines, which
provide a wide range of wind turbines’ operational signals. As a potentially low-cost
and wide-coverage solution, plentiful studies using SCADA data for fault diagnosis have
been developed [12–14]. In addition, analysis of alarms generated by wind turbine alarm
systems is a promising way of fault diagnosis. Typically, alarms are triggered and recorded
when key component signals exceed threshold limits [15], which indicates the need for the
operator’s emergency action to protect a wind turbine from running into risky conditions.
Alarm systems are critically important for the safety and efficiency of wind turbines. Due
to the high requirements for condition monitoring of modern large wind turbines, more
and more alarm configurations are added to alarm systems, which can provide a large
number of alarm data that cover almost all wind turbine subcomponents. The performance
of a wind turbine can be monitored through a proper analysis of these collected alarms.

However, it is not easy for on-site operators to diagnose wind turbine faults through
alarms. Alarms typically contain descriptive information about an abnormal situation,
which cannot directly indicate the fault types. Moreover, large numbers of alarms are
usually triggered in a short period once a specific fault occurs. The operator is easily
overwhelmed by these alarms because it exceeds his response capability. There are three
main reasons for the situation. First, irrational and redundant alarm configurations com-
monly exist [16] in alarm systems, which will cause false alarms and repeated alarms.
Second, modern turbines present a high level of interconnectivity due to the mechanical
structures, electrical connections, and complex control systems [17]. The propagation of
faults in wind turbines will trigger many consequential alarms and related alarms [18].
Third, the operating conditions of wind turbines are complex and changeable. Under
different operating conditions, the same fault could trigger different alarms [19]. As a result,
when overwhelmed by alarms, the operator needs to rely on extra expert consultation for
fault analysis.

Some researchers have focused on the use of alarms for wind turbine fault diagnosis.
A feasibility study of the wind turbine alarm diagnosis method using an artificial neural
network was presented in [20]. To find alarm patterns, the alarms triggered by a fault were
transformed into an alarm matrix. However, the actual fault samples are difficult to satisfy
its exponential dependence on data volume. A time-sequence method and probability-
based method were proposed in [15] for analyzing alarms. The fault cases on the wind
turbine converter and pitch system were used to verify the proposed methods. The results
showed that both methods had the potential to rationalize alarm data and identify fault
locations. However, the issue of time consumption must be solved when the methods are
applied to larger data. An improved Apriori algorithm was proposed in [21] to analyze
alarms, which occurred during blade angle asymmetry fault. The results showed that
the related alarms could be integrated into one critical alarm to reduce the number of
alarms. The accuracy of the method is limited due to its dependence on sufficient sample
data. A clustering analysis of alarm sequences for characterizing and classifying wind
stoppages was conducted in [22]. Despite recent progress, the accuracy of the clustering
requires improvement. A multi-dimensional information fusion method based on the
Dempster–Shafer evidence theory was proposed in [23], which obtained a higher diagnosis
accuracy of alarm sequences. The results showed that the diagnosis accuracy was affected
by the quality of recorded fault labels in maintenance records. A weighted Hamming
distance was proposed and applied in the similarity analysis of alarm lists to identify
the fault category [24]. It did not require a time-consuming training procedure and was
easy to apply. However, the improvement in accuracy is limited by the number of labeled
alarm sequences.

The above research status shows that when diagnosing the wind turbine faults using
triggered alarms, the few fault samples and low-quality fault labels have limited the
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improvement of diagnosis accuracy. Both factors are related to maintenance records because
the fault types that trigger alarms are recorded in maintenance records. However, due
to the self-inspection function of wind turbines and the irregular work of the operator,
a large proportion of alarms has no corresponding maintenance record. That is to say, a
large proportion of alarms have no recorded fault labels. Therefore, the actual alarm data
contain few labeled alarms and many unlabeled alarms. The existing studies mainly focus
on the analysis of labeled alarms. As far as we know, there is no research about how to
improve diagnosis accuracy with few labeled and many unlabeled alarms. In addition, the
existing literature does not delve deeply into the relationship between individual alarms.
Some studies only consider the temporal order or occurrence probability of individual
alarms [15,21], while others only focus on the relationship between one alarm sequence
and another [20,22,24], without considering individual alarms.

To fill this gap, this paper proposes a new fault diagnosis method for wind turbines
with alarms. The proposed diagnosis method is designed based on the word embedding
technique and a Siamese neural network. Firstly, the Skip-gram model in word embedding
is employed to convert non-numerical alarm codes into real-valued vector representations,
considering their sequential relationships and frequencies within the alarm sequence (the
Skip-gram model will be described in detail in Section 3.2). Additionally, the pretraining
technique in word embedding is utilized to explore the relationships among individual
alarms in unlabeled alarm data. Subsequently, by further optimizing the alarm vectors
obtained from pretraining using labeled alarm data, the joint utilization of labeled and
unlabeled data is achieved. Secondly, the designed fault type diagnostic model based on the
Siamese neural network for unknown alarm sequences can delve into the similarity features
among alarm sequences (the diagnostic model based on the Siamese neural network will
be specifically described in Section 3.3) and produce similarity scores. In this study, the
criterion used to diagnose the fault type of unknown alarm sequences is the similarity
score between the unknown alarm sequence and known alarm sequences. Therefore, the
overall strategy of the proposed method can be divided into two steps. First, a Siamese
convolutional neural network with an embedding layer (S-ECNN) model is proposed to
distinguish different alarm sequences. Secondly, the fault category of an unknown alarm
sequence is deduced by the similarity score obtained through the S-ECNN model.

