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Abstract: An important indicator of cervical cancer diagnosis is to calculate the proportion of diseased
cells and cancer cells, so it is necessary to segment cells and judge the cell status. The existing methods
are difficult to deal with the segmentation of overlapping cells. In order to solve this problem, we
put forward such a hypothesis by reading a large number of literature, that is, image segmentation
and edge measurement tasks have unity in high-level features. To prove this hypothesis, in this
paper, we focus on the complementary between overlapping cervical cell edge information and
cell object information to get higher accuracy cell edge detection results. Specifically, we present
a joint multi-task learning framework for overlapping cell edge detection by the mask guidance
pyramid network. The main component of the framework is the Mask Guidance Module (MGM),
which integrates two tasks and stores the shared latent semantics to interact in the two tasks. For
semantic edge detection, we propose the novel Refinement Aggregated Module (RAM) fusion to
promote semantic edges. Finally, to improve the edge pixel accuracy, the edge consistency constraint
loss function is introduced to our model training. Our extensive experiments have proved that our
method outperforms other edge detection efforts.

Keywords: edge detection; medical image segmentation; overlapping cervical cell; mask guidance;
pyramid network

1. Introduction

Cervical cancer is one of the most common malignant tumors. The incidence rate of
malignant tumors in the female reproductive system ranks first, and it also ranks fourth
among all female malignant tumors [1]. Early diagnosis and active treatment of cervical
cancer can effectively inhibit the development of cancer cells and increase the life of patients.
Therefore, the detection of cervical cancer cells by computer vision technology has become
a research hotspot in recent years [2–4].

From a pathological point of view, normal cervical cells first become diseased cells,
and then become cancerous cells. Cervical cancer is diagnosed through cancerous cells [5].
When the diseased cells become cancerous, they will change in shape and size, and the
arrangement is irregular, and may have double nucleus and other aberrations. Therefore,
the diagnosis of cervical cancer needs to segment the cervical cells in the picture of cervical
cells first, and analyze the shape and size of the nucleus and the ratio of nucleus to
cytoplasm. This information is an important basis for experts to diagnose cervical cancer [6].

With the development of computer vision technology, more and more researches
have applied image segmentation related algorithms to cervical cell segmentation, hoping
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to develop methods that can automatically diagnose cervical cancer. According to the
classification of image segmentation algorithms, the existing cervical cell segmentation
methods can be divided into traditional core depth segmentation methods.

Traditional image segmentation algorithms include two methods, namely intensity
change method and energy functional method [7]. The intensity change method mainly
realizes cervical cell edge detection through object color, image strength, scene texture and
other low-level information features [8]. However, in medicine, the edge of lesion cells is
usually blurry, and the intensity change method has some limitations. The representative
energy functional model is the active contour model and the derived algorithms. The
advantage of active contour model is that it is simple and can effectively segment and
detect the edges of non overlapping cervical cells [9]. However, the similarity between
overlapping nuclear malignant cells is easy to lead to the classification error of overlapping
areas, which brings difficulties to the diagnosis of cervical cancer. Therefore, the focus of
overlapping cell edge detection is to solve the problem of overlapping cell detection.

With the rapid development of deep learning theory, the edge detection algorithm of
cervical cells based on deep neural network has been widely studied [10]. For example,
Wan et al. used the modified DeepLab V2 model for cytoplasmic edge detection and
proposed a cell detection method based on double window localization [11]. This method
divides image pixels into nucleus and cytoplasm through TernausNet, and then realizes
overlapping cell segmentation based on attention model. In order to obtain useful features,
some deep models attempt to use multi-scale and multi-level networks to improve the
results of cell edge detection. However, according to the edge results with high score,
the existing methods have limitations in improving the edge detection accuracy. These
methods usually blur and deviate from the image boundary, which makes the quality of
the obtained cell edge score low. Some recent works use edge detection results to assist
network models to improve the expressiveness of semantic segmentation tasks [12–14]. It
is a common sense that the edge feature map is a part of the segmentation feature map,
that is, the segmentation feature map contains all the object edge information. One of
the works proposed a two-stream CNN architecture for semantic segmentation. In this
architecture, shape information and boundary information are processed separately, and
the two complement each other to improve the perception ability of edge features. However,
the edge semantic information in instance segmentation is not processed. In fact, instance
edge detection and instance segmentation are more coupled than binary edge maps.

