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Abstract: We consider the nonequilibrium dispersion force acting on nanoparticles on the source side
of a gapped graphene sheet. Nanoparticles are kept at the environmental temperature, whereas the
graphene sheet may be either cooler or hotter than the environment. Calculation of the dispersion
force as a function of separation at different values of the mass-gap parameter is performed using
the generalization of the fundamental Lifshitz theory to out-of-thermal-equilibrium conditions. The
response of the gapped graphene to quantum and thermal fluctuations in the electromagnetic field is
described by the polarization tensor in (2 + 1)-dimensional space–time in the framework of the Dirac
model. The explicit expressions for the components of this tensor in the area of evanescent waves
are presented. The nontrivial impact of the mass-gap parameter of graphene on the nonequilibrium
dispersion force, as compared to the equilibrium one, is determined. It is shown that, unlike the case
of pristine graphene, the nonequilibrium force preserves an attractive character. The possibilities of
using the obtained results in the design of micro- and nanodevices, incorporating nanoparticles and
graphene sheets for their functionality, is discussed.

Keywords: dispersion force; thermal nonequilibrium; nanoparticles; Lifshitz theory; graphene;
polarization tensor; nanodevices

1. Introduction

Investigations of interactions between nanoparticles and material surfaces of dif-
ferent nature are of profound importance for physics and its applications in nanotech-
nology, including bioelectronics (see, e.g., the following articles and reviews [1–17]).
The microparticle–surface interaction includes several contributions, among which are
mechanical contact forces, Born repulsion, and attractive dispersion forces [18,19]. At sepa-
rations between a nanoparticle and a surface exceeding several nanometers, the dispersion
forces, which are also called the van der Waals or Casimir–Polder forces, become dominant.
These are determined by the quantum and thermal fluctuations in the electromagnetic field.

An entirely new material that finds increasing use in nanotechnology, is graphene,
i.e., the plane sheet of carbon atoms arranged in a hexagonal lattice [20–22]. The disper-
sion (Casimir–Polder) interaction of graphene with different atomic systems [23–36] and
nanoparticles [37–42] has been the subject of much investigation. The obtained results are
finding ever-widening applications in bioelectronics [43–46].

The implementation of interactions between nanoparticles and graphene to new gen-
eration of nanodevices calls for the development of theoretical methods, which will make it
possible to calculate the dispersion force as a function of all relevant parameters. These
methods were developed in the framework of the Lifshitz theory [47–49] by expressing the
dispersion force between an atom or a nanoparticle and a graphene sheet via the atomic
(nanoparticle) electric polarizability and the polarization tensor of graphene [23–36]. In so
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doing, the polarization tensor of graphene was found [50–53] on the basis of the first
principles of thermal quantum field theory in the framework of the Dirac model [20–22].

The Lifshitz theory of dispersion forces is formulated for the case when the interacting
bodies are in the state of thermal equilibrium with the environment. This condition,
however, is violated when both of the interacting bodies (or at least one of them) are
kept at temperatures different from that of the environment. The formalism generalizing
the Lifshitz theory for systems out of thermal equilibrium was developed in [54–59]. In
recent years, different aspects of the nonequilibrium dispersion forces acting between two
material plates, a small sphere or an atom and a material plate, and between two spheres
were investigated using this formalism [60–66]. Specifically, the temperature-dependent
response functions of the interacting bodies was considered in [63,64].

The nonequilibrium dispersion force acting on spherical nanoparticles on the source
side of an ideal (pristine) freestanding-in-vacuum graphene sheet was investigated quite re-
cently [67]. The pristine character of graphene assumed in [67] means that its crystal lattice
does not include any foreign atoms and the quasiparticles are massless, as was supposed in
the original Dirac model [20–22]. Reference [67] suggested that the temperature of nanopar-
ticles is the same as that of the environment, whereas the graphene sheet can be either
cooler or hotter than the environment. It was shown that the impact of the nonequilibrium
effects of the dispersion force decreases with increasing graphene–nanoparticle separation
distance. Furthermore, according to the obtained results, at relatively short separations
the effects of nonequilibrium may change the sign of the dispersion force by making it
repulsive [67].

In this article, we applied the theory of nonequilibrium dispersion interaction to
investigate the force acting on nanoparticles kept at the environmental temperature on the
source side of the gapped graphene described by the Dirac model with light but massive
quasiparticles. The temperature of a graphene sheet is assumed to be either lower or higher
than that of the environment. To perform dispersion force computations, we present the
explicit expressions for the polarization tensor of gapped graphene along the real frequency
axis in the region of evanescent waves, which have not been considered in the literature
with sufficient detail to date. We demonstrate that the value of the mass-gap parameter
has a nontrivial impact on the nonequilibrium force, as compared to the equilibrium force,
depending on the values of separation and graphene temperature. Unlike the case of
pristine graphene, for a nonzero mass of quasiparticles, the nonequlibrium dispersion force
preserves its attractive character.