The main contributions of this paper can be summarized as follows:

1. The unlabeled and labeled alarms can be collaboratively applied in the proposed S-ECNN
model, which can effectively improve the fault diagnosis accuracy of wind turbines.

2. The potential relationships among individual alarms are captured in n-dimensional
space using a word embedding method, which considers not only the alarm order
but also the frequency of occurrence.

The rest of the paper is organized as follows: Section 2 describes the background of
wind turbine alarms and maintenance, Section 3 presents the proposed fault diagnosis
method, the results of experimental verification and discussions are provided in Section 4,
and conclusions are presented in Section 5.

2. Background

In this section, a brief description of wind turbine alarms and maintenance records is
given. Moreover, we analyze the control principle of a wind turbine’s main control system
when it deals with alarms, which will explain why there are many unlabeled alarms and
few labeled alarms.

2.1. Wind Turbine Alarms

Wind alarm systems vary widely between manufacturers but generally share the same
broad functionality. They monitor wind turbines’ operational variables and trigger alarms
when the signals exceed threshold limits. A sample of an alarm list is shown in Table 1.
Alarms are recorded continuously in chronological order. The alarm records contain turbine
number, triggering time, alarm types, alarm codes, alarm flags, and description. Among
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them, the alarm code is the unique code of an alarm. The alarm flag represents the start or
the end of each alarm. Hence, each alarm has two records.

Table 1. A sample of an alarm list.

Turbine
Number Triggering Time Alarm Types Alarm

Codes
Alarm
Flags Description

P01 2017/5/22 16:30:05 Information I2 Start The wind turbine is started

P01 2017/5/22 17:38:18 Warning A264 Start The first measuring point temperature of
generator stator is high

P01 2017/5/22 17:38:37 Warning A264 End The first measuring point temperature of
generator stator is high

P01 2017/5/22 17:38:51 Fault T21 Start The communication of the pitch system
is an error

P01 2017/5/22 17:38:52 Information I2 End The wind turbine is started

P01 2017/5/23 00:15:20 Fault T21 End The communication of the pitch system
is an error

When a wind turbine experiences a fault, it can result in alterations to multiple
variable values and the subsequent generation of multiple alarms. Nevertheless, these
alarms, occurring in a short time frame, are not indicative of the specific fault type. As such,
further analysis of the alarms is necessary to identify the underlying cause of the fault.

Furthermore, it can be observed that the alarm data are in non-numerical form. To
efficiently analyze and process this data, it is necessary to convert these non-numerical data
into numerical form. Finding a reasonable and effective transformation method is one of
the problems addressed in this paper.

2.2. Maintenance Records

After a wind turbine stops due to alarms, manual inspections are arranged by mainte-
nance personnel. The technicians investigate the turbine malfunction and document the
specific details in maintenance records. Consequently, the fault type or tag that triggers
the alarm is recorded in the maintenance records. Table 2 provides an example of a main-
tenance record. The record contains the turbine number, the start time and end time of
maintenance activity, the actual faults, and the solutions to faults. However, not all faults
can be found in the maintenance records. This is primarily because the wind turbine’s main
control system automatically handles certain alarms.

Table 2. Example of a record in the maintenance records.

Turbine Number Start Time End Time Actual Faults Solutions

P01 2016/12/21
17:34:00

2016/12/25
12:45:00

A slip ring
is damaged

Replace the
slip ring

To ensure the safety of wind turbine operation, the main control system responds to
specific faults that trigger multiple alarms by performing different operations to eliminate
them. The controlling principle is illustrated in Figure 1, wherein each alarm level corre-
sponds to a particular severity of abnormality. When the alarm level is low, no operation
is performed. When the alarm level is moderate, the wind turbine is restarted or reset.
If the moderate-level alarm persists even after a restart or reset, the wind turbine is shut
down. When the alarm level is high, the wind turbine is immediately shut down. After
the shutdown, the main control system executes pre-set actions through the self-inspection
function. If the alarms persist, manual maintenance is performed and the fault events are
documented in the maintenance records.
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From the above, we can draw the following conclusions:

• When a wind turbine is shut down due to alarms, manual maintenance will be
performed. However, many alarms cannot cause a shutdown. Thus, the fault events
that trigger these alarms are not available.