To overcome the above problems, we propose a multi-task collaboration framework
that combines instance segmentation and semantic edge detection. By combining these
two tasks, the instance segmentation task and edge detection task advantages complement
each other. We use pyramid context feature information learning to achieve the the process
of one task to another. Specifically, for edge detection, we propose a novel framework by
the Mask Guidance Module (MGM) and Refinement Aggregated Module (RAM) fusion
to promote the cell edge detection of overlapping cervix. Since the distinction between
semantic edge and non-semantic edge is crucial, and how to suppress non-semantic edge
information is a primary problem. In this regard, we use instance segmentation mask
as the guiding task of the edge detection, cascade the instance mask feature map from
the pyramid network features, and use its feature to guide the semantic edge probability
map. To obtain an accurate boundary map, we perform multi-feature fusion on the edge
detection results at different levels. Because there are duality constraints between semantic
segmentation and edge detection, to eliminate the constraints, we propose a novel loss
function to enhance the edge consistency of semantic segmentation. For the predicted
mask, edge are exported as the outer contour that can be used to constrain masks. Thus,
the differences between the prediction result and the ground-truth are expressed as a loss
term to impose edge consistency on the semantic mask during model training. Due to the
pixel-wise operation, the duality loss term is differentiable, and the whole network can be
trained in an end-to-end strategy.

Specifically, the main contributions of this paper can be summarized as follows.



Appl. Sci. 2023, 13, 7526 3 of 13

• To our best knowledge, we are the first study to integrate cell segmentation task into
the learning framework of edge detection task to guide the research of edge detection
of cervical cells.

• In the edge detection module, we introduce a novel one-to-one mask guidance mod-
ule(MGM) strategy to suppress non-semantic edges detection by fusing the derived
edge from mask probability map with edge detection probability map. Then we
proposed Refinement Aggregated Module (RAM) to integrating multi-level coarse
edge maps for generating final refined edge detection prediction.

• Experimentally proved our proposed method simultaneously optimizes the two com-
plementary tasks to help each other, which can improve the accuracy of edge detection.

The main contents of this paper are as follows. Section 2 introduces the related work of
cervical cell edge detection. In Section 3, we introduce the proposed method. Section 4 in-
troduces the commonly experimental datasets, evaluation metrics and experimental results.
We conduct extensive to analyze the effectiveness of the representative UIC algorithms. We
conclude this paper in the last section.

2. Related Work

The segmentation and edge detection of overlapping cancer cells based on computer
vision technology has become a research hotspot [15]. Nosrati proposed a new segmentation
method based on incorporating shape prior knowledge, using a star shape prior to segment
the overlapping cervical cells in Pap smear images [16]. There are also methods based on
shape coding, they segment the nucleus and cytoplasm separately through a two-stage
strategy, segment the image into nuclei, cell clusters and background, and then based on
the sparse coding (SC) theory and guided by representative shape features [17]. The level
set evolution model is used to refine the segmentation. Among traditional multi-stage
segmentation methods, the watershed-based method (MPFW) is able to segment nuclei and
cytoplasm from a large number of overlapping cervical cell clusters [18]. And in subsequent
MPFW, for a better representation of cell shapes, the line-shaped contours are deformed
with cell contour adjustment. An efficient deep learning MIU-net is proposed for the nuclei
segmentation of histopathology images, benefited from two blocks of modified inception
module and attention module [19].