The structure of the article is as follows. In Section 2, we present the expression
of a nonequilibrium dispersion force acting on nanoparticles on the source side of the
gapped graphene sheet in terms of the polarization tensor. In Section 3, the components
of this tensor in the area of the evanescent waves are specified. Section 4 contains the
computational results for the dispersion force acting on nanoparticles, which is shown as
the function of separation for different values of the mass-gap parameter and at different
temperatures. In Sections 5 and 6, the reader will find the discussion of the obtained results
and our conclusions.

2. Nonequilibrium Dispersion Force on a Nanoparticle on the Source Side of
Gapped Graphene

We consider the dispersion (Casimir–Polder) force acting on a spherical nanoparticle
of radius R spaced above a graphene sheet at a separation a � R. The consideration of
nanoparticles of other types (for instance, having a nonspherical shape) would need a more
complicated theory using the scattering-matrix approach [58]. The area of graphene sheet
is taken to be much larger than the separation to a nanoparticle squared. It is assumed that,
at all temperatures T under consideration, it holds that R � h̄c/(kBT), where kB is the
Boltzmann constant (for instance, at the environmental temperature TE = 300 K, one has
h̄c/(kBT) ≈ 7.6 µm). Under this condition, within the range of separations a considered
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below, the nanoparticle can be described by the static polarizability α(0), which takes the
form [61]

α(0) = R3 ε(0)− 1
ε(0) + 2

, α(0) = R3 (1)

for dielectric and metallic nanoparticles, respectively, where ε(0) is the static dielectric
permittivity of a nanoparticle material.

Below, we assume that nanoparticles have the same temperature TE as the environ-
ment, whereas the graphene sheet has the temperature Tg, which is either lower or higher
than TE. As distinct from [67], where the case of a pristine graphene was considered, here
the graphene sheet is characterized by a nonzero mass-gap parameter ∆ = 2mv2

F, where m
is the mass of quasiparticles and vF ≈ c/300 is the Fermi velocity [21,68,69].

The nonequilibrium dispersion force acting on a nanoparticle is represented in the
form [56,58]

Fneq(a, ∆, TE, Tg) = FM(a, ∆, TE, Tg) + Fr(a, ∆, TE, Tg), (2)

where FM(a, ∆, TE, Tg) can be expressed as a sum over the discrete Matsubara frequen-
cies, much as the equilibrium Casimir–Polder force [70,71], whereas Fr(a, ∆, TE, Tg) is the
contribution, which is given by an integral over the real frequency axis.

In fact, the effects of nonequilibrium contribute to both terms on the right-hand side
of (2). Because of this, it is not reasonable to call the first of them “equilibrium” and the
second—“nonequilibrium”, as occurs in the literature. Moreover, the division of Fneq into
FM and Fr is not unique and can be made in a number of ways. Below, we use the same
division as in [67].

In this case, the first term in (2) is given by [67]

FM(a, ∆, TE, Tg) = −
2kBTEα(0)

c2

∞

∑
l=0

′
∞∫

0

k dke−2aql(k)
{[

2q2
l (k)c

2 − ξ2
E,l

]
RTM(iξE,l , k; ∆, Tg)− ξ2

E,l RTE(iξE,l , k; ∆, Tg)
}

. (3)

Here, k is the magnitude of the wave vector component along the graphene sheet, q2
l (k) =

k2 + ξ2
E,l/c2, ξE,l = 2πkBTEl/h̄ with l = 0, 1, 2, . . . are the Matsubara frequencies at the

environmental temperature TE, and the prime on the summation sign multiples the term
with l = 0 by the factor 1/2.