• Some alarms that can cause a shutdown are eliminated by the self-inspection function
and thus have no recorded fault events.

In addition, during the actual maintenance activities, due to the irregular work of the
operator, some maintenance details are missing. Thus, more alarms have no available fault
events. In this paper, we name these alarms the unlabeled data. On the contrary, the alarms
that have available fault events are named the labeled data. The fewer labeled data make it
harder to diagnose wind turbine faults. On the other hand, the unlabeled data are generally
ignored by the existing studies. We will address both issues in this paper.

3. The Proposed Fault Diagnosis Methodology

This paper proposes a novel fault diagnosis method for a wind turbine with alarms
mainly based on the proposed S-ECNN model. The flow chart of the proposed method-
ology is shown in Figure 2. It can be divided into four phases: alarm data preprocessing,
pretraining alarm vectors using the unlabeled data, training the proposed S-ECNN model
using the labeled data, and fault diagnosis of the unknown alarm sequences based on
similarity calculation. Specifically, the designed S-ECNN model is used to distinguish dif-
ferent alarm sequences based on the distance between the extracted discriminative features
of input samples. The fault category of an unknown alarm sequence is deduced by the
maximum average similarity score between it and the known alarm sequences.
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3.1. Alarm Data Preprocessing
3.1.1. Segmenting Alarm Sequences

As mentioned above, one fault event of a wind turbine will trigger several alarms.
These alarms are recorded continuously without distinguishing which fault event they
belong to. First, the alarms that belong to the same fault events need to be selected.

In an alarm system, information alarms are generally to communicate changes in
certain operating conditions. I2 is an information alarm, which indicates the changes in the
wind turbine’s operational condition. As shown in Figure 1, when a wind turbine is started
from a shutdown, the alarm I2 with the flag of start is sent out. When a wind turbine is shut
down from running, the alarm I2 with the flag of the end is sent out. Therefore, the alarms
related to a fault event are generated between the start of I2 and the end of I2. Accordingly,
the continuous alarms are segmented into alarm sequences using I2. The alarms in one
obtained alarm sequence belong to the same fault events.

3.1.2. Removing Redundant Alarms

First, the repeated alarm records are removed. As mentioned above, an alarm has
a unique code and two flags: start and end. Hence, although one alarm only happens
once, it has two records in one alarm sequence. We merge the repeated alarm records and
only remain the record of the start. Second, the chattering alarms are removed. Chattering
alarms repeat with a high frequency within a short period and constitute the most common
family of nuisance alarms. An alarm that is activated three or more times within one minute
is often considered as belonging to the class of worst chattering alarms [25]. The chattering
alarms are often redundant. Consequently, alarms that repeat three or more times in one
minute are merged into one.

3.1.3. Building Dataset

Some alarm sequences have their fault events recorded in maintenance records, while
others do not. In this part, we will match the alarm sequences with their maintenance
records and build the labeled alarm sequence dataset. The alarm sequences without fault
events will constitute the unlabeled alarm sequence dataset.

We use the end time of an alarm sequence and the start time of a maintenance record
to match the alarm sequence and its maintenance record. The schematic diagram of the
match criterion is shown in Figure 3. The end time of the i-th alarm sequence is expressed
as tend

i , and the start time of the j-th subsequent maintenance record is expressed as tstart
j .
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tend
i should be earlier than tstart

j . The alarm sequence corresponding to the maintenance
activity is the last one. Thus, the alarm sequences that matched with maintenance records
constitute the labeled alarm sequence dataset, which is expressed as Dataset A. The other
alarm sequences constitute the unlabeled alarm sequence dataset, expressed as Dataset B.
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3.2. Pretraining Alarm Vectors

The unlabeled alarm sequences are often ignored and not fully utilized in the existing
methods. However, they are generated by the alarm system under a normal alarm mech-
anism and thus contain potential information about the relationship among individual
alarms. This effective information can help in the fault diagnosis of alarm sequences. In
this paper, a word embedding method is used to mine the potential relationship between
individual alarms.

In natural language processing (NLP), words of plain text can be transformed into
real-valued data by the word embedding method [26]. The words are represented as
vectors so that machine learning algorithms can be used in various NLP tasks. In a
comparison study of various word embedding methods, Naili et al. [27] concluded that
Word2Vec worked better for word representation within a low-dimensional semantic space.
Word2Vec is a neural-network-based word embedding method, which includes two models:
the continuous bag-of-words (CBOW) and the Skip-gram model. The Skip-gram model
has several advantages compared to CBOW: (1) Flexibility: The Skip-gram model is more
flexible as it predicts the context words given a target word. This allows it to capture a wider
range of contextual information, resulting in a better representation of word semantics.
(2) Handling rare words: The Skip-gram model performs better in handling rare words
(low-frequency words). Unlike CBOW, which sums up the vectors of context words, Skip-
gram avoids the dominance of dense high-frequency words, enabling better capturing of
rare word features. (3) Modeling short texts: The Skip-gram model performs better when
dealing with short texts. CBOW, due to the summing operation on context word vectors,
may lose some contextual information in short texts. Skip-gram, by predicting each context
word individually, better preserves the semantic information in short texts. Accordingly,
the Skip-gram model is used in this study.