Song et al. propose a learning based overlapping cell segmentation method [20]. This
method decomposes the overlapping cell segmentation problem into discrete cell labeling
tasks with multiple cost functions through shape prior. By inputting the marking results
into a dynamic multi template deformation model, accurate edge segmentation is achieved.
Flavjo et al. propose a layered overlapping cell segmentation method [21]. By segmenting
the cell block and nucleus respectively, cytoplasm is recognized with active contour, and
the precise segmentation of overlapping cells is realized. Lu et al. propose an overlapping
cell segmentation method based on joint optimization of multiple level set functions [22].
Through the restriction between cells and within cells, the contour length, edge strength
and cell shape are used within cells, and the area is used between cells. Finally, the accurate
segmentation of overlapping cells is achieved. For improving the signal-to-noise ratio of
the image and also retaining edge detail information, another denoise study proposed with
wavelet transform before edge detection [23]. Huang et al. propose a segmentation method
based on confrontation generation network to simultaneously solve the problems of poor
contrast, irregularity and overlap of cell object [24]. This method learns the probability
distribution image of cell morphology and annotated single cell image by comparing
the differences between the generated single cells. The trained cell GAN generates a
complete single cell image for each cell to avoid generating multi cell images in the case of
overlapping. The contour of the generated cell defines the segmentation line, and uses the
cell size information to obtain the edge of the input cell image.
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3. Materials and Methods

Some recent researches show that the pixel-wise based medical cell edge detection
methods has shown superior over the region based methods [25]. However, pixel-wise
based methods ignore the spatial coherence in the cell images. This may lead to the
unsatisfactory results of cell boundary detection [26]. Most of the improved methods want
to solve this problem by using multiple scale features. Other methods use post-processing
techniques (such as CRF) to highlight the boundary of the object [27]. In [28], the authors
propose Non-local deep features (NLDF) for salient object detection. They put forward an
IOU loss, which can highlight the boundary by influencing the gradient around the edge.
Although these methods improve the effect of edge segmentation at a certain level, but
they do not realize that edge detection and semantic segmentation are complementary. An
object segmentation result can help to detect the edge information in object edge detection,
and vice versa. Based on this idea, we propose a mask guided network to overlapping cell
edge detection, which called MGP-Net. The proposed network uses a single network to
simultaneously model the overlapping cervical cell edge information and semantic mask
information. For the network training, we use an end-to-end strategy.

The overall architecture of the proposed network is shown in Figure 1. Specifically,
the network includes two parts, which are GlobalNet and LocalNet. In the following
subsections, we will introduce the main modules of the propose network in details. Sec-
tion 3.1 introduces the architecture of GlobalNet, including the backbone network and
the Cascade Edge Feature Presentation module (CEFPM). In Section 3.2, we introduce the
architecture of LocalNet, including the one-to-one Mask Guidance module (MGM) and the
Refinement Aggregated Module (RAM). In the last part of this section, we introduce the
proposed Duality Consistency Loss (DCL), and demonstrate the training process of the
entire network.

Mask Guidance Pyramid Network for Overlapping Cervical Cell Edge Detection

Head

Head

Head

Head

Head

Head

U

U

U

+

+

+

Backbone Network Feature Pyramid Shared Heads Between Feature Levels

C4

C5

C6 P6

P5

P4

GlobalNet LocalNet

MGM

RAM

MGM Mask Guidance Module

RAM Refinement Aggregated Module

U Upsampling Pixel-wise add+Conv layer

Forward Backward

Lm

LE

C3 P3

x3
Le

Head

Figure 1. The overall architecture of the proposed network, a Mask Guided Pyramid Network to
overlapping cervical cell edge detection, which called MGP-Net. Our framework consists of two
stages: GlobalNet is constructed by backbone and feature pyramid to obtain more robust features for
the cell objects. LocalNet is designed for context refinement to generate more refined features of cell
edges.

3.1. GlobalNet

As shown in Figure 1, GlobalNet is constructed by backbone and feature pyramid. In
this paper, we use a pre-training residual network with dilated operation as the backbone.
Different from the previous ResNet, we remove the down-sampling layers, and use the
dilation convolution layer in the last blocks. Thus, the size of the final feature map is
1/16 of the size of the input image. This operation can preserve the details of the input
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images without adding additional parameters. The feature maps with different scales from
ResNet-101 backbone are first fed into a 3× 3 convolution, and then they followed by ReLU
and batch normalization (BN) layer. This architecture can reduce the number of feature
map to 256, and the output is regarded as the input of the feature pyramid module. We
perform task-interaction by mask context guidance refining on multiple levels. Besides,
we leverage high-level feature maps, including the same level feature map, to refine the
low-level feature maps.