The quantities RTM and RTE are the reflection coefficients of the electromagnetic
fluctuations on a graphene sheet for the transverse magnetic (TM) and transverse electric
(TE) polarizations calculated at the pure imaginary Matsubara frequencies ω = iξE,l , but at
the temperature of graphene Tg. They are expressed via the components of the polarization
tensor of graphene Πij(ω, k; ∆, Tg) [51,52,72]

RTM(ω, k; ∆, Tg) =
q(ω, k)Π00(ω, k; ∆, Tg)

2h̄k2 + q(ω, k)Π00(ω, k; ∆, Tg)
,

RTE(ω, k; ∆, Tg) = −
Π(ω, k; ∆, Tg)

2h̄k2q(ω, k) + Π(ω, k; ∆, Tg)
, (4)

where q2(ω, k) = k2 −ω2/c2, and the quantity Π is defined as

Π(ω, k; ∆, Tg) = k2Π i
i (ω, k; ∆, Tg)− q2(ω, k)Π00(ω, k; ∆, Tg) (5)

with the summation over the repeated index i = 0, 1, 2. The explicit expressions for the
polarization tensor in the required frequency regions are given in Section 3.

Note that the polarization tensor Πij, describing the response of graphene to quantum
and thermal fluctuations of the electromagnetic field, strongly depends on temperature Tg
as a parameter. When applied to the nonequilibrium dispersion forces, a similar situation
was previously considered for the phase-change [63] and metallic [64] materials.
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The second term on the right-hand side of (2), according to the division accepted
in [67], takes the form [58]

Fr(a, ∆, TE, Tg) =
2h̄α(0)

πc2

∞∫
0

dωΘ(ω, TE, Tg)

∞∫
ω/c

k dke−2aq(ω,k)Im
{[

2q2(ω, k)c2 + ω2
]

RTM(ω, k; ∆, Tg) + ω2RTE(ω, k; ∆, Tg)
}

. (6)

Here, the quantity Θ(ω, TE, Tg) is defined as

Θ(ω, TE, Tg) =
1

exp
(

h̄ω
kBTE

)
− 1
− 1

exp
(

h̄ω
kBTg

)
− 1

. (7)

The important property of the division (2) accepted in [67] is that the quantity Fr,
expressed in terms of real frequencies, is determined by the contribution of only the
evanescent waves for which k > ω/c. As a result, the exponent in (6) has the real power.
This is advantageous as compared to the standard Lifshitz formula for equilibrium Casimir
and Casimir–Polder forces written in terms of real frequencies, containing the contributions
of both the evanescent and propagating (k < ω/c) waves [71]. For the latter contribution,
the quantity q(ω, k) is purely imaginary, resulting in the integral of the quickly oscillating
function, which makes integration difficult.

3. Polarization Tensor in the Area of Evanescent Waves

The nonequilibrium dispersion force (2) acting on nanoparticles on the source of a
gapped graphene sheet can be computed by Equations (3)–(7). For this purpose, one
should know the component of the polarization tensor Π00 and the combination of its
components Π defined in (5) for a graphene sheet with the nonzero mass-gap parameter
∆. As mentioned in Section 1, the polarization tensor of graphene was found in [50–53] in
the framework of the Dirac model. In doing so, Ref. [50] was devoted to the case of zero-
temperature, T = 0. In [51], the polarization tensor of graphene was obtained at nonzero
temperatures at all discrete Matsubara frequencies. These results, however, did not admit a
continuation to the entire plane of complex frequencies and, specifically, were inapplicable
along the real frequency axis. Thus, they can be used for the calculation of the equilibrium
Casimir and Casimir–Polder forces and the contribution FM to the nonequilibrium force,
but not the contribution Fr.

The polarization tensor of graphene with nonzero ∆ valid over the entire plane of
complex frequencies was derived in [52], where the most attention was paid to the region
of propagating waves k < ω/c in connection with the topical applications to the reflec-
tivity [73–76] and conductivity [77–80] properties of graphene. Below, we present a more
detailed exposition of the results of [52], which are relevant to the area of evanescent waves
(k > ω/c) that determines the contribution (6) to the nonequilibrium dispersion force.

Before dealing with the polarization tensor, a few remarks concerning the area of
application of this quantity for the calculation of dispersion forces are in order. In [50–53],
the polarization tensor of graphene was derived in the framework of the Dirac model.
This model provides a physically adequate description of graphene at energies below
approximately 3 eV [81]. Thus, the energies h̄ω providing the major contribution to the
dispersion force should be below this limit. The characteristic frequency determining the
dispersion force is ωc = c/(2a) [70,71]. It can easily be seen that the respective characteristic
energy h̄ωc is below 1 eV at all separations a > 100 nm. Therefore, at separations, say,
a > 200 nm, one can safely use the Dirac model and its consequences in calculations of
dispersion forces. This was confirmed by the fact that measurements of the dispersion
interaction with graphene were found to be in very good agreement with theoretical
predictions computed using the polarization tensor [82,83].
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Now, we present explicit expressions for the quantities Π00 and Π in the frequency
region of evanescent waves ω/c < k. Similar to [30], we present these quantities as the
sums of two contributions