The Skip-gram model [28] regards a corpus of words as inputs and produces a cor-
responding vector from Rn (n is the embedding-space dimension) for each unique word
in the corpus. In the embedding space, the vectors of words that occur regularly nearby
in the corpus are positioned close. Therefore, the word vectors capture and express the
contextual similarities of words. When training the Skip-gram model using unlabeled
alarm sequences, the single alarm is regarded as a word expressing semantics. An alarm
sequence is regarded as a sentence describing a fault of a wind turbine. All the unlabeled
alarm sequences constitute a corpus.

A brief description of the Skip-gram is given as follows [29]:
Given a sentence s = w1, w2, . . . , wi, . . . , wn(wi ∈ D), D is the collection of words.

We model each word wi by using its context words wi−ws, . . . , wi−1, wi+1, . . . wi+ws, where
2 × ws is the width of the considering context window. The center word and context
words are projected into two types of embeddings vi and v′ i+j(1 ≤

∣∣j∣∣≤ ws) , respectively,
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as shown in Figure 4. The training goal of the Skip-gram model is to find word vector
representations that help predict contextual words in a sentence. Given a training corpus
with N sentences C = {sc = w1, w2, . . . wnc}|Nc=1, the training objective is to minimize:

LSG = −
N

∑
c=1

nc

∑
i=1

∑
1≤|j|≤ws

log f (v′i+j, vi), (1)

Herein, f (v′i+j, vi) = p(wi+j|wi) represents the concurrence probability of the word wi+j

when a word wi is given, which is estimated by:

p(wi+j|wi) =
exp(v′i+j

>vi)

∑wk∈D exp(v′k
>vi)

. (2)

Eventually, alarms are represented as n-dimensional vectors, in which both the order of
word occurrence and the frequency of occurrence are considered.
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They are completely dependent on the relationship among distinct alarms in an alarm
sequence without considering the fault events. In the next section, the alarm vectors will be
further optimized using the labeled alarm sequences. Therefore, the obtained alarm vectors
in this section are named the pretrained alarm vectors.

3.3. The Proposed S-ECNN Model

The proposed S-ECNN model is based on the Siamese neural network, which was
proposed by Bromley et al. for one-shot learning, setting out to identify the similarities
of signatures on cheques [30]. It has been widely used to leverage similarities of input
sample pairs for many tasks (e.g., image recognition [31,32] and anomaly detection [33,34]).
A Siamese neural network consists of two networks with the same structure and shared
weights. The network reads two inputs, maps them to the target space respectively, and
then uses a distance function to join them for similarity metric. The network of symmetric
structure guarantees that two similar inputs will be mapped to similar feature space, while
distinct inputs can be effectively differentiated.

The structure of the proposed S-ECNN model is shown in Figure 5. It comprises two
identical one-dimensional deep convolutional neural networks, which are used to extract
the discriminative features of inputs. The one-dimensional deep convolutional neural
network consists of an embedding layer connected to a 1D-CNN. The embedding layer is at
the beginning of the basic structure, which is fed a pair of alarm sequences. The embedding
matrix obtained from the pretrained alarm vectors is used to initialize the parameters of
the embedding layer. The difference between two discriminative features is computed in
the distance layer. Eventually, a fully connected layer with a sigmoid activation function is
used to give the probability of the label.
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3.3.1. The Embedding Layer

The embedding layer is a neural network, which can turn positive integers (indexes)
into dense vectors of fixed size. It is usually placed at the beginning of a network to
transform categorical non-numerical data into a categorical dense vector representation.
Afterward, through downstream supervised learning, the categorical dense vectors can be
continuously trained and optimized.

In this paper, we apply the embedding layer to transform an alarm in the form of a
code into a vector in the form of real-valued data. Let xi,k be the k-th alarm code in the i-th
alarm sequence. An alarm sequence of length l (padded where necessary) is represented as:

Xi = (xi,1, xi,2, . . . , xi,k, . . . , xi,l)(xi,k ∈ E), (3)

where Xi ∈ A is a labeled alarm sequence, and E is the collection of alarm codes configured
in the wind turbine alarm system. The transformed n-dimensional vector is expressed as
xi,k ∈ Rn. Then, the alarm sequence can be represented as:

Xi = [xi,1, xi,2, . . . , xi,k, . . . , xi,l ]
T, (4)

where Xi ∈ Rn×l is the matrix representation of the i-th alarm sequence.
The initialization parameters of an embedding layer can be random or assigned by

loading an embedding matrix. In this paper, we initialize the parameters by loading
the embedding matrix obtained from the pretrained alarm vectors. After loading the
embedding matrix into the embedding layer, the embedding vectors will be continuously
updated in the training phase using the labeled alarm sequences. Thus, the labeled alarm
sequences and unlabeled alarm sequences can be collaboratively applied.