To perform mask context guidance refining on multiple levels, we propose CEFPM.
As shown in Figure 1, the proposed network uses the widely used pyramid network
architecture to generate the multi-resolution image features. Therefore, we obtain an
useful context features. Different from the traditional pyramid networks, to obtain more
robust features for the cell objects, we add three layers on each stream. These layers are
convolutional operations, and we also add one ReLU layer after each convolution layer
to ensure nonlinearity of the network. In addition, we conduct deep supervision on each
stream. For dimensional needs, we adopt a convolutional layer to convert the feature maps
to the single-channel prediction edge map. At the head of each stream, we adopt edge
supervision to constrict edge feature. This operation can preserve the edge feature at each
level.

3.2. LocalNet

In this paper, we assume that the edge detection and the semantic segmentation can
achieve the same global feature. To realize these two tasks correlation, we adopt a global
pyramid to capture the global context. Thus, the global context from instance segmentation
task is to purify the feature maps from edge detection task. In Figure 2, we design a network
to realize this assumption. Specifically, the feature map of P4 is refined by the pyramid
context representations. This means that different level feature maps with different scales
and different context collection from different patch partition. On the one hand, the context
refinement can help to generate more refined features. On the other hand, this promotes the
unification between semantic segmentation and edge detection. Therefore, we use pyramid
mask feature presentation to get cell instance segmentation mask. As shown in Figure 2,
since the pyramid context structure is implemented on the two tasks, their feature maps
are closely related and complementary to each other to improve performance.

conv

1×1conv

3×3conv

5×5conv

+ U

×

+
×

conv

conv

1×1conv

3×3conv

5×5conv

+

U

P5

P3

P4

× Element-wise Multiplication + Element-wise Sum U Upsampling

Mask Guidance Module
Figure 2. The Pyramid Context Structure (PCS) for LocalNet to promote the unification between two
tasks of cell semantic segmentation and edge detection.
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3.2.1. One-to-One Mask Guidance Module (MGM)

After obtaining cervical cell margin features and instance mask features with over-
lapping complementary information. In this part, our goal is to use cell instance mask
features to guide cell edge features so that boundary detection results can be better seg-
mented and localized. Based on the previously obtained complementary information, i.e.,
overlapping cervical cell edge features and instance mask features, integrating FE and the
F̂(3) is the simplest and most straightforward way to take advantage of the characteristics
of multi-resolution feature objects. However, in the process of gradually fusing cell edge
features and multi-resolution cell target features, edge features are gradually weakened
when fusing cell target features. Moreover, our goal is to fuse cell object features and cell
edge features, and gradually use complementary information to achieve better prediction
results. Therefore, we propose a one-to-one mask guidance module.

The specific method is that we add sub branches after network feature learning. After
each sub-branch, by correcting the cell object features to enhanced cell edge features, the
high-level localization prediction effect in the network structure is more accurate, and
the detection effect at the final edge is improved even more. Cell mask guidance features
(i-features) can be expressed as follows.

E(i) = Up
(

F̂(i); θ, FM

)
+ FM, i ∈ [3, 6] (1)

where F̂(i) denotes the enhanced features of side path P(i), FM is the final mask features,
Up(∗; FM) is bilinear interpolation operation which aims to get the same size of up-sample
∗ operation as FM, θ is a parameter of the convolutional layer. In Equation (1), we can get
the enhanced i-th feature E(i).

At the same time, we add deep supervision at each enhancement. For each branch
output, the predicted edge graph is supervised one-to-one, and its loss function can be
calculated by the cross-entropy loss Le between the prediction edge and the ground truth
value of the edge.

3.2.2. Refinement Aggregated Module (RAM)

In this part, we propose RAM to obtain an edge detection prediction. Specifically, we
integrate multi-level relatively coarse edge prediction maps at different scales to generate
refined edge detection results. The edge information of different levels can be captured
through the multi-scale input model structure. This guarantee that the network can adap-
tively learn and integrate edge features of different scales, and refine the edge detection
results. The architecture of the RAM is shown in Figure 3.