Π00(ω, k; ∆, Tg) = Π(0)
00 (ω, k; ∆) + Π(1)

00 (ω, k; ∆, Tg),

Π(ω, k; ∆, Tg) = Π(0)(ω, k; ∆) + Π(1)(ω, k; ∆, Tg). (8)

Here, the contributions with an upper index (0) are defined at zero-temperature, T = 0,
whereas the quantities with an upper index (1) have the meaning of the thermal correc-
tions. In doing so, both contributions depend on the mass-gap parameter of graphene ∆.
With vanishing temperature, both Π(1)

00 and Π(1) go to zero.
The analytic continuation of the polarization tensor of graphene to the frequency

region of evanescent waves takes different forms in the interval

ω

c
< k 6

ω

vF
≈ 300

ω

c
(9)

and in the interval
300

ω

c
≈ ω

vF
< k < ∞. (10)

First, we consider the interval (9), which is often called the plasmonic region [84].
In this region, the first contributions to (8) take the form [52]

Π(0)
00 (ω, k; ∆) = − 2αk2

cp2(ω, k)
Φ(ω, k, ∆),

Π(0)(ω, k; ∆) =
2αk2

c
Φ(ω, k, ∆), (11)

where

p2(ω, k) =
ω2

c2 −
v2

F
c2 k2 > 0 (12)

and α = e2/(h̄c) is the fine structure constant. The function Φ is defined as

Φ(ω, k, ∆) = ∆− h̄cp(ω, k)

[
1 +

∆2

h̄2c2 p2(ω, k)

] [
arctanh

∆
h̄cp(ω, k)

+ i
π

2

]
(13)

for h̄cp(ω, k) > ∆ and as

Φ(ω, k, ∆) = ∆− h̄cp(ω, k)

[
1 +

∆2

h̄2c2 p2(ω, k)

]
arctanh

h̄cp(ω, k)
∆

(14)

for h̄cp(ω, k) < ∆.
The second contributions to (8) in the plasmonic region are more complicated. It is

convenient to define their real and imaginary parts separately. We start from defining
the real parts of Π(1)

00 and Π(1) which, in turn, have different forms under the conditions
h̄cp(ω, k) > ∆ and h̄cp(ω, k) < ∆.

Thus, if the condition h̄cp(ω, k) > ∆ is satisfied, one obtains from [52] after identical
transformations,

Re Π(1)
00 (ω, k; ∆, Tg) =

8αh̄c2

v2
F

(I1 + I2 + I3), (15)
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where the following notations are introduced:

I1 =

u(−)(ω,k)∫
∆

2h̄c

du
eβ(Tg)u + 1

[
2− B1(2cu + ω) + B1(2cu−ω)

cp(ω, k)

]
,

I2 =

u(+)(ω,k)∫
u(−)(ω,k)

du
eβ(Tg)u + 1

[
2− B1(2cu + ω)

cp(ω, k)

]
, (16)

I3 =

∞∫
u(+)(ω,k)

du
eβ(Tg)u + 1

[
2− B1(2cu + ω)− B1(2cu−ω)

cp(ω, k)

]
.

Here,

u(±)(ω, k) =
1
2c

[ω± vFk
√

A(ω, k; ∆)], A(ω, k; ∆) = 1− ∆2

h̄2c2 p2(ω, k)
,

B1(x) =
x2 − v2

Fk2√
x2 − v2

Fk2 A(ω, k; ∆)
, β(Tg) =

h̄c
kBTg

. (17)

It can be seen that all the integrals Ij are the functions of ω, k, ∆, and Tg.
Under the same condition h̄cp(ω, k) > ∆, we obtain from [52]

Re Π(1)(ω, k; ∆, Tg) =
8αh̄ω2

v2
F

(J1 + J2 + J3), (18)

where the quantities Jj are given by

J1 =

u(−)(ω,k)∫
∆

2h̄c

du
eβ(Tg)u + 1

{
2− cp(ω, k)[B2(2cu + ω) + B2(2cu−ω)]

ω2

}
,

J2 =

u(+)(ω,k)∫
u(−)(ω,k)

du
eβ(Tg)u + 1

[
2− cp(ω, k)B2(2cu + ω)

ω2

]
, (19)

J3 =

∞∫
u(+)(ω,k)

du
eβ(Tg)u + 1

{
2− cp(ω, k)[B2(2cu + ω)− B2(2cu−ω)]

ω2

}
.