3.3.2. 1D-CNN

The embedding layer is followed by a 1D-CNN. CNN is a type of feedforward neural
network that is useful for processing data that have a degree of spatial correlation between
local data points. In contrast with other network models, the parameters sharing property
of convolution reduces the number of parameters to be optimized. Hence, the training
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efficiency and the scalability of the model are improved. In this paper, we design a 1D-CNN
to extract the discriminative feature of an alarm sequence. The structure of the network is
listed in Table 3.

Table 3. Structure of the 1D-CNN.

Layers Filters Stride Output Size Layers

Convolutional-ReLU 128 filters size of 3 × 100 1 128 × 30 × 1 Convolutional-ReLU
Max-Pooling 3 3 128 × 10 × 1 Max-Pooling

Convolutional-ReLU 32 filters size of 3 1 32 × 10 × 1 Convolutional-ReLU
Max-Pooling 3 3 32 × 4 × 1 Max-Pooling
Flatten layer - - 128 × 1 Flatten layer

It contains two convolutional layers with filters of varying sizes. Each convolutional
layer is followed by a max-pooling layer. Afterward, feature maps are flattened into a
single vector. The vector is the discriminative feature of the input alarm sequence and is
expressed as:

hi = f (Xi), (5)

where hi ∈ Rm×1, Xi ∈ Rn×l is the matrix of the i-th alarm sequence, and f (·) denotes the
feature vector extraction process of the proposed 1D-CNN.

3.3.3. Distance Layer and Output Layer

Two 1D-CNNs are merged in the distance layer. The distance between two dis-
criminative features is calculated based on the pairwise Euclidean distance. Suppose
(X1

j , X2
j , yj), (j = 1, 2, . . . , M) be a pair of inputs that is randomly selected from the collec-

tion A, where yj = 0 if two inputs belong to the same fault category, otherwise, yj = 1.
M is the total number of input pairs. The discriminative feature vectors of each input are
expressed as h2

j and h2
j , respectively. The Euclidean distance can be denoted by:

Dj =
∣∣∣h1

j − h2
j

∣∣∣. (6)

After that, a fully connected layer with a sigmoid activation function is followed. The
neurons in the fully connected layers are dropped out with a probability of 0.3. This neuron
computes the prediction of the input pair as:

p(X1
j , X2

j ) = σ(∑
j

αj

∣∣∣h1
j − h2

j

∣∣∣), (7)

where σ(·) is the sigmoid non-linearity function, and αj is a learnable parameter represent-
ing the importance of Dj. The output p(X1

j , X2
j ) is between zero and one, which scores the

probability of the label. At the same time, the output p(X1
j , X2

j ) is the normalized represen-
tation of the difference between inputs. The normalized representation is transformed by
the sigmoid non-linearity function mentioned above. The value of the output p(X1

j , X2
j ) is

between zero and one. The bigger the value of p(X1
j , X2

j ) is, the bigger the difference is. Let

S(X1
j , X2

j ) be the similarity between two inputs. Thus, it is calculated as:

S(X1
j , X2

j ) = 1− p(X1
j , X2

j ). (8)

The value of the similarity is also between zero and one. The bigger the value of S(X1
j , X2

j )

is, the bigger the similarity is.



Appl. Sci. 2023, 13, 7580 11 of 19

The binary cross-entropy function is used as the loss function. It aims to minimize the
distance between samples of the same category while maximizing the distance between
samples of different categories. The loss function has the following form:

Loss =
M

∑
j=1

yj log(p(X1
j , X2

j )) + (1− yj) log(1− p(X1
j , X2

j )). (9)

3.4. Fault Diagnosis of Unknown Alarm Sequences

As described in Section 3.3.3 above, we can obtain the similarity score between two
alarm sequences through the proposed S-ECNN model. When predicting the fault of one
unknown alarm sequence, we compare it with every labeled alarm sequence and obtain
the similarity score of each pair. The label with the maximum average similarity score will
mark the unknown alarm sequence. Suppose the similarity score between one unknown
alarm sequence X′ and one alarm sequence Xq

p with a fault label µq is:

S(X′, Xq
p), (p = 1, 2, . . . , Pq, q = 1, 2, . . . , Q), (10)

where Q is the total number of fault categories, and Pq is the total number of alarm
sequences with a label µq. The calculation method of the similarity score is the same as
Equation (8). The average similarity score S between X′ and the alarm sequence Xq with a
label µq is calculated as:

S(X′, Xq) =
1

Pq

Pq

∑
p=1

S(X′, Xq
p). (11)

The maximum average similarity score is expressed as:

Smax(X′, X f ) = max
{

S(X′, X1), . . . , S(X′, XQ)
}

. (12)

Accordingly, the label of the unknown alarm sequence is µ f . In other words, the fault
type of the unknown alarm sequence is diagnosed as fault f.