Pyramid Pooling

UP

Bilinear upsamplingUP

Convolutional layer

Refinement Aggregated Module

Figure 3. Refinement Aggregated Module (RAM). Integrating multi-level coarse edge prediction
maps at different scales to generate final refined edge detection prediction.
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In Figure 3, bilinear up-sampling operator is used to make the input edge feature maps
of low resolution reach the same size to the mask. To capture global context information, we
use the dimensions of the pyramid pool size with [1, 2, 3]. To fuse the edge detection results,
we use several convolutional layers to unify the edge fusion operations, which generated
by convolutional layers. In addition to the final boundary generation prediction graph, our
model is more focused on the fixed input overall structure of the model boundary mapping.
In terms of specific function implementation, we skip step 2 to correct the local error edge,
making this step more flexible.

To capture pixel level image detail lost during feature extraction, hop-style joins are
employed and feature fusion occurs after up-sampling blocks. In the future, the bilinear
up-sampling features of autonomous branches and the features after jump connections
are fused, that is, these two parts of the features are processed by convolutional layer
integration. Finally, 2-layer 1× 1 convolution and sigmoid activation are used to generate
the edge result.

3.3. Duality Consistency Loss

As shown in Figure 1, the proposed model mainly includes two sub module structures.
For each module, we calculate the loss of the probabilistic feature mapping of the two
responses, separately.

Mask Context Loss. Cross-entropy loss is a commonly used calculation of the loss of
each pixel when the mask instance is segmented, called LM. The function considers every
pixel to be equal, but in our task, there is a gradual blurring of pixels around the edges,
which does not correspond to the actual groundtruth. Therefore, we introduce duality loss
for instance segmentation loss, assuming that the two can maintain consistency between
the boundary of the split object and the groundtruth of the object edge.

When we use the inconsistency between the semantic edge 5E and the semantic
edge groundtruth derived from the predicted cell instance mask, the specific formula is
expressed as,

LD = ∑
i

∣∣∣5Ei −5Egt
i

∣∣∣ (2)

where Egt is the semantic edge groundtruth obtained from the cell instance segmentation
mask.

We introduce two consistency constraints to improve the performance of cell instance
masks. where the loss function of the consistency calculation is the cross-entropy loss
term LM, which calculates the consistency between the mask and its groundtruth. The
consistency loss between the derived edge of the cell instance mask and the semantic edge
groundtruth is measured using the loss term LD. Thus, the total error loss function LMD
measured by the cell instance segmentation task is,

LMD = LM + λ1LD (3)

where λ1 is a constant to balance two losses. Edge Context Loss Compared with the
semantic segmentation task, the pixels near the object edge are sparse. This leads to the
problem of high loss rate in edge detection tasks. To alleviate this impact, we define the
following cross entropy loss function LE:

LE =
K

∑
k

∑
i

(
βyk

i log Yk
i + (1− β)(1− yk

i ) log(1−Yk
i )
)

(4)

where β is the percentage of non-edge pixels in the edge ground-truth and yk
i is the ground-

truth edge labels and binary indicating whether pixel i belongs to class k. Thus, the total
loss function Ltotal is defined as follows:

Ltotal = LMD + λ2LE (5)
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where λ2 is a weight for balancing the edge loss.

4. Results

In this part, we conduct experiments on the common dataset, named Cervical cell
edge detection datasets (CCEDD) [29], to prove the effectiveness of our algorithm. Firstly,
we describe the information of the datasets, the evaluation metrics and the implementation
details. Then, we report the experiment results, and conduct comparison experiments to
evaluate the performance of the proposed algorithm. Finally, we conduct ablation study on
the propose algorithm to prove the key function of each modules.

4.1. Datasets Description

CCEDD datasets is a high resolution large-scale open source datasets. The samples in
the datasets are collected by a digital camera with 3,000,000 pixel, smart v50D lens, and
Nikon Ellipse CI slide scanner. All the samples in the database are collected in Liaoning
Provincial Cancer Hospital. The datasets includes 686 images of 2048 × 1536 thin layer
cytology test (TCT) cervical cells. In addition, we obtain the mask by annotating the
overlapping cell instance edges. For fairness, we selected a label correction method LLPC
of [29] to the CCEDD datasets for generating higher-quality edge labels.

To a joint multi-task learning framework for overlapping cell edge detection and cell
mask semantic segmentation, we make a pre-processing of image data according to the
cervical cell picture (a) and label file (b) provided by the CCEDD database. Since the
CCEDD database is acquired by manually labeling individual cells one by one, we operate
the label file separately for a single instance target, as shown in Figure 4c. Each color
represents a different instance (cell or nucleus). Among them, the cell instance edge label
(d) is also obtained from the cell instance mask. The final two parts of obtained cell labeled
data (c) and (d) can be used for our model training.