Here, the function B2(x) is defined as

B2(x) =
x2 − v2

Fk2[1− A(ω, k; ∆)]√
x2 − v2

Fk2 A(ω, k; ∆)
. (20)

If the opposite condition, h̄cp(ω, k) < ∆, is satisfied, the real parts of Π(1)
00 and Π(1)

take the following form [52]
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Re Π(1)
00 (ω, k; ∆, Tg) =

8αh̄c2

v2
F

∞∫
∆

2h̄c

du
eβ(Tg)u + 1

[
2− B1(2cu + ω)− B1(2cu−ω)

cp(ω, k)

]
,

(21)

Re Π(1)(ω, k; ∆, Tg) =
8αh̄ω2

v2
F

∞∫
∆

2h̄c

du
eβ(Tg)u + 1

{
2− cp(ω, k)[B2(2cu + ω)− B2(2cu−ω)]

ω2

}
.

This concludes the consideration of the real parts of Π(1)
00 and Π(1) in the plasmonic

region (9). The imaginary parts of Π(1)
00 and Π(1) are given by the unified expressions

Im Π(1)
00 (ω, k; ∆, Tg) =

8αh̄c
v2

F p(ω, k)
θ[h̄cp(ω, k)− ∆]

u(+)(ω,k)∫
u(−)(ω,k)

du
eβ(Tg)u + 1

(2cu−ω)2 − v2
Fk2√

v2
Fk2 A(ω, k; ∆)− (2cu−ω)2

,

(22)

Im Π(1)(ω, k; ∆, Tg) =
8αh̄cp(ω, k)

v2
F

θ[h̄cp(ω, k)− ∆]

u(+)(ω,k)∫
u(−)(ω,k)

du
eβ(Tg)u + 1

(2cu−ω)2 + v2
Fk2[1− A(ω, k; ∆)]√

v2
Fk2 A(ω, k; ∆)− (2cu−ω)2

,

which are valid over the entire region (9). Here, θ(x) is the step function equal to 1 for
x > 0 and to 0 for x < 0.

Next, we consider the polarization tensor in the interval (10). In this case, the first
contributions to (8) are given by [52]

Π(0)
00 (ω, k; ∆) =

αh̄k2

p̃(ω, k)
Ψ(ω, k, ∆), (23)

Π(0)(ω, k; ∆) = αh̄k2 p̃(ω, k)Ψ(ω, k, ∆),

where

p̃2(ω, k) =
v2

F
c2 k2 − ω2

c2 > 0 (24)

and Ψ is defined as

Ψ(ω, k, ∆) = 2

{
∆

h̄cp̃(ω, k)
+

[
1− ∆2

h̄2c2 p̃2(ω, k)

]
arctan

h̄cp̃(ω, k)
∆

}
. (25)

Similar to the plasmonic interval (9), in the interval (10) the quantities Π(1)
00 and Π(1)

are the complex-valued functions. Here, we present their explicit expressions without
separating the real and imaginary parts [52]

Π(1)
00 (ω, k; ∆, Tg) =

8αh̄c2 p̃(ω, k)
v2

F

∞∫
∆

h̄cp̃(ω,k)

dv
eD(ω,k,Tg)v + 1

1− 1
2 ∑

λ=±1

1− v2 − 2λ ω
cp̃(ω,k)v√

1− v2 − 2λ ω
cp̃(ω,k)v +

v2
Fk2∆2

c4 h̄2 p̃4(ω,k)

,

(26)

Π(1)(ω, k; ∆, Tg) =
8αh̄c2 p̃(ω, k)

v2
F

∞∫
∆

h̄cp̃(ω,k)

dv
eD(ω,k,Tg)v + 1


ω2

c2 −
1
2 ∑

λ=±1

[
p̃(ω, k)v + λ ω

c
]2

+
v2

Fk2∆2

c4 h̄2 p̃2(ω,k)√
1− v2 − 2λ ω

cp̃(ω,k)v +
v2

Fk2∆2

c4 h̄2 p̃4(ω,k)

,
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where

D(ω, k, Tg) =
h̄cp̃(ω, k)

2kBTg
. (27)

For a calculation of the contribution FM to the nonequilibrium dispersion force (2),
which is given by (3), one also needs to obtain the values of the polarization tensor at
the pure imaginary Matsubara frequencies. These are easily obtained from (8) and the
respective expressions (23)–(27) found in the interval (10) where we put ω = iξE,l . In this
case, the definitions (24) and (27) take the form

p̃2(iξE,l , k) ≡ p̃2
l (k) =

v2
F

c2 k2 +
ξ2

E,l

c2 , D(iξE,l , k, Tg) =
h̄cp̃l(k)
2kBTg

. (28)

Thus, all expressions for the polarization tensor appearing in both contributions
FM and Fr to the nonequilibrium dispersion force through the reflection coefficients (4)
are presented.