4. Results and Discussion
4.1. Data Description

The data used in this paper are from a wind farm located in China. There are 24 wind
turbines on the wind farm, installed with direct-drive, variable-speed, and variable-pitch
generators. The available alarm data and maintenance records are from May 2016 to
October 2017. There are a total of 261 maintenance records.

First, alarm data were preprocessed. After segmenting alarm sequences using the
alarm I2, we obtained 1626 alarm sequences. An alarm sequence is given as an example
and shown in Figure 6. To maintain confidentiality, the turbine number and the description
have been concealed. The raw alarm sequence contains 31 alarms. The blue-font alarms
are repeated alarm records. The red-font alarms are chattering alarms. After removing
redundant alarms, there are still 22 alarms remaining in the alarm sequence. Afterward,
the labeled alarm sequence dataset (Dataset A) and the unlabeled alarm sequence dataset
(Dataset B) were built by matching the alarm sequences and maintenance records. As shown
in Figure 6, the fault type that triggered the example alarm sequence is pitch motor driver
failure and labeled as fault y0. Later, by loading pretrained alarm vectors, an individual
alarm is transformed into an n-dimensional vector representation, and the alarm sequence
is transformed into an n × l matrix. Then, the transformed alarm sequence is paired with
another alarm sequence as an input pair, which is fed into the S-ECNN model.
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For all the data, we obtained 261 labeled alarm sequences. For the sake of verification,
we selected the fault categories that occurred more than six times to form Dataset A.
The final Dataset A consists of 74 alarm sequences, and Dataset B consists of 1365 alarm
sequences. For Dataset A, the fault categories and the number of each category are listed in
Table 4. About 75% of the alarm sequences for each fault category form the training set,
and the others form the test set.

Table 4. The fault categories and the number of labeled alarm sequences.

Label Fault Categories Number of Alarm Sequences
(Training Set/Test Set)

F1 Hub speed encoder fault 8 (6/2)
F2 Pitch system communication fault 8 (6/2)
F3 Vibration sensor fault 9 (7/2)
F4 Pitch motor driver fault 10 (8/2)
F5 Generator stator fault 10 (8/2)
F6 Frequency-converter communication fault 14 (11/3)
F7 Wind vane fault 15 (11/4)

For the proposed S-ECNN model, the input is a pair of alarm sequences, which are
selected from Dataset A. Suppose there are M alarm sequences in the training set. The
number of non-repeated combinations of choosing two alarm sequences from Dataset A to
form an input pair is calculated as:

C2
M = 0.5M(M− 1). (13)

Therefore, the number of constructed input pairs is 1596. Among them, 217 pairs of
inputs are with the same fault category, and 1379 pairs of inputs are with different fault
categories. Thus, the number of training samples is remarkably enlarged by constructing
input pairs. The input pairs for the test set are constructed in the same way.



Appl. Sci. 2023, 13, 7580 13 of 19

4.2. Model Variants

To demonstrate the advantages of collaboratively using the labeled and unlabeled
alarm sequences, two variants of the proposed S-ECNN model are given. They are the
S-ECNN-rand model and the S-ECNN-static model. In the S-ECNN-rand model, the
pretrained alarm vectors are not applied in the parameter initialization of the embedding
layer. The parameters are randomly initialized. Therefore, the diagnosis results of the
S-ECNN-rand model are only based on the labeled alarm sequences. In the S-ECNN-
static model, the pretrained alarm vectors are applied in the parameter initialization of the
embedding layer. When training the model, the parameters of the embedding layer are kept
static. In other words, the vector representations of alarms are determined by the unlabeled
alarm sequences and not updated in the embedding layer during the training process.
The gradients are backpropagated to the first convolutional layer. Only the parameters
of networks after the embedding layer are learned using the labeled alarm sequences.
The training process can be regarded as a downstream classification task to evaluate the
pretrained alarm vectors. Therefore, the diagnosis results of the S-ECNN-static model are
mainly based on the unlabeled alarm sequences.

4.3. Evaluation of Pretrained Alarm Vectors

Obtaining word vectors for a domain-specific corpus requires fine-tuning of model
parameters. The key parameters of the Skip-gram model are word vector dimension d
and window size w. To adjust the model parameters, the evaluation of the obtained alarm
vectors is needed. Word vector training is an unsupervised process. When evaluating the
obtained vectors, word embedding can be used as input features to a downstream task and
measure changes in performance metrics specific to that task. As mentioned above, the
S-ECNN-static model can be regarded as a downstream classification task of alarm vector
embedding, so it is used to fine-tune the parameters of the Skip-gram model. The accuracy
is used to evaluate the performance of classification, which is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (14)

where TP represents the number of positive instances, which are classified correctly; FP
represents the number of negative instances, which are misclassified; TN represents the
number of negative instances, which are classified correctly; FN represents the number of
positive instances, which are misclassified [35].