(a)

(d)(c)

(b)

Figure 4. Pre-processing CCEDD database. (a) CCEDD cervical cell image (b) CCEDD cell edge label
image (c) Obtained cell instance mask label (d) Obtained cell instance edge label.

4.2. Evaluation Metrics

In edge detection, optimal data set scale (ODS), optimal image scale (OIS) and average
precision (AP) are three common evaluation metrics, which analyze the algorithm perfor-
mance from different perspectives [30]. ODS uses a fixed threshold method to provide
the best edge detection by global calibration in the entire dataset. OIS evaluates the edge
detection performance of the entire image by selecting the best threshold. AP is the area of
the precision recall curve.
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4.3. Implementation Details

To expand the data volume of the datasets and ensure the network convergence, we
adopt augmentation techniques for the samples in each dataset, such as image flipping,
image rotation, image scaling, image random clipping and image affine transformation.
Specifically, we randomly select 10% of the training data set as the verification data set,
and the rotation angle ranges from −10◦ to 10◦. We use a pre-trained network for the
initialization of network parameters, and adopt the Adam optimization method to update
the weights. According to the experience, we choose the step of random gradient descent
with momentum is 0.99, and train the network with 3000 epochs. In each dataset, the initial
learning rate is selected as e−2, and the decay rate set as 0.995.

4.4. Results and Comparison
4.4.1. Ablation Study

In this part, we conduct ablation experiments to assess the importance of the modules
of the proposed algorithm. For this reason, we conducted experiments on CCEDD datasets,
and analyzed the impact of different modules on the proposed MGP by reducing different
components in turn. In the ablation study, we use a U-Net architecture as our baseline
model. Different from general U-Net, the outputs of each encoder layer are directly added,
rather than connected to the corresponding decoder layer. We use this operation is to
improve the inference speed of U-Net. To prove the effectiveness of the the MGM module,
we replace the convolutional layer of U-Net with the MGM module. By further adding the
RAM module to the baseline model, we obtained another model, named Baseline + RAM.
We also integrated these two modules into one baseline model, and named FRCNet. The
experimental results under different conditions are shown in Table 1.

Table 1. Evaluate the effectiveness of MGM and RAM.

Method AP ODS OIS

Baseline 0.729 0.679 0.689
Baseline+MGM 0.751 0.6875 0.702
Baseline+RAM 0.736 0.680 0.693

MGP-Net 0.763 0.691 0.714

As shown in Table 1, the baseline method can not obtain satisfactory segmentation
results, especially under the harsh conditions of irregular shapes or low contrast regions
with different sizes. In comparison, by adding MGM to baseline, it can collect more in-
structive contextual information for each object location, the Baseline+MGM has obtained
better results than the Baseline. However, we found that the background region at the
edge of the cell is weakened, which can lead to the loss of boundary information during
learning. In addition, in order to overcome the problem of loss of output gap information at
different levels, Baseline+RAM can learn multi-range contextual information by gradually
integrating local and global features at target locations to cope with edge detection chal-
lenges with different cell sizes and shapes. After this operation, the RAM module is added
after the baseline, and combined with the effectiveness of the pyramid pooling mechanism,
the final model can adaptively integrate multi-level output features, so that the final edge
detection results after refinement can achieve satisfactory results. As can be seen from the
last row of Table 1, the MGP-Net proposed in this paper gets the best performance on the
AP compared to other methods. In addition, the quantitative scores of ODS and OIS for
different methods are also given, as shown in Table 1. Both modules, Baseline + MGM +
RAM, received higher scores in each evaluation indicator. When only the MGM module is
added to the baseline, the AP metric is improved by nearly 2% compared with the baseline,
as shown in Table 1. The segmentation accuracy of the baseline+RAM model is also higher
than that of the baseline model, which shows that multi-level feature fusion is beneficial to
improve the performance of edge detection. Our final web framework, MGP-Net, combines
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the above two modules, which were trained and tested on the CCEDD dataset nearly 3.5%
ahead of baseline.