4. Computational Results for the Dispersion Force on Nanoparticles from Graphene

Here, we present the computational results for the nonequilibrium dispersion force Fneq
acting on nanoparticles of radius R on the source side of a graphene sheet characterized
by the mass-gap parameter ∆, which takes the typical values of 0.1 and 0.2 eV [82,83].
The temperature of nanoparticles is assumed to be the same as that of the environment,
i.e., TE = 300 K, whereas the temperature of a graphene sheet can be either cooler, Tg = 77 K,
or hotter, Tg = 500 K, than the environmental temperature. These temperatures are chosen
as a representative example. The first is the temperature of liquid nitrogen, whereas the
second is close to that employed in the experiment measuring the nonequilibrium Casimir–
Polder force [85]. The developed formalism allows for computation of the nonequilibrium
dispersion interaction for any experimental temperatures. In line with the assumptions
made in Sections 2 and 3, computations were performed in the separation range from 200
nm to 2 µm and it is assumed that R is sufficiently small. The polarizabilities of dielectric
and metallic nanoparticles are presented in (1).

Numerical computations were performed by Equations (2)–(4), (6) and (7) using the
expressions for the polarization tensor presented in Section 3. For this purpose, we worked
out a program written in the C++ programming language. The program utilizes the Gauss–
Kronrod and double-exponential quadrature methods from the GNU Scientific Library [86]
and Boost C++ Libraries [87] for numerical integration. High-precision computation is
achieved with the help of the Boost Multiprecision Library [88]. The program also employs
the OpenMP Library [89] for parallelization. The results presented below were obtained
using computational resources of the Supercomputer Center of the Peter the Great Saint
Petersburg Polytechnic University.

The computational results for Fneq are normalized to the classical limit of the equilib-
rium dispersion force acting on a nanoparticle on the source side of an ideal metal plane [71]

Fc(a, TE) = −
3kBT
4a4 α(0). (29)

The normalized values do not depend on the static polarizability of a nanoparticle α(0).
The absolute values of Fneq for the nanoparticles made of some specific material can be
obtained using Equations (1) and (29) by fixing the values of R and ε(0). In doing so, the
value of R is restricted by the conditions R � a and R � h̄c/(kBT), considered in the
beginning of Section 2.

In Figure 1, the Fneq/Fc ratio is shown as a function of the nanoparticle–graphene
separation by the two bottom (blue) lines, which are plotted for graphene sheets with the
mass-gap parameter ∆ equal to 0.2 and 0.1 eV, kept at temperature Tg = 77 K.
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Figure 1. The ratio of nonequilibrium force acting on a nanoparticle on the source side of cooled to
Tg = 77 K gapped graphene sheets with ∆ = 0.2 and 0.1 eV to the classical limit of an equilibrium at
TE = 300 K force acting between the same nanoparticle and an ideal metal plane is shown by the
two blue bottom lines as the function of separation. The two black top lines show the ratio of the
equilibrium force between a nanoparticle and the gapped graphene sheets kept at TE = 300 K to the
same classical limit.

For comparison, the two top (black) lines in Figure 1 show the ratio Feq/Fc for the same
nanoparticles and graphene sheets computed at a state of thermal equilibrium, i.e., when the
temperatures of graphene and nanoparticles are equal to the environmental temperature,
Tg = TE = 300 K. In this case, the quantity Feq is computed as

Feq(a, ∆, TE) = −
2kBTEα(0)

c

∞

∑
l=0

′
∞∫

0

k dke−2aql(k)
{[

2q2
l (k)c

2 − ξ2
E,l

]
RTM(iξE,l , k; ∆, TE)− ξ2

E,l RTE(iξE,l , k; ∆, TE)
}

. (30)

Equation (30) is obtained from (3) by putting Tg = TE.
As shown in Figure 1, for a cooled graphene sheet the change in the value of ∆

has a lesser impact on Fneq than on Feq at short separations but has a greater impact
on Fneq than on Feq at large separations. As opposed to the case of cooled sheet of a
pristine graphene [67], for a gapped graphene with sufficiently large ∆ the nonequilibrium
dispersion force remains attractive.