The accuracies of the S-ECNN-static model under different word vector dimensions
and window sizes are shown in Figure 7. When the word vector dimension d is reduced
from 100 to 75, 50, 25, and 10, the accuracy decreases. However, increasing the dimension
w from 100 to 150 and 200, the accuracy does not increase significantly. When the word
vector dimension d is 100 and the window size w is 4, the accuracy is the highest, and the
pretrained alarm vectors are adopted in this paper.
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To visualize the alarm vectors, we reduced the model dimension to a three-dimensional
space using t-distributed stochastic neighbor embedding (t-SNE) [36], which is known to
be one of the very powerful tools for dimensionality reduction and data visualization. The
visual display of alarm vectors is shown in Figure 8. Three types of pitch system alarms are
highlighted as examples. As we can see, the pitch system alarms of the same type show
a tendency for aggregation. The more complex relationship between alarms cannot be
reflected in the three-dimensional visual image. Further algorithm analysis is required.
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4.4. Evaluation of Experimental Results

Experiments were conducted to determine the optimal hyperparameters of the pro-
posed S-ECNN model, which was built with Tensorflow 1.15.4 in Python based on Ana-
conda Spyder. The training set was further divided into two subsets, where one was for the
training, and the other served for the validation. We optimized the structure parameters of
1D-CNN and the optimizer of the whole model, and the optimal structure parameters have
been listed in Table 3. The model’s accuracy curves and loss curves for the training set and
validation set are shown in Figure 9. As the epoch increases, the training accuracy has been
improved, but the validation accuracy increases first and then decreases. The training loss
decreases, but the validation loss decreases first and then increases. It shows that with the
increase of epochs, the model has over-fitting. Therefore, we retain the model when the
epoch is 21 before over-fitting.
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4.4.1. Evaluation of Distinguishing Ability

The distinguishing ability of the proposed S-ECNN model was compared with that of
its variants. The confusion matrix of binary classification was used to analyze the comparing
results, as shown in Figure 10. Each column of the matrix represents the instances in a
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predicted label while each row represents the instances in an actual label. The effectiveness
was further quantified by accuracy and the following widely used indicators [35]:

Recall =
TP

TP + FN
, (15)

Precision =
TP

TP + FP
, (16)

Speci f icity =
TN

TN + FP
, (17)

F1− score =
2 · Recall · Precision
Recall + Precision

. (18)
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The comparing results of the proposed S-ECNN model and its variants are listed in
Table 5. The results indicate that the proposed S-ECNN model is more effective than the
S-ECNN-rand model and the S-ECNN-static model because all the indicators of the S-
ECNN model are the highest. Specifically, our concern is whether the model can accurately
identify the same fault category and whether the model can effectively distinguish different
fault categories. The model is not directly used for prediction. In this section, recall is
calculated as the number of correct identifications of the same fault category divided by the
number of given same-fault sample pairs, indicating the ability to identify the same fault
category. Specificity is calculated as the number of correct identifications of the different
fault categories divided by the number of given different-fault sample pairs, indicating the
ability to distinguish different alarm sequences. The S-ECNN achieves a recall of 89.5% and
a specificity of 86.3%, both of which are satisfied. Owing to the imbalanced data, precision
is not good. However, in this section, precision is calculated as the number of correct
identifications of the same fault category divided by the number of sample pairs predicted
as the same fault category, indicating the ability for prediction. Therefore, compared with
precision, we pay more attention to recall. Additionally, F1-score is also given considering
imbalanced classification. Compared with the S-ECNN-rand model, the F1-score of the
S-ECNN model increases by 12.9%. Therefore, the collaborative use of the labeled and the
unlabeled alarm sequences can effectively improve the distinguishing ability.

Table 5. The comparing indicators for distinguishing different alarm sequences.

Model Accuracy Recall Precision Specificity F1-Score

S-ECNN-rand 78.7% 84.2% 38.1% 77.8% 52.5%
S-ECNN-static 79.4% 73.7% 37.8% 80.3% 50.0%

S-ECNN 86.8% 89.5% 51.5% 86.3% 65.4%
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4.4.2. Evaluation of Fault Diagnosis Method

First, we compared the performance of the proposed method with that of its variants.
The confusion matrix of the multi-class problem was used, as shown in Figure 11. Each
column of the matrix represents the instances in a predicted fault category, while each row
represents the instances in an actual fault category. The effectiveness of diagnosing each
type of fault was further quantified by the mentioned indicators: accuracy, recall, precision,
specificity, and F1-score. In this section, recall corresponds to the ability to identify a type
of specific fault, precision represents the degree of success of methods when a fault type is
predicted, and specificity corresponds to the capacity of methods to refuse the identification
of a specific fault type.
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After obtaining the above indicators for each fault type, the overall classification
performance was evaluated using the macro-average value of each indicator, which is
calculated as:

Ave− indicator =
1
Q

Q

∑
i=1

indicatorFi, (19)

where Q is the number of fault categories, Fi is the label of the fault. In this paper, Q = 7.
Table 6 shows the comparing results, which indicate that the proposed S-ECNN model

is more effective than its variants in fault diagnosis. By collaboratively using the labeled
and the unlabeled alarm sequences, all the indicators have been improved. Particularly,
compared with the S-ECNN-rand model, the ave-precision of the S-ECNN model increases
by 13.1%, indicating that this method is more effective at fault diagnosing while avoiding
false identification.