4.4.2. Comparison with State-of-the-Art Algorithms

In this part, we conduct comparative experiments on several representative algorithms,
including RCF [31], ENDE [32], UNet++ [33], DexiNed [34], FINED [35], PiDiNet [36], and
MSU-Net [37]. To comprehensively analyze the performance of these algorithms, we
conducted quantitative and qualitative experiments. To make the comparative experiment
fair under the same conditions, we implemented all of the comparison methods and
evaluated them on the CCEDD corrected labelled datasets by MSU-Net with their higher
accuracy than no corrected. The tested data use the same experimental settings, such as
data augmentation methods, operation system and hardware environments. We present
our model performance and results for other methods in Table 2. From the experimental
results we can find that the proposed algorithm is superior to other algorithms on different
datasets, and all the three evaluation metrics have considerable margin. In terms of test
data, MGP-Net outperformed the previous best method by 0.8%, 0.4% and 1.3 respectively.

Table 2. Quantitative results comparisons of our method.

Method AP ODS OIS

RCF 0.667 0.638 0.645
ENDE 0.733 0.682 0.691

UNet++ 0.755 0.691 0.701
DexiNed 0.723 0.671 0.680
FINED 0.703 0.660 0.621
PiDiNet 0.648 0.624 0.628

MSU-Net 0.749 0.689 0.699
MGP-Net 0.763 0.695 0.714

To observe the edge detection performance of the proposed algorithm more intuitively,
we report the qualitative test results in Figure 5. The qualitative results show the edge
detection results of different algorithms in CCEDD datasets. The characteristic of CCEDD
datasets is that it includes many challenging cases of irregular overlapping cervical cells,
which brings difficulties to the general edge detection algorithm. Besides, the extremely low
contrast between foreground and background organizations may increase the probability
of inaccurate edge detection.

For easy comparison, we convert our edge visualization results to binary images. From
the experimental results, we can find that the classical RCF cannot deal with the complex
situation of cell superposition due to the inherent limitations of its architecture. U-Net++is
superior to RCF because it uses residual technology to effectively combine image features
and can use more image information. But as shown in the third column in Figure 5, UNet++
is also not applicable to edge detection in the case of overlapping cells. The main reason
why we analyze this phenomenon is that it does not have sufficient global receptive field
and context information.

Our MGP-Net detects more edge pixels through the proposed module and achieves
satisfactory performance compared to other existing methods. By gradually fusing context
information in multiple ranges and guiding according to the mask guidance of individual
cells, features such as different shapes of cells at multiple scales can be effectively extracted.

The interference of non-marginal pixels can be effectively suppressed, so that the
network can learn more useful and discriminating features. In addition, the MGM-based
mask guidance mechanism and RAM multi-level cascading feature aggregation strategy
also help to obtain accurate edge prediction and effectively obtain the final edge detection.
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(a) (b) (c) (d) (e)

Figure 5. The edge detection performance compared with other algorithms. (a) Input cervical cell
images. (b) RCF method results. (c) UNet++ method results. (d) Our proposed MGP-Net results.
(e) Ground Truth label images.

5. Conclusions

The means of preventing and diagnosing cervical cancer in medicine has always
been to screen cervical TCT cell images. Automatic identification and accurate cell edge
detection of cervical cell images are key technologies for this medical diagnosis. In this
paper, we propose a segmented mask guided joint task framework for edge detection. We
use a one-to-one mask guidance module for one task on multiple cell scales to refine the
feature mapping of another task, and the interaction between the two tasks contributes
to the final edge detection result. In order to solve the edge sparse problem, we fuse the
segmentation mask guide features into the semantic edge maps to suppress the interference
of non-semantic edge pixels. In the model training stage, we design a loss function based
on double constraints, which further improves the model performance and ensures the
consistency between the mask-guided prediction edge and the edge ground-truth. The
experimental part of this paper verifies the effectiveness of the framework under different
evaluation indicators on the CCEDD datasets, and it can be seen that the proposed MGP-
Net is superior to other existing methods in cell edge detection tasks. However, our method
has a low detection rate in cervical cell images with a high overlap rate, which is related
to the standardization of pathological cell image acquisition and the effect of model mask
feature capture, which will be improved in subsequent studies.
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