Now let us admit that the graphene sheet is heated up to Tg = 500 K, whereas nanopar-
ticles preserve the environmental temperature TE = 300 K. In this case, the computational
results for the ratio Fneq/Fc are shown in Figure 2 as the functions of separation by the
two red lines plotted for graphene sheets with the mass-gap parameter ∆ equal to 0.2 and
0.1 eV. The two black lines, which show the ratio Feq/Fc, are reproduced from Figure 1.
As explained above, they are plotted for graphene sheets with ∆ = 0.2 and 0.1 eV in thermal
equilibrium with the environment at Tg = TE = 300 K.

From Figure 2, it can be seen that, for a heated graphene sheet, the change in the
value of ∆ has a lesser impact on Fneq than on Feq over the entire separation region being
considered. By comparing Figures 1 and 2, one can conclude that the magnitude of a
nonequilibrium dispersion force acting on a nanoparticle on the source side of gapped
graphene increases with increasing temperature.
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Figure 2. The ratio of nonequilibrium force acting on a nanoparticle on the source side of heated to
Tg = 500 K gapped graphene sheets with ∆ = 0.2 and 0.1 eV to the classical limit of an equilibrium at
TE = 300 K force acting between the same nanoparticle and an ideal metal plane is shown by the two
red lines as the functions of separation. The two black lines reproduced from Figure 1 show the ratio
of the equilibrium force between a nanoparticle and the gapped graphene sheets kept at TE = 300 K
to the same classical limit.

Now, we investigate the relative role of the first and second contributions FM and Fr in
(2), which represents the total value of Fneq. We begin with FM, computed by Equations (3)
and (4), and the respective expressions (8), (23)–(27) for the polarization tensor calculated at
the pure imaginary Matsubara frequencies iξE,l . Similar to the case of an equilibrium force,
FM is always negative, i.e., contributes to the attraction. The computational results for the
ratio FM/Fc are shown as the functions of separation in Figure 3 by the two pairs of blue
and red lines computed at the graphene temperature Tg = 77 K and 500 K, respectively.
In each pair, the lower line represents a graphene sheet with ∆ = 0.2 eV and the upper line
represents a graphene sheet with ∆ = 0.1 eV.

As is seen in Figure 3, at both temperatures, the contribution FM decreases in magni-
tude with increasing separation. In the considered separation region, this decrease occurs
to the relatively small values at Tg = 77 K and to the classical limit (29) at Tg = 500 K.
In doing so, the sign of FM remains negative, which corresponds to the attractive force.

The role of the contribution Fr is somewhat different. The sign of Fr in (6) is determined
by the sign of the quantity Θ in (7) and of the imaginary parts of RTM and RTE defined
in (4). Thus, Fr can be both negative and positive. The quantity Θ is negative for Tg >
TE and positive for Tg < TE. As to the sign of Im RTM and Im RTE, it depends on the
relative contributions of the frequency regions (9) and (10). In the region (9), Im RTM,TE is
positive and in the region (10), it is negative. The computational results for Fr are obtained
by Equations (6), (4) and respective expressions for the polarization tensor at the real
frequencies presented in Section 3.
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Figure 3. The ratio of the first contribution to the nonequilibrium force acting on a nanoparticle
on the source side of cooled to Tg = 77 K and heated to Tg = 500 K gapped graphene sheets to
the classical limit of an equilibrium at a TE = 300 K force acting between the same nanoparticle
and an ideal metal plane is shown by the pairs of blue and red lines, respectively, as the function of
separation. In each pair, the lower line represents a graphene sheet with the mass-gap parameter
∆ = 0.2 eV and the upper line represents a graphene sheet with ∆ = 0.1 eV.

In Figure 4a, we plot the ratio Fr/Fc as the function of separation at the graphene
temperature Tg = 77 K and in Figure 4b—for Tg = 500 K (the blue and red pairs of lines,
respectively). In both cases, the lower and upper lines are for the graphene sheets with
∆ = 0.2 and 0.1 eV, respectively.
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Figure 4. The ratio of the second contribution to the nonequilibrium force acting on a nanoparticle
on the source side of (a) cooled to Tg = 77 K and (b) heated to Tg = 500 K gapped graphene sheets
to the classical limit of an equilibrium at TE = 300 K force acting between the same nanoparticle
and an ideal metal plane is shown by the pairs of blue and red lines, respectively, as the function of
separation. In each pair, the lower line represents a graphene sheet with the mass-gap parameter
∆ = 0.2 eV and the upper line represents a graphene sheet with ∆ = 0.1 eV.
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From Figure 4a, one can see that, for a graphene sheet with ∆ = 0.2 eV at Tg = 77 K, the
contribution Fr remains negligibly small at all considered separations, whereas it increases
monotonously with increasing separation for a graphene sheet with ∆ = 0.1 eV. The sign of
Fr remains negative. Here, the main contribution to Fr given by the frequency region (10) is
negative, leading to Fr < 0.