Table 6. The comparing indicators with the model’s variants for fault diagnosis.

Method Ave-Accuracy Ave-Recall Ave-Precision Ave-Specificity Ave-F1_Score

S-ECNN-rand 93.3% 75.0% 77.4% 96.0% 76.2%
S-ECNN-static 91.6% 73.8% 76.2% 95.2% 75.0%

S-ECNN 97.0% 89.3% 90.5% 98.3% 89.9%

Second, we compared the proposed method with a cluster analysis (CA) method [22], a
multi-dimensional information processing (MIP) method [23], and a similarity analysis (SN)
method [24]. The alarm data were preprocessed and the alarm sequences were segmented
using the proposed method in this paper. In the CA method, the density-based spatial
clustering of applications with noise was applied. In the MIP method, each alarm sequence
was labeled with the most possible fault. When using the SN method, about 75% of the
alarm sequences for each fault category were used to extract the feature vectors. It is
noteworthy that these methods can only analyze the labeled alarm sequences, while the
proposed method collaboratively uses the labeled and the unlabeled alarm sequences. For
a fair comparison, the S-ECNN-rand model, which only uses the labeled alarm sequences,
is also involved in the following comparison.
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The mentioned macro-average indicators were used to quantify the effectiveness of
these methods. For the SN method, the fault type of one unknown alarm sequence may not
be assigned with a historical fault. In this situation, the FP in a confusion matrix cannot
be deduced. Then the ave-precision, ave-specificity, and ave-F1-score cannot be calculated.
The comparing results are shown in Figure 12. As we can see, compared with the existing
methods, the S-ECNN-rand model has achieved some success. The ave-accuracy, ave-
precision, ave-specificity, and ave-F1-score of the S-ECNN-rand model are higher than that of
the existing methods, which proves the effectiveness for fault diagnosis of alarm sequences.
However, the ave-recall of the S-ECNN-rand model is lower than that of the SN method,
which indicates that the ability to identify a type of specific case for the S-ECNN-rand
model is not good enough. For the proposed method, all the indicators have been further
improved. Specifically, the proposed method achieves the highest ave-accuracy of 97%.
In addition, compared with the SN method and the S-ECNN-rand model, the ave-recall
of the proposed method increased by 8.1% and 14.3% respectively, indicating that this
method could effectively identify a specific fault type. Meanwhile, the proposed method
significantly improves the ave-precision and ave-F1-score compared with the S-ECNN-rand
model. Finally, although the ave-specificity of the other methods can achieve some success,
the value of the proposed method is still the highest.
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5. Conclusions

This paper proposed a novel fault diagnosis method for wind turbines with alarms
based on word embedding and a Siamese convolutional neural network. To improve
diagnosis accuracy, the proposed method collaboratively used labeled alarm sequences and
unlabeled alarm sequences. For the unlabeled alarm sequences, the potential relationship
among alarms was mined using the Skip-gram model, and n-dimensional pretrained alarm
vectors were obtained. For the labeled alarm sequences, the discriminative features were
extracted to distinguish different alarm sequences by the proposed S-ECNN model, in
which the pretrained alarm vectors were optimized and trained. The effectiveness of the
proposed method was proved by using the actual alarm data of a wind farm in China. The
accuracy of the proposed S-ECNN model for distinguishing different alarm sequences was
86.8%, which was higher than its variants. The result indicated that the collaborative use of
the labeled and the unlabeled alarm sequences could effectively improve the distinguishing
ability. The macro-average accuracy of the proposed method for fault diagnosing was 97.0%,
which was higher than its variants and the existing three methods. The result indicated that
the proposed method could effectively improve fault diagnosis accuracy. In addition, the
embedding layer introduced in the proposed network provides the possibility of transfer
learning, which will be further researched in the following works.
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The method proposed in this paper utilizes word embedding to convert alarms into
numerical vector representations. Furthermore, alarm sequences consisting of multiple
alarms can also be represented in matrix form. In industrial settings, alarm codes continue
to increase and are not presented in the form of alarm sequences. Therefore, it is of
great research value to investigate how to predict the next alarm code based on historical
alarm sequences and thereby forecast the type of failure that wind turbines are likely
to experience. Additionally, studying the relationship between the occurrence of alarms
and wind turbine power and load is another worthwhile research question. Based on the
numerical representation of alarm sequences, alternative time series data mining models
such as Bi-LSTM [37] can be used to establish prediction models.
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