In Figure 4b, the sign of Fr is positive for a graphene sheet with ∆ = 0.2 eV and changes
from positive to negative for graphene with ∆ = 0.1 eV. This means that, at the considered
separations, the main contribution to Fr for a graphene sheet with ∆ = 0.2 eV given by the
frequency region (10) is positive, leading to Fr > 0. If ∆ = 0.1 eV, the relative role of the
frequency regions (9) and (10) is different depending on separation. At short distances,
the dominant region is (10) and Fr > 0, whereas at separations exceeding approximately
0.5 µm, the dominant contribution is given by the region (9) and Fr < 0.

By comparing Figure 1 with Figures 3 and 4a, it is seen that at short separations the
major contribution to Fneq for a graphene sheet at Tg = 77 K is given by FM for both values
of the mass-gap parameter. At large separations, the major contribution to Fneq is given by
Fr for graphene with ∆ = 0.1 eV, whereas the relatively small values of Fneq for graphene
with ∆ = 0.2 eV are determined by FM.

In a similar way, by comparing Figure 2 with Figures 3 and 4b, we conclude that
at short separations the major contributions to Fneq for graphene sheets at Tg = 500 K
with both values of ∆ are also given by FM. These contributions, however, are slightly
decreased by the impact of Fr, which is of the opposite sign. At large separations, the
major contribution to Fneq is again given by FM for both values of ∆, but for ∆ = 0.1 eV its
magnitude is slightly increased at the expense of Fr.

At the intermediate separation distances, the value of the nonequilibrium dispersion
force acting on a nanoparticle on the source side of gapped graphene sheet is determined
by the joint action of both contributions FM and Fr.

5. Discussion

In this article, we investigated the dispersion (Casimir–Polder) force acting on a
nanoparticle on the source side of a gapped graphene sheet in the nonequilibrium situations
when the graphene temperature is not equal to the nanoparticle temperature coinciding
with the temperature of the enovironment. Cases when the graphene temperature is lower
and higher than that of the environment were both considered.

It was shown that the nonzero value of the mass-gap parameter results in new proper-
ties of the nonequilibrium dispersion force as compared to the case of thermal equilibrium.
Specifically, for a cooled graphene sheet, the variation in the mass-gap parameter has
a lesser and greater impact on the nonequilibrium force than on the equilibrium one at
short and large separations, respectively. For a heated graphene sheet, the variation in the
mass-gap parameter results in a lesser impact on the nonequilibrium force than on the
equilibrium one at all separations considered from 200 nm to 2 µm. As opposed to the case
of pristine graphene, for a gapped graphene sheet the nonequilibrium dispersion force
preserves an attractive character at all considered separations.

We emphasize that the above results were obtained using the dielectric response
of graphene expressed via the polarization tensor. The latter quantity was found in the
framework of the Dirac model on the solid foundation of quantum field theory with no
recourse to any phenomenological methods. Thus, in the application region of the Dirac
model discussed in Section 3, these results possess the highest degree of reliability. In fact,
graphene and other 2D materials, such as silicene, stanene, and germanene [90–95], are
unique in that some of their properties can be investigated based on the most fundamental
physical principles. The nonequilibrium dispersion force acting on nanoparticles on the
source side of gapped graphene considered above presents one more example of this kind.
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6. Conclusions

To conclude, the above results provide the possibility of controlling the nonequi-
librium dispersion interaction between nanoparticles and a graphene sheet by varying
the mass-gap parameter of this sheet and its temperature. The need for such control
is apparent when noting that both nanoparticles of different kinds and graphene are
already widely used in various micro- and nanodevices, including the field-effect transis-
tors, integrated nanoparticle–biomolecule systems, electrochemical sensors and biosensors
etc. [6,7,18,19,39–46]. The theoretical methods used in the design of these micro- and
nanodevices are often based on phenomenology and computer simulation, rather than
on fundamental physical principles. It is hoped that the employment of the methods of
fundamental physics will further accelerate the progress in this rapidly developing field of
applied science.

In the future, it would be interesting to extend the obtained results to graphene sheets
deposited on substrates made of metallic and dielectric materials and to consider the case
of doped graphene characterized by some nonzero chemical potential. This will provide
further possibilities to control the nonequilibrium dispersion interaction in micro- and
nanodevices incorporating nanoparticles and graphene sheets for their functionality.
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